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Abstract: Underwater detection equipment with fish detection technology has broad application
prospects in marine fishery resources exploration and conservation. In this paper, we establish a multi-
scale retinex enhancement algorithm and a multi-scale feature-based fish detection model to improve
underwater detection accuracy and ensure real-time performance. During image preprocessing,
the enhancement algorithm combines the bionic structure of the fish retina and classical retinex
theory to filter out underwater environmental noise. The detection model focuses on improving the
detection performance on small-size targets using a deep learning method based on a convolutional
neural network. We compare our method to current mainstream detection models (Faster R-CNN,
RetinaNet, YOLO, SSDetc.), and the proposed model achieves better performance, with a mean
Average Precision (mAP) of 78.31% and a mean Miss Rate (mMR) of 54.11% in the open fish image
data set. The test results for the data from the field experiment prove the feasibility and stability of
our model.

Keywords: fish detection; deep learning; image preprocessing; convolutional neural network

1. Introduction

The ocean is the birthplace of life on earth, and it contains abundant resources. With
the increasing shortage of land resources, it is more and more urgent to explore marine re-
sources [1]. Recently, underwater detection technologies have drawn remarkable attention
for use in resource exploration. Optical sensing is a critical information acquisition source
of underwater detection equipment due to its rich and intuitive perception information [2].
Object detection based on optical images is one of the key technologies that make underwa-
ter detection equipment intelligent. It facilitates the development of marine fishery resource
detection, marine mineral resource detection, and submarine communication cable laying.
Object detection is a very important research direction in the fields of computer vision,
machine learning, and pattern recognition. Currently, target detection technology is mainly
divided into the two-step target detection method, which is based on the region proposal,
and the proposal-free method.

Region-based convolutional neural networks (R-CNN), which were originally pro-
posed by Girshick et al. [3], add a region proposal method for object detection based on
convolutional neural networks. It first performs a selective search on the input image
to extract candidate regions that contain targets in the embodiment. It then conducts
convolution operations in each candidate region through the CNN to extract a fixed-length
feature vector. Then, the feature vector of each candidate region is input into a Support
Vector Machine [4] (SVM) to make a binary classification decision. Finally, bounding box
regression is adopted to improve the detection results. However, this method has the
following problems: one is that scaling the candidate regions to a fixed size directly causes
the aspect ratio of the detection target to become unbalanced, which may cause the loss
of local details on the detection target. The other is that there may be repeated overlaps
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among the candidate regions, which causes the feature to be extracted repeatedly and
seriously reduces the overall computational efficiency. He Kaiming et al. [5] proposed
the Spatial Pyramid Pooling (SPP) algorithm to solve the low computational efficiency
problem in R-CNN and the fixed size of candidate regions. The SPP algorithm performs a
convolution calculation on the original image of the input image to obtain the feature map
of the entire image, and then finds the corresponding mapping of each candidate box in
the total feature map to improve the overall computing efficiency. Additionally, multi-scale
pooling is used to replace the original single pooling to solve the problems that arise from
a loss of detailed information. However, the algorithm process is too complicated and
requires a lot of storage space.

Based on R-CNN and SPP, Girshick et al. [6] proposed Fast R-CNN with an ROI
Pooling layer, which allows the model to obtain a feature map of the complete image with
only one convolution calculation and output two vectors after the fully connected layer is
processed. One of the vectors is used for Softmax classification, and the other vector is used
for border regression. However, Fast R-CNN still has the problem of a low detection speed.

Ren et al. [7] proposed a region proposal network (RPN) to shorten the computing time.
This method transfers the task of finding the target candidate regions to the RPN, which
significantly improves the target detection speed. However, due to the deep extraction of
the target candidate regions, one of the problems with this algorithm is the loss of target
detailed features, resulting in poor positioning performance and the poor detection of
small-sized targets.

Because target detection algorithms based on proposed regions need to construct the
target candidate regions in advance, the calculation speed of this type of detection algorithm
cannot meet the real-time detection requirements, the proposal-free algorithm was created.
Redmon et al. [8] proposed a proposal-free target detection algorithm, YOLO, that does not
require a manual design to extract features. It uses a separate convolutional network that
is able to predict the position of the target box and the category of the target in the global
features of the image. YOLO transforms the target detection problem into a regression
problem and dramatically improves the calculation efficiency. However, due to the method
of predicting the target box, which involves dividing the grid area, the algorithm has poor
detection effects with adjacent small-sized targets and a poor generalization ability for new
or abnormal targets.

To improve YOLO, Redmon et al. [9] proposed YOLOv2, which uses multi-scale
training and enhances the resolution of the classifier to increase the detection accuracy. It
uses a new joint training algorithm to strengthen the robustness of overall target detection.
Compared to proposal-free methods, methods that are dependent on region proposals
are more accurate but also have a lower calculation rate. Thus, this paper proposes a
detection method that can identify fish features to improve detection accuracy and ensure
real-time performance.

