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Abstract: Sargassum fusiforme is a commercially important brown seaweed that has experienced
significant population reduction both from heavy exploitation and degradation of the environment.
Cultivated breed strains are also in a state of population mixing. These population stressors make
it necessary to investigate the population genetics to discover best practices to conserve and breed
this seaweed. In this study, the genetic diversity and population structure of S. fusiforme were investi-
gated by the genome-wide SNP data acquired from double digest restriction site-associated DNA
sequencing (ddRAD-seq). We found a low genetic diversity and a slight population differentiation
within and between wild and cultivated populations, and the effective population size of S. fusiforme
had experienced a continuous decline. Tajima’s D analysis showed the population contraction in wild
populations may be related to copper pollution which showed a consistent trend with the increase of
the sea surface temperature. The potential selection signatures may change the timing or level of gene
expression, and further experiments are needed to investigate the effect of the mutation on relevant
pathways. These results suggest an urgent need to manage and conserve S. fusiforme resources and
biodiversity considering the accelerating change of the environment.

Keywords: Sargassum fusiforme; ddRAD; population structure; demographic history

1. Introduction

Sargassum fusiforme is an important edible brown seaweed that is grown in the lower
intertidal zone along the Northwest Pacific (NW-Pacific) coast [1]. This seaweed has a
reputation as the “longevity vegetable”, as it contains a series of functional bioactive
compounds (such as polysaccharides), which are correlated with antioxidants, anti-aging,
memory improvement and immune regulation [2–4]. S. fusiforme is also used as an essential
herb in traditional Chinese medicine to disperse phlegm [5]. However, heavy commercial
exploitation of S. fusiforme has led to a significant reduction in population size. For example,
the annual production of S. fusiforme in Rongcheng, China, declined from 558.99 to 7.74 tons
between 1982–2006 [6]. Apart from commercial harvest, the degradation of the environment,
including the change of sea surface temperature, pollution, and harmful algae, has also had
a significant impact on populations [7,8]. To increase production, the breeding technology
developed by Shengyao Li’s group in the 1990s has been deployed in mass farming of
S. fusiforme in China. Dongtou, the main breeding site, is the location where the S. fusiforme
is in a state of population mixing. It is necessary to investigate the genetic diversity and
population structure of S. fusiforme, which may provide insights into the best practices to
employ to efficiently conserve and increase the production of this commercially important
seaweed species.

Next-generation sequencing (NGS) technology enables the discovery of molecular
polymorphisms and the characterization of genetic diversity in non-model organisms [9].
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Double digest restriction site-associated DNA sequencing (ddRAD-seq), a powerful NGS-
based technique, allows the delivering of high-resolution population genomic data for
non-model organisms by creating a reduced representation library through two rounds
of enzymatic digestion and ligation of adaptors to the genomic DNA of interest [10]. By
reducing the portion of the sequenced genome analyzed, this method produces a large
number of SNP markers, which can be effectively applied to infer the genetic diversity
and genetic differentiation within and between populations [11]. Deep inside the genetic
diversity and population structure, the natural selection history and inbreeding information
that is common in cultured populations can be characterized. The application of ddRAD-
seq has been successful in many aquaculture species, including Ectocarpus [12] and Undaria
pinnatifida [13].

In an earlier study from our group, the phylogeographic structure was investigated
within populations of the cultivated S. fusiforme strains in Dongtou by a combination of air-
bladder phenotype and simplified genome [14]. Using the ddRAD-seq data, we measured
a large-scale assessment of genetic variation to investigate the population structure and
demographic history between cultivated and wild S. fusiforme and identify the selection
signal for these populations.

2. Materials and Methods
2.1. Sample Collection and Double-Digest RAD Sequencing

A total of 29 S. fusiforme individuals, including 8 wilds and 21 cultivars, were collected
from the coastal Northwest Pacific (Figure 1a and Table 1). gDNA was extracted from
picked vesicles and a ddRAD library, was prepared according to Peterson’s protocol with
slight modifications by Genepioneer Biotechnologies Co. Ltd. (Nanjing, China). The DNA
extraction and library preparation methods can be found in our previous paper [14]. Briefly,
gDNA was first digested with EcoRI and NlaIII, followed by adaptors being ligated, and
then fragment size selection was performed following the standard protocol from Illumina
TruSeq DNA Library Kits (Used by Genepioneer Biotechnologies Co. Ltd., Nanjing, China)
to target 300–500 bp fragments.

