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Abstract: Accurate wave prediction can help avoid disasters. In this study, the significant wave 

height (SWH) prediction performances of the recurrent neural network (RNN), long short-term 

memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-

component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were 

used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH predic-

tion model was established at three different sites located in the Bohai Sea, the East China Sea, and 

the South China Sea, separately. The experimental results show that the performance of LSTM and 

GRU networks based on the gating mechanism was better than that of traditional RNNs, and the 

performances of the LSTM and GRU networks were comparable. The EMD method was found to 

be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 

and 24 h. 
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1. Introduction 

Sea surface wind waves can change the course and speed of ships and even pro-

duce hull resonance, which can fracture the hull; they can damage ports, wharves, un-

derwater engineering, and coastal protection engineering; and they can also affect the 

use of radar, the takeoff and landing of seaplanes and carrier-borne aircraft, mine laying, 

mine clearance, replenishment at sea, the use of shipborne weapons, and salvage at sea. 

Therefore, the study of wave conditions, especially the prediction of significant wave 

height, is of great significance for offshore operations. 

Generally, wave prediction models can be divided into data-driven or physical-

driven frameworks. The physical-driven method is based on the wave spectrum energy 

balance equation. Although the prediction of the numerical model is effective in large-

scale space and time ranges, the disadvantage is that the costs in terms of computing 

resources and time are high [1]. The data-driven approach uses machine learning tech-

niques to predict uncertain future times by analyzing possible relationships and de-

pendencies between large amounts of data. Fuzzy systems (FSs) [2], evolutionary algo-

rithms (EAs) [3], support vector machines (SVMs) [4], deep neural networks [5], and 

artificial neural networks (ANNs) [6] are all methods based on machine learning that are 

effective in constructing wave prediction models. Among the methods based on ma-

chine learning, it is effective to construct the prediction model of waves based on the 

recurrent neural network (RNN). This is because a wave is a continuous process, and the 
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RNN is a type of recursive neural network that takes the sequence data as input, carries 

out recursion in the evolution direction of the sequence, and links all nodes in a chain. In 

the RNN, neurons can receive information not only from other neurons but also from 

themselves, forming a network structure with loops, thus possessing short-term memory 

ability. However, when the input sequence is long, there will be gradient explosion and 

message problems [7]. The long short-term memory (LSTM) network [8] was proposed 

to solve the problem of gradient disappearance and gradient explosion in the RNN. 

Since its proposal, it has been widely applied. Theodoropoulos et al. [9] showed that 

LSTM models appeared to be suitable for propulsion power prediction, providing both 

great sensitivity and precision. Gao et al. [10] used the LSTM method to predict the path 

of typhoons and believed that the established model has a certain forecasting ability for 

the short-term path of typhoons. At the same time, Gao et al. [11] established significant 

wave height (SWH) prediction models for three stations in the Bohai Sea based on the 

LSTM method and believed that LSTM has broad application prospects in wave predic-

tion. Fan et al. [12] conducted a comparative study on the prediction performance of six 

networks, such as a random forest, LSTM network, and SVM, in predicting significant 

wave height, and believed that the LSTM network has better prediction performance. 

However, the LSTM network has the problem of too many parameters, which leads to a 

long model training time. Therefore, the gated recurrent unit (GRU) network was devel-

oped. The GRU network can be understood as the simplified version of the LSTM net-

work. It combines the forgetting gate and input gate of the LSTM network into a renewal 

gate, which reduces the training time of the model and improves the computing efficien-

cy. The GRU network has been applied in many fields, such as traffic flow prediction 

[13,14] and short-term wind speed prediction [15]. Wang et al. [16] established a signifi-

cant wave height (SWH) prediction model based on GRU, SVM, ELM, and other net-

works in the sea areas around Taiwan. The results show that the GRU network had the 

best performance in time series prediction. 

Although these methods have achieved good results in the prediction of significant 

wave height, they are not effective over long time ranges, such as 12 or 24 h of signifi-

cant wave height prediction. This is because waves are characterized by nonstationary 

characteristics. Although machine learning models can deal with nonlinear problems 

well, the modeling process of nonstationary data sets may be difficult without the pre-

processing of input [17,18]. Therefore, Ozger et al. [19] added wavelet transform to the 

fuzzy logic method. Moreover, Deka et al. [18] combined wavelet changes and a neural 

network to predict the significant wave height. Their specific approach uses the wavelet 

technology to decompose the time series of the significant wave height and then takes 

the decomposed components as the input of the model. The prediction results are better 

than the single neural network prediction results. However, the neural network com-

bined with wavelet analysis has limitations, because wavelet analysis needs to select a 

suitable mother wavelet and set up feasible decomposition layers. 