However, progress in marine object detection research is far behind land object de-
tection. Zhang et al. [10] conducted ship detection via the segmentation of SAR images,
which was effective in nearly all weather conditions as well as during both day and night.
Yasin et al. [11] proposed an improved signal denoising method and applied sound waves
for the target location. The above techniques have lower precision than the optical posi-
tioning systems. However, for the optical positioning system, there are also unfavorable
factors, such as light scattering, refraction and absorption effects, and the existence of
underwater floating objects that interfere with the image quality in the underwater en-
vironment, which causes problems such as background noise, color distortion and low
contrast in underwater images. Moreover, due to the massive differences in the optical
environment, high requirements are proposed to ensure the robustness of target detection
for underwater images and tracking algorithms. Many object detection methods that have
been successfully applied on land are not necessarily suitable for underwater environments.
To facilitate the development of marine fishery resource detection methods, research for
underwater target detection, and tracking technology is of significant importance.



J. Mar. Sci. Eng. 2022, 10, 878 3 of 18

Wang et al. [12] proposed a method for the real-time detection and tracking of nor-
mally behaving porphyry seabream. Li et al. [13] applied Fast R-CNN for the detection
and recognition of fish species from underwater images with an emulation experiment.
Cai et al. [14] combined YOLOv3 with MobileNet for fish detection on a real breeding
farm. Kottursamy [15] proposed a solution for underwater image detection techniques in
which features are deeply extracted by multi-scale CNN to attain higher accuracy when
detecting fish features from input images with the help of the segmentation process. The
above methods have good accuracy, but their real-time performance is not satisfactory.
Sung et al. [16] proposed convolutional neural network-based techniques based on the
YOLO. However, these methods only work if the condition of the target, water quality, and
light and background changes are met when there are marine fish with different shapes
and when the marine environment is extremely complex. D. Levy et al. [17] demonstrated a
method using RetinaNet for detection and the Simple Online Realtime Tracker algorithm for
tracking which worked well on their datasets (above and under water). In addition, most
of the existing work either deals with a small dataset of a small number of species [15–20]
or has low accuracy, robustness, or poor real-time capability [13,21–23].

In this paper, we have designed a fish detection system with an improved prepro-
cessing module and a multi-scale fish detection module that is especially efficient for fish
detection and recognition under conditions with marine background noise.

The rest of this paper is structured as follows: Section 2.1 explains the research
methodology of the multi-scale retinex enhancement algorithm. Section 2.2 explains the fish
detection ability of the system. Section 3 introduces the experimental set up and provides
experimental results. In the end, Section 4 discusses the conclusions and future directions.

2. Materials and Methods
2.1. The Multi-Scale Retinex Enhancement Algorithm

Our multi-scale fish detection system, which is designed for fish detection and recog-
nition under conditions with marine background noise, comprises two modules. The first
module is the image preprocessing module, which filters out the underwater background
noise. The second module is the fish detection module, which is suitable for multi-scale
feature-based fish detection. The detection system performs image enhancement and other
preprocessing operations and then loads the convolutional neural network model designed
in this paper to achieve the fish recognition function. In the first module (Section 2.1), we
develop algorithms to filter out the underwater background noise by combining the bionic
structure of the fish retina and classical retinex theory. In the section module (Section 2.2),
we establish a multi-scale feature-based fish detection model to solve the poor ability of the
model to detect fish and other small objects.

The classic retinex theory is based on the bionics theory, which was inspired by the
color constancy theory, which is based on the perception and response behavior of the
human retinal visual system to the color and brightness of external objects [24,25]. Because
the retinal vision system of fish has unique advantages at underwater optical spatial
resolutions as well as advantages in terms of contrast sensitivity and color discrimination
sensitivity [26], we combined the bionic structure of the fish retina and the classic retinex
theory to propose a multi-scale retinex enhancement algorithm to achieve clearer visibility
and a higher dynamic range. The algorithm flow chart is shown in Figure 1.

According to the above principle, the multi-scale retinex enhancement algorithm
includes a photoreceptor cell simulation algorithm, a horizontal cell simulation algorithm,
a bipolar cell simulation algorithm, a ganglion cell simulation algorithm, a color gamut
adaptive adjustment algorithm, and a bright and dark channel fusion algorithm.

Photoreceptor cells are responsible for converting the light signals that are received
into corresponding neural signals. According to the sensitivity to the spectral wavelength of
the received optical signal, the photoreceptor cells can be further divided into long-(R) type,
medium-(G), and short-(B) type photoreceptor cells [27]. These three cells correspond to
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the three-color channels of the color domain (R, G, B). As much, we have fR(x, y), fG(x, y),
and fB(x, y), and the signal L(x, y) is the average summation result of the channels.
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Figure 1. The flow chart of the multi-scale retinex enhancement algorithm. The photoreceptor cells
first receive the external light and then generate corresponding nerve signals. The horizontal cells
are responsible for receiving the nerve signals of the photoreceptor cells. The receptive field of the
bipolar cells is divided into two types: the central area and the outer circle area. Amacrine cells
are responsible for normalizing the neural signals from the bipolar cells. Ganglion cells also have a
center-outer receptive field structure in the shape of a concentric circle.