Table 1. Sample information of collected S. fusiforme for ddRAD-seq.

Location Name Type Sample Size

Dongtou, Zhejiang, China Cultivar 21
Shengsi, Zhejiang, China Wild 1

Changhai, Liaoning, China Wild 2
Yeosu-si, Jeollanam-do, South Korea Wild 5

2.2. Read Mapping and SNP Calling

Quality filtering and SNP calling were conducted using the Stacks software, version
2.55 [15]. The ddRAD-seq reads were filtered using process_radtags (parameters as follows:
–clean –quality –rescue –renz_1 ecoRI –renz_2 nlaIII) to remove Illumina adapters and to
eliminate low-quality regions. The clean data were then mapped to the S. fusiforme reference
genome assembly using bowtie 2 [16]. SNP calling was carried out using ref_map.pl pipeline
of Stacks program with PCR duplicates removed [15]. The populations program (parameters
as follows: –min-populations 2 –min-samples-per-pop 0.75 –min-maf 0.05 –max-obs-het
0.7 –write-single-snp) was used to filter and output the SNPs. The flag “write_single_snp”
was used to restrict the dataset to contain only one SNP per locus to minimize the effects
of linkage disequilibrium. The variant call format (VCF) file generated from the Stacks
program was utilized for SNP annotations using SnpEff tool (version 5.0e) [17].
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Figure 1. The population information of cultivated and wild S. fusiforme. (a) Geographical distribution
of the collected S. fusiforme. The brown dots show the location of each sample site. Detailed
information is listed in Table 1. (b) The STRUCTURE analysis for 29 cultivated and wild S. fusiforme.
The abscissa represents each individual sample, and the ordinate represents the number of ancestors
from 2 to 7. The number shown for wild is corresponding to the sample below: 1, Shengsi; 2–3,
Changhai; 4–8, Yeosu-si.

2.3. Genetic Diversity and Population Structure Analysis

The nucleotide diversity (θπ) and Wright’s F statistic (Fst) were also estimated using
Stacks software [15]. Population structure analysis was investigated by STRUCTURE
v.2.3.2 [18]. Individuals were assigned to the K clusters assumption ranging from 2 to
6 under an admixture model with correlated allele frequencies by running 10,000 burn-
in Markov Chain Monte Carlo methods and 20,000 subsequent repetitions. The output
was summarized and subjected to CLUMPAK server for visualization [19], with bar plots
reorganized by the build-in Distruct program [20].

2.4. Demographic Inference

Population demography was inferred by stairway plot 2.1.1 [21], which can infer histor-
ical changes using a flexible multi-epoch demographic model in effective population size.
The script easySFS.py (https://github.com/isaacovercast/easySFS, accessed on 16 February
2022) was used to build the folded site frequency spectrum (SFS) for each population
from the VCF file. One cultivar was excluded from the SFS due to missing data. The
random break point for cultivars and wilds was set respectively as follows: 9, 19, 28, 38,
and 3, 7, 10, 14. Other common parameter settings for cultivars and wilds were as follows:
67% of sites for training and 1 year per generation. The total number of observed nucleic
sites was set as 50,000,000 based on the output of Stacks software. Since there is no precise
nuclear mutation rate reported for Sargassum, we inferred the population demography with
two different mutation rates. One mutation rate was set as 1.3 × 10−9, a value estimated
by calculating the average divergence rate of Sargassum Cox3 gene [22]. An alternative

https://github.com/isaacovercast/easySFS
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mutation rate was set as 5.2 × 10−9 by considering the mitochondrial mutation rate that
can be 4 times that of the nucleus in macroalgae [23]. Each estimation was generated using
200 bootstrapped folded SFS.