Empirical mode decomposition (EMD) [20] does not need to set any basis function 

in advance; it only needs to decompose according to the time scale of the data. Since it 

was proposed, it has been widely used. Rios et al. [21] used the method based on EMD 

to conduct time series modeling and confirmed that such a method can be used as an ef-

fective tool to improve prediction accuracy. Duan et al. [22] used the EMD method to 

decompose wave time series to obtain each component and then used SVR to forecast 

each component. Finally, the prediction results of each component were summarized to 

obtain the prediction results. Huang et al. [23] evaluated the performance of this method 

by combining EMD and LSTM networks at three buoy stations on the east coast of the 

United States. The results show that this method was superior to the independent LSTM 

network, especially for the prediction of a longer time range of significant wave height. 

The combination of EMD and machine learning has become a new way to predict waves 

with higher accuracy than models using machine learning alone. 
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China is among the countries that has been most seriously affected by marine disas-

ters. In recent years, the rapid development of the marine economy has led to the in-

creasingly prominent risk of marine disasters in coastal areas, and the form of marine 

disaster prevention and mitigation is a serious concern. According to the 2020 Bulletin 

on China’s Marine Disasters, China’s marine disasters are mainly storm surges and 

wave disasters. Various marine disasters have had many adverse effects on China’s 

coastal economic and social development and marine ecology, causing total direct eco-

nomic losses of CNY 832 million . Therefore, the study of wave conditions, especially the 

prediction of the significant wave height, is of great significance to the safety of people’s 

lives and properties. The use of machine learning to predict the significant wave height 

of waves a novel method. Compared with the traditional numerical model, the machine 

learning model has the characteristics of a lower computational cost and higher efficien-

cy. For the long-term prediction of wave heights, instead of using a single machine 

learning model, a combination of an LSTM network and an EMD model is applied to 

wave height prediction. It provides a new research idea for wave forecasting method 

and has great reference significance. 

In this study, we evaluated the performance of the RNN, LSTM, and GRU, and the 

effect of EMD for wave height prediction in China’s coastal seas, to derive the most effi-

cient way to build a data-driven model for wave height prediction at different time 

ranges. We first compared the prediction performance of three networks for significant 

wave heights in China’s offshore waters. The three networks were tested using numeri-

cal wave simulation results from three sites, located in the Bohai Sea, the East China Sea, 

and the South China Sea. As the connection between data decreased gradually with the 

increase in the prediction time range, the combination of EMD and the LSTM network 

was adopted to improve the prediction accuracy in the long time range prediction of 

waves. The remainder of the paper is structured as followsSection 2 introduces the data 

and methods used in this study. Section 3 introduces the error index and prediction re-

sult of evaluating the performance of the prediction model. Then, the discussion and 

conclusion of this paper are given in the Section 4 and 5, respectively. 

2. Materials and Methods 

2.1. Materials 

The data used in this study were taken from ERA5 

(“https://cds.climate.copernicus.eu/cdsapp”\l”!/dataset/reanalysis-era5-single-

levels?tab=form” (accessed on 1 November 2021)). ERA5 is the fifth generation of the 

European Centre for Medium-Range Weather Forecast (ECMWF) global climate reanal-

ysis data warehouse. Reanalysis combines model data and observations from around the 

world into a global data set. Verification results of many researchers show that the ERA5 

data set is consistent with buoy data in China’s coastal seas [24,25]. Considering the 

complexity of wave formation in offshore China, representative locations in the Bohai 

Sea, the East China Sea, and the South China Sea were selected to compare the predic-

tion performance of the three networks in offshore China. Figure 1 shows the exact loca-

tion of the experimental site on a map. Table 1 gives detailed information about the se-

lected sites, including the exact location of each site, the data period, and the total 

amount of data available. The wave prediction method based on machine learning has 

the characteristics of a higher computation time and lower cost compared with the tradi-

tional numerical wave prediction model. Therefore, the use of machine learning to pre-

dict waves has broad prospects, but machine learning training requires sufficient train-

ing samples to achieve excellent prediction results. Therefore, we selected ten years of 

site data to ensure sufficient data volume. Then, a statistical analysis was performed by 

drawing the effective wave height distribution histogram of each site; it was found that 

the data can well satisfy the requirement of machine learning data in terms of diversity. 