The receptive field of horizontal cells is simulated with a local mean filter to solve the
problem of uneven color changes in underwater images. Moreover, considering that the
retinal structure of marine fish is more sensitive to longer light wavelengths and that the
red component is much weaker than the blue and green components, the horizontal cell
feedback of the three-color channels is as follows:

HCFR(x, y) = Σ fR(x,y)
N2 , fR > θ

HCFG(x, y) = Σ fG(x,y)
N2

HCFB(x, y) = Σ fB(x,y)
N2

, (1)

where θ is used to control the local brightness of the N × N window in the red channel.
The current single-scale retinex enhancements result in the light source having a uniform
color distribution area, which limits underwater image recovery enhancement. By adding
horizontal cell feedback, we have fλ(x, y) divided by HCFλ(x, y). Moreover, in the retinal
structure of marine fish, if the fish is in a dark environment, the amacrine cells will release
dopamine to inhibit the activity of the horizontal cells and to improve the contrast of images
under dark conditions [28]. As such, we used the Sigmoid function to suppress the output
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signals of the photoreceptor cells modulated by horizontal cell feedback. The output of the
neural signals by the photoreceptor cells is as follows:

CSλ(x, y) =
fλ(x, y)

HCFλ(x, y)
, coλ(x, y) =

1
1 + e−10(CSλ(x,y)−0.5)

, λ ∈ {R, G, B}. (2)

The visual nerve signal processing channels in the retina of marine fish are divided
into ON and OFF channels in the bipolar cells layer. The response of the bipolar cells can
be simulated by convolving the input signal on the rod-shaped connection channel with
the Difference of Gaussian (DOG), and the expression is as follows:

BP(x, y) = max[0, ( fbc ⊗ gσc)(x, y)− k ∗ ( fbs ⊗ gσs)(x, y)]
BP′(x, y) = max[0, ( f ′bc ⊗ gσc)(x, y)− k ∗ ( f ′bs ⊗ gσs)(x, y)]
BProd(x, y) = max[0, ( fbcL ⊗ gσc)(x, y)− k ∗ ( fbsL ⊗ gσs)(x, y)]

gσ(x, y) = 1
2πσ2 e(−

x2+y2

2σ2 )

, (3)

where BP and BP′ represent the output signal of the bipolar cells on the ON and OFF
channels. ⊗ is the convolution operator. fbc and fbs represent the input of the receptive
field of the bipolar cells on the ON. f ′bc and f ′bs represent the input of the receptive field of
the bipolar cells on the OFF. k represents the weight of the influence of the receptive field
in the outer circle area on the receptive field in the central area. gσ is the function of the
two-dimensional Gaussian distribution, which consists of σ, x, and y. BProd is the output
signal of the bipolar cells on the rod-shaped connection channel, and the nerve output
signal fbcL is generated by the photoreceptor cells on the rod-shaped connecting channel,
and the output signal fbsL is modulated by horizontal cell feedback.

Furthermore, the input to the central area of the receptive field of the bipolar cells
on the cone-shaped connection channel fbc(x, y) = COλ(x, y) ∗ BPγ

rod
, where γ is used to

simulate the non-linear feedback regulation of amacrine cells, and in the experiment, we set
γ = 0.5. Moreover, the output signal of the horizontal cells on the cone-shaped connection
channel after local feedback adjustment fbs(x, y) = {COλ(x, y)}meanN×N . In Equation (3),
when σs is set to three times the number of σc, the loss of image detail is lower, and setting
the parameter σc to about 0.3 results in the image-related detail information being more
complete after the DOG.

As shown in Figure 1, the receptive field of ganglion cells can be divided into four
groups. We define the nerve signals received by the ganglion cells on the ON Channel and
OFF Channel as BP and BP′ . The signal of the yellow-light channel is obtained by averaging
the red-light signal and the green-light signal from the bipolar cells, and the nerve signal of
the yellow-light can be expressed as BPY =

(
BPR + BPB

)
/2, BP′Y

=
(

BP′R
+ BP′B

)
/2. After

incorporating the color gamut information into the DOG for the calculations, the output
signal of the neuron cells can be expressed with the following formula:{

Gg(x, y) = max
[
0,
(

fgc ⊗ gσc + m ∗
(

fgc ⊗ gσc − fgs ⊗ gσx

))
(x, y)

]
G′g(x, y) = max

[
0,
(

f ′gc ⊗ gσc + m ∗
(

f ′gc ⊗ gσc − f ′gs ⊗ gσx

))
(x, y)

] , (4)

where Gg and G′g are the nerve signal output by the ganglion cells on the ON Channel and
OFF Channel. fgc, fgs, f ′gc and f ′gs are the nerve signals received by the ganglion cells on
the ON Channel and OFF Channel. σ is the size of the ganglion cell receptive field in the
Difference of Gaussian, and in this study, it was set to the same value as the bipolar cells. m
represents the weight of the influence of the receptive field in the outer circle area on the
receptive field in the central area, and it is used to enhance image color correction and to
further enhance the effects.