2.5. Genome-Wide Detection of Selection Signatures

To assess for signatures of demographic expansion or contraction, the VCF file gener-
ated from the Stacks program was subjected to VCFtools 0.1.16 [24] for Tajima’s D values
were calculated in 10-kb non-overlapping windows for both cultivated and wild-type pop-
ulations [25]. Windows belonging to the top or bottom 1% of the whole Tajima’s D values
were considered as potential regions under selection. The candidate genes in the selected
regions were found using the annotation file supplied with the S. fusiforme assembly by us-
ing BEDTools intersect function [26]. The GO annotation was performed using the Blast2GO
program [27]. Gene set enrichment analysis for GO terms was performed by TopGO using
the classic Fisher algorithm with Benjamini-Hochberg correction [28]. The most recent
go-basic ontology file from the Gene Ontology Consortium was chosen [29].

3. Results
3.1. Processed Sequence Data

After quality filtering by process_radtags, a total of 291,914,117 reads were obtained
from the initial 292,405,034 raw reads, with an average of 10,082,932 reads per sample.
Mapping of these filtered reads to the reference genome assembly resulted in an average
mapping rate of 78%. In total, we identified 125,401 ddRAD loci which were composed
of 61,980,894 sites, with an average length of about 416 bp per loci. Finally, 20,044 SNPs
with a minor allele frequency (MAF) above 0.05 across all samples were found in more
than 75% of individuals for each population and were retained for subsequent analysis.
Based on the output of snpEff, only 3.14% of SNPs were located in exonic regions. For
SNPs in non-coding regions, majority of them (47.98%) were intergenic SNPs, while 17.28%,
15.74%, and 15.60% of SNPs were located in 1 kb upstream, 1 kb downstream and intronic
regions, respectively.

3.2. Genetic Diversity and Population Structure

The genetic parameters (θπ) for all positions were low (0.0002 in both Cultivars and
wilds), indicating weak genetic diversity. The mean pairwise Fst value between wild and
cultivated populations was 0.0385, suggesting a slight population differentiation. The wild
and cultivated populations could not be classified as two clusters in the STRUCTURE
analysis (Figure 1b). Nearly all patterns found in wild populations were also found in
cultivated populations for each K. This appearance of patterns across all populations
indicates that the cultivated populations are mixed with wild populations. For K > 3, the
wilds can be clearly classified as three clusters consistent with their location sites, indicating
the wild populations from different locations retained their own features.

3.3. Demographic History

The θπ indicated low genetic diversity between Cultivated and Wild populations,
so we carried out a demographic analysis to infer the historical population changes that
resulted in the current state. For wild populations, similar trends were detected in both
mutation rates (1.3 × 10−9 and 5.2 × 10−9) from the stairway plot, in which the effective
population size (Ne) of S. fusiforme appears to have experienced a continuous decline from
the 3 kya to the present, although the observed Ne was different for each (Figure 2a,b). In
addition, the analysis of the cultivar showed a similar pattern in the timing and magnitude
of Ne decrease (Figure 2c,d).
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Figure 2. Demographic inference by stairway plot. The x-axis is the time in thousands of years or
generations from the present to the past. The y-axis is the Ne in thousand individuals. The red
line indicates the median estimate of effective population size, and the dark and light grey lines
indicate 75% and 95% confidence intervals, respectively. (a) Wild populations with mutation rates as
1.3 × 10−9. (b) Wild populations with mutation rates as 5.2 × 10−9. (c) Cultivars with mutation rates
as 1.3 × 10−9. (d) Cultivars with mutation rates as 5.2 × 10−9.

3.4. Signature Selection

Tajima’s D values were calculated by VCFtools in 10-kb non-overlapping windows for
both cultivar and wild S. fusiforme populations (Figure 3a). Windows with Tajima’s D score
for the top or bottom 1% of all windows were identified as candidate selective regions.
Protein-coding genes in these selective regions were identified by BEDTools. Then, four
selective gene groups (cultivar-top, cultivar-bottom, wild-top, wild-bottom) were generated,
which contained 792, 667, 677, and 526 genes, respectively. To detect the biological meanings
for the genes located in these selective regions, GO enrichment analysis was performed by
TopGO with Benjamini-Hochberg correction (Figure 3b). Three GO items were enriched in
the wild-top and were related to the molecular function of copper ion transport. Five GO
items were enriched in the cultivar-top, of which four items are cell composition-related
terms and one was related to negative regulation of cell population proliferation. There
were no enriched GO items found in either cultivar-bottom or wild-bottom.
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Figure 3. The signature selection in wild and cultivated populations. (a) The distribution of the
Tajima’s D values. The left and right vertical dashed lines indicate the bottom and top 1% of all values
in the cultivars, respectively. The lower and upper horizontal dashed lines indicate the bottom and
top 1% of all values in the wilds, respectively. (b) The GO enrichment analysis of genes located in the
cultivar-top or wild-top.
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4. Discussion