The values k and m are the keys to the preprocessing algorithm in this paper. Accord-
ing to [29], we bind the adaptive change trends of k and m to the noise intensity of the
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underwater images (indicators such as image contrast). According to the dark channel
prior (DCP) algorithm, the transmittance t(x, y) is expressed as follows:

t(x, y) = 1− min
x, y ∈ Ω

(
min

λ

Iλ(x, y)
Aλ(x, y)

)
, λ ∈ {R, G, B}, (5)

where Iλ(x, y) is the output image after denoising. A represents the uniform background
light, and Ω represents a square area centered on (x, y). Here, we use Aλ(x, y) to represent
a non-uniform light source color map defined as Aλ(x, y) = HCFλ(x, y), λ ∈ {R, G, B}.
According to Equation (5), we have

k =

∑
[

min
x, y ∈ Ω

(
min

λ
Iλ(x,y)
Aλ(x,y)

)]
N2 . (6)

In order to further correct the color gamut of the output image, we use the color satu-
ration of the output image according to the bipolar cells algorithm to define m as follows:

m =
∑[3min(BPR + BPG + BPB)]

N2 , (7)

where BP represents the color contrast in the color channel. Therefore, m is inversely
proportional to the color saturation of the output image through the bipolar cell algorithm.
If the saturation is low, then the value of m will increase, which will increase the suppression
effect to help correct the color gamut information of the output image.

The output signals on the ON and the OFF channels at the ganglion cell level will be
normalized to their respective bright and dark channels. To highlight the image contrast
information, we use the wavelet weighting method to fuse the normalized bright channel
information and dark channel information and to avoid the over-saturation of the contrast
in a single channel from affecting the image quality of the final output quality. The output
of the algorithm is defined as follows:

Output(x, y) = wavelet
{

ωON(x, y) ∗ Gg(x, y) + ωOFF(x, y) ∗ G′g(x, y)
}

, (8)

whereωON andωOFF are the weights of the ON Channel and OFF Channel. Because the
bright channel section has an enormous weight value, the Sigmoid function is introduced
to normalize the weight of the bright channel:

F
(
Gg(x, y)

)
=
[
1 + e−10(Gg(x,y)−0.5)

]−1
. (9)

Additionally,ωON andωOFF are transformed as follows: ωON(x, y) =
F(Gg(x,y))

Gg(x,y)+F(Gg(x,y))
ωOFF(x, y) = 1−ωON(x, y)

. (10)

The results of the image preprocessing module, are shown in Figure 2. A comparison
of the histogram comparison shows that the histogram distribution of the original image
processed by the multi-scale retinex enhancement algorithm is more uniform, indicating
that the enhanced image has a better color gamut value. Moreover, the processed image
feature details have a higher degree of discrimination, effectively improving the detection
model’s feature extraction performance.
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Figure 2. The original image before and after image preprocessing and histogram comparison. The
first row shows that the histogram distribution becomes more uniform, indicating that the enhanced
image has a better color gamut value. The last two rows show a higher degree of discrimination,
improving the feature extraction performance of the detection model.

2.2. The Multi-Scale Feature-Based Fish Detection Model

Figure 3 illustrates the architecture of the multi-scale feature-based fish detection
model based on the Convolution Neutral Network (CNN) model. The detection model
consists of a feature extraction module (Section 2.2.1), region proposal module, and region
classification module (Section 2.2.2). The processed image is imported into the convolu-
tional neural network for image feature extraction. The region proposal module uses a
small neural network with shared parameters to obtain the region proposal information,
and the region classification module is operated synchronously with bounding box re-
gression. The model will generate a set of multi-scale feature maps with corresponding
distinguishing features during training and will identify and classify images of various
species of fish according to the distinguishing features extracted from the set of multi-scale
feature maps.

2.2.1. Feature Extraction Module

The information retrieved from the images, such as pixel position and color channel
information, can be converted into numerical data using a computer after the feature model
extracts the key information. The model, which includes multi-scale feature information, is
defined as M = {P, X, S}. Here, we use P = {p1, · · · , pK} to describe a feature map set P
containing the feature maps generated from a single image. We use X = {x1, · · · , xK} to
describe the center coordinate information set of the feature maps and S = {s1, · · · , sK}
to describe the size information of the feature maps, where K is the number of feature
maps generated by a single image. For the image Im, Pm =

{
pm

1 , · · · , pm
K
}

is the feature
map set extracted from Xm =

{
xm

1 , · · · , xm
K
}

and Sm =
{

sm
1 , · · · , sm

K
}

and is normalized
according to the size of the feature map. The training of model M can be transformed into
a minimization constraint programming problem as follows:

(P∗, X∗, S∗) = argmin J(P, X, S) subject to
{

0 ≤ sm
i ≤ 1, i ∈ ε1, m ∈ ε2

0 ≤ xm
i ±

1
2 sm

i ≤ 1, i ∈ ε1, m ∈ ε2
(11)
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where ε1 = {1, 2, · · · , K}, ε2 = {1, 2, · · · , N}, and J(P, X, S) are the accumulation of Jfitness,
Jseparation, and Jdiscrimination, which are used to describe the objective function of the model.
Jfitness is used to calculate the similarity of the corresponding feature regions of the same
type of feature according to the distance between the feature map Pi and the actual local
feature area. As such, Jfitness can be defined as follows:

Jfitness = ∑N
m=1 ∑K

i=1 d(Pi, φ(I(xm
i , sm

i ))), (12)

where φ(·) is the feature description of the image region, and d(P, Q) is the distance
between the feature vector P and the feature vector Q. Jseparation is used to describe the
degree to which the extracted feature maps are concentrated in the disjointed matching
areas of the image instead of being concentrated in some of the local areas of the image. As
such, Jseparation can be defined as follows:

Jseparation = ∑N
m=1 ∑K

i=1 ∑N
j 6=i v

(
Im
i , Im

j

)
, (13)

where Im
i is the simplified form of I

(
xm

i , sm
i
)

and Im
i is the simplified form of I

(
xm

j , sm
j

)
.

v
(

Im
i , Im

j

)
is the overlap rate. vm

i,j is the simplified form of v
(

Im
i , Im

j

)
. Jdiscrimination means

that each feature map should represent different local features to capture as many features
of the target object as possible as well as reduce the cost of repeated calculations. As such,
Jdiscrimination can be defined as follows:

Jdiscrimination = −∑K
i=1 ∑K

j=1 d
(

Pi, Pj
)
. (14)
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We used denoising autoencoder and cluster analysis to design the unsupervised
learning process. The network structure of the denoising autoencoder includes an input
layer, encoder, decoder, and output layer. The structure can be seen in Figure 4.
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Figure 4. The structure of the denoising autoencoder. The input image data x is corrupted to x′. The
autoencoder then maps it to the output data y and attempts to reconstruct x (z).

In the input layer, the input image data is defined as x. The random mapping function
qD is used to perform random destruction operations on the input image data x . The
random destruction process is equivalent to adding noise to the input image data x, so we
have the image data x′. The encoder output data y is generated after the encoding process of
the encoding function fθ (y = fθ(x′) = S(Wx′ + b)). The decoder output data is generated
after the decoding process of the decoding function gθ′ (z = gθ′(y) = S(W ′y + b′)). S is
the sigmoid activation function, and W, b or W ′, b′ are the parameters of the encoder or
decoder, respectively. The input data x and the decoder output z data jointly define the loss
function L(x, z) as follows:

L(x, z) = ||x− z||2 + λ ∑n
j=1

∣∣θj
∣∣, (15)

where θ is the coding parameter of the encoder after pretraining (θ = {W, b}), and λ is
the parameter for L1 regularization. We can tune the parameter of L1 regularization to
make the autoencoder achieve a better fit and generalization. Then, we define the objective
function J = ∑n

i=1 L(x, gθ′( fθ(x′)))/2n and use gradient descent to make it close to the
optimal value. We compared the input x and output z of the denoising autoencoder to
form the corresponding loss function, which is used as the constraint of the autoencoder,
thus forming a nonlinear information loss. The internal structure prompts the encoder to
continuously extract useful features to make the decoder output a qualified image after
filtering out the noise. By applying a random mechanism to select neurons that is to 0 to add
environmental noise to the input image, the autoencoder will not experience overfitting,
and the extracted features will be more robust.

After the autoencoder extracts the feature set, it is also necessary to use cluster analysis
to separate individual feature clusters from the discrete feature set according to the degree
of feature similarity. We used the differences and similarities between features as a distance
measurement method. The differences between features can update the corresponding
model parameters so that they can better distinguish different types of fish. The similar-
ities between the features can update the corresponding parameters by maximizing the
differences between the cluster centers to make the same cluster feature move closer to
the center, achieving the effect of gathering the feature sub-sets from the same kind of fish.
After clustering analysis using differences and similarities between features, the clustering
results of the differences between the clusters and the similarities within clusters can be
improved simultaneously. The cluster analysis steps are shown in Figure 5.
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Figure 5. The steps of the cluster analysis. We use the between-class features differences to update the
parameters to distinguish the multiple fish specimens and use the between-class features similarities
to make the features of the same cluster move closer to the center so as to achieve the effect of
clustering the features of the same species of fish.

We define the target in the image as x, so the probability that x belongs to the c cluster
center can be expressed as follows:

p(c|xi, V) =
exp
(
VT

c vi/τ
)

∑C
j=1 exp(VT

c vi/τ)
, vi =

φ(θ, xi)

||φ(θ, xi) ||
, (16)

where vi is the L2 regularization of xi, V is the table of each clustering feature, and
V ∈ RC×nφ . Vj is the feature of column j, and C is the number of clusters. τ is the scalar
factor that controls the peak of the softmax probability distribution. As such, the loss func-
tion of inter-class exclusion is defined as Lr = −log(p(c|x, V)), and we use the Euclidean

distance to define the loss function of inter-class attraction as La = ∑ ||vi − cyi||
2
2

/2 ,

cyi ∈ Rd, i = 1, 2, · · · , m.
The loss function is defined as L = Lr +λLa, and λ is the hyperparameter for balancing

the sub-loss function. In the training process for cluster analysis, different training samples
are habitually discretized and dispersed in the learning space so that different samples
are regarded as different clusters. Therefore, we used the structured information in the
feature space to define the loss function of inter-class exclusion and the loss function of
inter-class attraction and performed clustering ensemble operations on the sample data
from the bottom up. During the clustering ensemble process, we used the minimum
distance criterion between clusters to calculate the dissimilarity Ddistance(A, B). We defined
the speed of training m as the product of the training parameter γ and the number of initial
clusters N.