The number of individuals used in this project meets the minimum sample size for
studying genetic differentiation and genetic diversity based on the empirical analysis [30].
The low genetic diversity and slight population differentiation within and between wild and
cultivated populations detected in our study agree with the previous finding [7]. During
reproduction in S. fusiforme, the male and female gametes are released into the surrounding
water, where a zygote is formed and attached to the substrate (e.g., reef) for growth. Marine
algae with limited dispersal abilities are expected to have low genetic diversity, especially
in areas where habitat fragmentation is present due to human behavior and environmental
pollution [31]. In the STRUCTURE analysis, although wild populations from different
locations present their own patterns, the difference between cultivars and wilds was not
significant, and the patterns found in wilds can also be found in cultivars (Figure 1b). In the
past years, the natural resource of S. fusiforme in the coastal area of the Northwest Pacific
has been collected and used as seedlings for farming and cultivation in Dongtou [32,33].
The crossbreeding resulted in cultivars comprising the genetic information of wilds from
different locations. Interestingly, individuals with the Yeosu-si pattern occupy the largest
part of cultivars, not Shengsi which is geographically closest to Dongtou. Maybe some
features from the Yeosu-si strains have more commercial value and are being preserved
with genetic breeding, but this would need to be validated with more data.

It is difficult to illustrate the demographic history and represent the actual census
population size, especially for a low sample size, which may be not over samples [34].
According to our stairway plot, the Ne from our samples is quite small, supporting the pres-
ence of low diversity, which is consistent with a previous study that found the populations
from the coastal areas of China and Korea to be quite similar [7]. This method was accurate
for inferring recent population size changes compared to others, such as PSMC, MSMC
and SMC++, although contemporary population sizes were underestimated [35]. If the true
mutation rate was slower (or faster), the Ne should be different from what was assumed.
Although the exact Ne is difficult to obtain, we did find the Ne of S. fusiforme to continuously
decline in two different populations, and the pattern of demographic reduction from two
different mutation rates was consistent. This is consistent with the extremely positive
Tajima’s D detected in the Cultivar and Wild populations (Figure 3a), which shows that
these populations have experienced a sudden population contraction.

Besides the over-exploitation and inbreeding, the anthropogenic activities related to
the change in the environment may be another important reason for this contraction. For
example, the marine pollution is the main factor for the loss of genetic diversity in cultured
and wild populations of mussels from Greece [36]. During 1960–2006, the sea surface
temperature (SST) around the Nanji Island underwent an annual rise of 0.5 ◦C, resulting
in five species of cold-temperate seaweed populations being reduced [37]. The rise of SST
was responsible for increasing the toxicity of metal for aquatic organisms [38]. Copper
pollution affecting meiospore development has been found in kelp, another important
brown seaweed [39]. Due to enriched copper ion transport GO terms found in the wild-top,
we suppose that copper pollution should be an important factor for the decrease of the
wild population with the increase of SST. For cultivar, the formation of zygotes usually
takes place in an artificial pool, and the SST should have less of an effect on meiospore
development, whereas the selection of economic-related traits may affect the population
size even more so. Because most of the SNPs detected in this study are located in non-coding
regions, which may change the timing or level of gene expression, further experiments are
needed to investigate the effect of the mutation on relevant pathways.

Genetic diversity plays an important role in the ability of a population to adapt to
fluctuating environmental conditions. Without adequate diversity in genetic material for
breeding, populations are at risk of declining drastically if an extreme environmental event
occurs [40]. The decreased seaweed diversity found in this study suggests that there is an
urgent need to manage and conserve S. fusiforme resources and biodiversity, especially in
light of the accelerating change recorded in the environment.
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