It is assumed that P and S are constant. We used the autoencoder to update the set X
to locate the sub-region of the feature elements. Equation (13) becomes a fixed constant, so
Equation (11) can be simplified as follows:

min
X ∑N

m=1

(
∑K

i=1 d(Pi, φ(Im
i )) + ∑K

i=1 ∑j 6=i vm
i,j

)
, 0 ≤ xi ±

1
2

si ≤ 1, i = 1, · · · , K . (17)
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We used the “Mean Shift” algorithm to determine the coordinate variable x. For the
image of m, the coordinate is defined as follows:

xm
i (t + 1) =

∑
np
j=1 k

(
zj − xm

i (t)
)
wj
(
zj − xm

i (t)
)

∑
np
j=1 k

(
zj − xm

i (t)
)
wj

, (18)

where k(·) is the kernel function, np is the pixel value of the feature map, and wj is the
sample weight of zj. The iteration stops when

∣∣∣∣xm
i (t + 1)− xm

i (t)
∣∣∣∣ reaches the threshold.

Then, if we assume the P is constant, and that Equation (14) becomes a fixed constant,
Equation (11) can be simplified as follows:

min
s ∑N

m=1

(
∑K

i=1 d(Pi, φ(Im
i )) + ∑K

i=1 ∑K
j=1 vm

i,j

)
, 0 ≤ si ≤ 1, 0 ≤ xi ±

1
2

si ≤ 1, i ∈ ε. (19)

Similarly, we use the “Mean Shift” algorithm to obtain the coordinate variable S. Given
the coordinate base b > 1, the dimensional variable is defined as follows:

sm
i (t + 1) = sm

i (t)b
r′ , r′ =

∑r∈Ω ∑
np
j=1 H

(
zj, r

)
ω
(
zj
)
r

∑r∈Ω ∑
np
j=1 H

(
zj, r

)
ω
(
zj
) (20)

where Ω is the search range in the scale space centered on feature map size sm
i (t), H is

the scale kernel and np is the number of pixels. The iteration stops when ||r′|| reaches the
threshold. After knowing X and S, we use the cluster analysis to determine the optimal
feature set variable P. We assume v

(
Im
i , Im

j

)
is constant, so Pi is as follows:

min
Pi

∑N
m=1 d(Pi, φ(Im

i ))−∑K
j=1 d

(
Pi, Pj

)
. (21)

When the loss objective function is fitted to a specific threshold parameter in the cluster
analysis process, the process ends. Otherwise, the model will repeat the steps and iterative
learning. The process of the feature extraction module is illustrated in Figure 6.
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When the loss objective function is fitted to a specific threshold parameter in the clus-
ter analysis process, the process ends. Otherwise, the model will repeat the steps and iter-
ative learning. The process of the feature extraction module is illustrated in Figure 6. 
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Figure 6. The process of the feature extraction module. The left picture (a) is an example using a 
multi-scale feature-based fish detection algorithm. The right picture (b) is the flowchart of the algo-
rithm. The structure of denoising autoencoder is shown in Figure 4, and the steps of cluster analysis 
are shown in Figure 5. 

Figure 6. The process of the feature extraction module. The left picture (a) is an example using
a multi-scale feature-based fish detection algorithm. The right picture (b) is the flowchart of the
algorithm. The structure of denoising autoencoder is shown in Figure 4, and the steps of cluster
analysis are shown in Figure 5.

2.2.2. Region Proposal and Classification Module

The region proposal module comprises a convolutional neural network that divides
multiple small areas in the feature map. We can determine the approximate coordinates
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of the foreground area by comparing the degree of overlap between these small areas
and the target area in the learning sample. Then, we pass the foreground area to the ROI
pooling layer for region classification and target bounding box regression. The regional
classification module consists of an ROI pooling layer, a two-way fully connected layer, a
scoring layer, and a bounding box regression layer.

Coral reef fish are often densely packed into the same image frame in submarine coral
reef environments. We used this spatial structure layout information to collect multiple
confidence scores from similar target objects in multiple directions. The module completes
the region proposal and classification operation by sliding a window on the shared feature
map. The regional classification module consists of an ROI pooling layer, a two-way fully
connected layer, a score layer, and a bounding box regression layer.

In the submarine coral reef environment, there are often many coral reef fish in the
same frame of an image. We used this spatial structure layout information to collect confi-
dence scores from similar target objects from multiple directions. The module completes
the region proposal and classification operations by sliding a window on the shared feature
map. The region classification uses a 1× 1 sliding window as input to the last convolutional
layer to reduce the dimensional information of the region. Then, we input the region
feature into two 1× 1 convolutional layers. One is used for feature localization storage,
and the other is used to determine whether the target in the current box belongs to the
background or foreground. Moreover, for the particular case of densely packed fish, we
introduce spatial regularization weights for each box in the loss function to reduce the loss
function of the multi-task objective function below the threshold range. As such, our loss
function for an image is defined as follows:

L({ui}, {qi}, {pi}) = 1
N f g

∑i K
(
ci, N∗i , u∗i

)
·L f g

(
ui, u∗i

)
+ γ 1

Nbg
∑i Lbg

(
qi, q∗i

)
+

λ 1
Nloc

∑i Lloc
(
u∗i , pi, g∗i

)
.

(22)

Here, L f g
(
ui, u∗i

)
= −log

[
uiu∗i

]
and Lbg

(
qi, q∗i

)
= −log

[
(1− qi)

(
1− q∗i

)]
. The three

terms are normalized by N f g, Nbg, and Nlog and are weighted by two balancing parameters,
γ, and λ. i is the index of an anchor in a mini-batch, and K is the constant calculated
by re-weighting the objective score of each predicted box. ci is the center coordinate of
the predicted box. If an anchor with an Intersection-over-Union (IoU) overlaps with any
ground-truth box higher than 0.7, or the IoU overlap is the highest, then u∗i = 1. Otherwise,
if the IoU overlap is below 0.3, then q∗i = 0. Lloc is valid when u∗i = 1 and the expression is
as follows:

Lloc(u∗i , pi, g∗i ) = ∑i∈ f g ∑v∈{x,y,w,h} u∗i smoothL1(pv
i , gv∗

i ), (23)

where pi is the predicted box with data for x, y, w, and h. gv∗
i can be parameterized

as follows:
gx∗

i =
gx

i −dx
i

dw
i

, gy∗
i =

gy
i −dy

i
dh

i

gw∗
i = log

(
gw

i
dw

i

)
, gh∗

i = log
(

gh
i

dh
i

) . (24)

After the region proposal, we used the end-to-end approach for the weighted classifi-
cation of the region proposal. In the region proposal stage, we adopt K from Equation (23)
to calculate the confidence weight of the foreground-predicted box. Additionally, in the
region classification stage, we calculated all of the weights of the foreground-predicted box,
and the score function is defined as follows:

K(ci, N∗i , u∗i ) =

{
∑θ∈D ∑m

j∈N∗i
G(j, θ), u∗i = 1

1 , u∗i 6= 1
, G(j, θ) = α·e

−(
xθ

j
2σ2

x
+

yθ
j

2σ2
y
)

. (25)

where α is the amplitude of the Gaussian function and G(j, θ) is the Gaussian kernel with a
different rotation radius D = {θ1, · · · , θr}.
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3. Results
3.1. Experiment Setup

In order to test the performance of the multi-scale fish features detection model, this
paper uses the LifeCLEF underwater fish target image data set in ImageCLEF [30], which is
shown in Figure 7 below. The LifeCLEF underwater fish target image data set is taken from
the Fish4Knowledge underwater video set. Considering the large gap in the number of fish
species images, we selected 13 fish sub-datasets with a large number of images (320× 240
or 640× 480) as the dataset in this paper. Moreover, the dataset was divided into three
parts proportionally, and the detailed information is shown in Table 1. Considering the
non-balanced datasets, we used random rotation, random horizontal flip, random vertical
flip, random cropping, and other methods to conduct the data augmentation. After data
augmentation, the number of samples in the train set is three times the number of samples
in the initial train set.
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Table 1. The species used in the dataset. 

Fish Species Training Set Validation Set Test Set 
dascyllus reticulatus 4032 4042 4037 
plectroglyphido don dickii 894 890 898 
chromis chrysura 1192 1202 1197 
amphiprion clarkii 1349 1355 1344 
chaetodon lunulatus 844 839 849 
chaetodon trifascialis 63 68 58 
myripristis kuntee 145 155 150 
acanthurus nigrofuscus 78 68 73 
hemigymnus fasciatus 85 75 80 
neoniphon sammara 94 104 99 
canthigaster valentini 44 54 49 
pomacentrus moluccensis 55 65 60 
lutjanus fulvus 63 73 68 

Figure 7. Underwater fish target image data set in ImageCLEF [30].

The Precision, Recall, Miss Rate (MR), and False Positive Per Image (FPPI) rates are
often used as standard evaluation parameters in target detection tasks. In order to respond
to the detection performance of the model more intuitively, we used PR Curve, in which the
abscissa is Recall and the ordinate is Precision. The MR-FPPI Curve, in which the abscissa
is FPPI and the ordinate is MR, is also used to evaluate the detection model.

Experiments were carried out using an Nvidia 1080Ti GPU with a graphics memory
of 8 G. Considering that the use of the Fish4Knowledge underwater video data set may
result in an over-fitting phenomenon, during the experiment, random rotation, random
horizontal flip, random vertical flip, and other methods were used to augment the image
data. There are three times more image data than the initial sample size.

During the training process of the model, there was a total of 140,000 training times.
The learning rate for 0–79,999 pieces of training data in the initial stage was set to 0.001,
the learning rate for 80,000–109,999 pieces of training in the intermediate stage was set to
0.0001, and the learning rate for 110,000–139,999 pieces of training in the final stage was set
to 0.00001. We set the Batch Size to 4 and the Iter Size to 4. During the test, the Batch Size
was set to 1, and the Iter Size was set to 400. Finally, the IoU threshold was set to 0.5, the
confidence threshold was set to 0.1, and the non-maximum suppression threshold was set
to 0.45.
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Table 1. The species used in the dataset.

Fish Species Training Set Validation Set Test Set

dascyllus reticulatus 4032 4042 4037
plectroglyphido don dickii 894 890 898
chromis chrysura 1192 1202 1197
amphiprion clarkii 1349 1355 1344
chaetodon lunulatus 844 839 849
chaetodon trifascialis 63 68 58
myripristis kuntee 145 155 150
acanthurus nigrofuscus 78 68 73
hemigymnus fasciatus 85 75 80
neoniphon sammara 94 104 99
canthigaster valentini 44 54 49
pomacentrus moluccensis 55 65 60
lutjanus fulvus 63 73 68
total number of sample 8938 8990 8962

At last, we applied our model to the underwater equipment, which mainly consisted of
a Raspberry Pi, a CCD camera, and an underwater pressure chamber. Then, we conducted
the field experiment, as shown in Figure 8.
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Figure 8. The field experiment for the underwater equipment applying our model. The underwater
optical sensor equipment consists of a Sony IMX322 optical sensor, a raspberry pie with ARM
Cortex-A53, and a high hydrostatic pressure chamber.

3.2. Result and Discussion

We put the model algorithm designed in this article and five other current mainstream
target detection model algorithms together in the same experimental environment to
conduct the experimental analysis. The six mainstream target detection model algorithms
used as experimental controls included R-CNN and Fast R-CNN, Faster R-CNN, YOLO,
SSD, and the RetinaNet algorithm.

The MR-FPPI Curve and the PR Curve of the model algorithm designed in this paper
and those of the R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD, and RetinaNet algo-
rithms in the selected Fish4Knowledge fish sub-data set with the IoU threshold parameter
with the expected value of 0.5 are illustrated in Figures 9 and 10. It can be seen from
Figure 9 that the experimental analysis of the model algorithm designed in this paper has
an MR-FPPI curve that is below those of the other algorithms, proving that the detection
performance (Recall) of the model algorithm designed in this paper is better than that of the
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other mainstream models in the underwater environment. In Figure 10, the PR curve of the
model algorithm designed in this paper is to the upper right of the other algorithms, which
proves that the detection performance (Precision) of the model algorithm designed in this
paper is better than other mainstream models in underwater environments. Moreover, we
used the MR-FPPI curve and the PR Curve obtained via the experimental analysis of each
algorithm in the Fish4Knowledge fish sub-data set to calculate the corresponding mean
Miss Rate (mMR) and mean Average Precision(mAP), which are shown in Tables 2 and 3.
The test results of our model are illustrated in Figure 11.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 18 
 

 

with the expected value of 0.5 are illustrated in Figures 9 and 10. It can be seen from Figure 
9 that the experimental analysis of the model algorithm designed in this paper has an MR-
FPPI curve that is below those of the other algorithms, proving that the detection perfor-
mance (Recall) of the model algorithm designed in this paper is better than that of the 
other mainstream models in the underwater environment. In Figure 10, the PR curve of 
the model algorithm designed in this paper is to the upper right of the other algorithms, 
which proves that the detection performance (Precision) of the model algorithm designed 
in this paper is better than other mainstream models in underwater environments. More-
over, we used the MR-FPPI curve and the PR Curve obtained via the experimental analy-
sis of each algorithm in the Fish4Knowledge fish sub-data set to calculate the correspond-
ing mean Miss Rate (mMR) and mean Average Precision(mAP), which are shown in Ta-
bles 2 and 3. The test results of our model are illustrated in Figure 11. 

 
Figure 9. The MR-FPPI curves of the seven tested methods. Figure 9. The MR-FPPI curves of the seven tested methods.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 16 of 18 
 

 

 
Figure 10. The PR curves of the seven tested methods. 

Table 2. Detection performance (Recall) of the seven tested methods using the LifeCLEF test set. 

Method mMR Improvement 
R-CNN 63.42 / 
Fast R-CNN 63.30 0.12 
YOLO 63.20 0.22 
SSD 62.76 0.66 
Faster R-CNN 60.82 2.60 
RetinaNet 59.44 3.96 
Our Model 54.11 9.31 

Table 3. Detection performance (Precision) of the seven tested methods using the LifeCLEF test set. 

Method mAP Improvement 
R-CNN 70.29 / 
Fast R-CNN 71.56 1.27 
YOLO 71.81 1.52 
SSD 72.24 1.95 
Faster R-CNN 72.97 2.68 
RetinaNet 73.03 2.74 
Our Model 78.31 8.02 

Figure 10. The PR curves of the seven tested methods.



J. Mar. Sci. Eng. 2022, 10, 878 16 of 18

Table 2. Detection performance (Recall) of the seven tested methods using the LifeCLEF test set.

Method mMR Improvement

R-CNN 63.42 /
Fast R-CNN 63.30 0.12
YOLO 63.20 0.22
SSD 62.76 0.66
Faster R-CNN 60.82 2.60
RetinaNet 59.44 3.96
Our Model 54.11 9.31

Table 3. Detection performance (Precision) of the seven tested methods using the LifeCLEF test set.

Method mAP Improvement

R-CNN 70.29 /
Fast R-CNN 71.56 1.27
YOLO 71.81 1.52
SSD 72.24 1.95
Faster R-CNN 72.97 2.68
RetinaNet 73.03 2.74
Our Model 78.31 8.02
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