The main distribution interval of the significant wave height at position B was 0–4 m 
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(Figure 2). The significant wave heights of D and N were mainly distributed in the inter-

val of 0–6 m. The maximum significant wave height of position D reached more than 10 

m, and that of position N is 8.510 m. According to statistics, there were 21 cases in which 

the significant wave height of position D was higher than 8 m, which may have resulted 

in the inferior prediction effect of position D compared to the other two points. This is 

because the machine learning model can only learn the relationship between the given 

input and output. When the samples between the given input and output were insuffi-

cient or there was no relevant training sample at all, incorrect prediction results would 

be given, or the model would underestimate the wave height. 

 

Figure 1. The specific location. 

Table 1. Specific information about the selected location. 

Location Latitude (°E) Longitude (°N) Data Period 
Total Number of Da-

ta Points 

B 39.00 120.00 
1 January 2011–31 

December 2020 
87,672 

D 31.00 124.00 
1 January 2011–31 

December 2020 
87,672 

N 18.00 116.00 
1 January 2011–31 

December 2020 
87,672 
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Figure 2. Histogram of significant wave height distribution. The three subgraphs represent the 

significant wave height distribution histograms of the B, D, and N points from left to right. 

Wind speed has been identified as a major factor in wave generation [26]. In addi-

tion, as wave generation is a continuous process, this study considered the state of 

waves under the influence of wind speed and took the 10 m u-component of wind (U10), 

the 10 m v-component of wind (V10), and the historically significant wave height (SWH) 

as the inputs of the model. The interval of wind wave data used in this study was 1 h, 

and the data at each position were divided into two groups: the training validation set 

(80%) and the test set (20%). In general, the longer the forecast time horizon, the more 

challenging and less accurate it will be. Considering the above reasons, this study pro-

posed to predict the significant wave heights in the following five periods: 1, 3, 6, 12, 

and 24 h. 

2.2. Methods 

2.2.1. RNN 

The RNN is a kind of neural network with short-term memory ability, and is wide-

ly used to mine temporal sequence information in data. The basic structure of the RNN 

is an input layer, hidden layer, and output layer. The hidden layer is used to learn and 

optimize parameters. The structural expansion of RNN is shown in Figure 3. The calcu-

lation method of the RNN is as follows: 

   ttO g V S
 (1)

     1t t tS f U X W S
 (2)

where X X  is sequence data, and X is a matrix consisting of three column vectors U10, 

V10, and SWH; U is the weight matrix from the input layer to the hidden layer; V  is the 

weight matrix from the hidden layer to the output layer; W  is the last value of the hid-

den layer as the weight matrix of this input; S  is a vector representing the value of the 

hidden layer; and O  represents the value of the output layer. 
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Figure 3. RNN timeline expansion diagram. 

2.2.2. LSTM Network 

RNNs are robust in modeling nonlinear time series, but they cannot avoid the prob-

lems of gradient disappearance and gradient explosion, and the accuracy decreases with 

the increase in the time span. To effectively avoid these problems, the LSTM [11] model 

was developed. The LSTM model uses three gating mechanisms based on the traditional 

RNN: the forgetting gate, input gate, and output gate. Through these three gating mech-

anisms, the previous input information can be added or forgotten. The LSTM unit struc-

ture is shown in Figure 4. tf represents the output result of the forgetting gate, whose 

function is to forget unimportant information and retain important information. In 

LSTM, a forgetting gate structure performs the following operations: 

    1,t f t t ff W x h b  (3)

where fW  is the weight matrix used to control the forgetting gate behavior, tx is the se-

quence data, 1th  is the hidden state at the last moment, and fb is a bias vector. The output 

of the forgetting gate ( tf multiplies the corresponding element with the state value of the 

previous cell. Thus, if a value in tf is 0 or close to 0, the corresponding information for 

the previous cell 1tc   will be discarded, and if the value in tf is 1, the corresponding in-

formation will be retained. ti represents the output result of updating the gate. The basic 

operation of updating the gate can be expressed as follows: 

    1 ,t f t t ii W h x b  (4)

 

Figure 4. LSTM unit structure. 

The output of the update gate ( )ti  is also a vector with values in the range [0,1]. To 

calculate the new status information ( )tc  the output of the new gate will be multiplied 
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among the elements of tc . At the same time, we also need to update the unit state value 

( c ) passed between sequences, and the update process is as follows: 

   
1tanh ,t c t t cc W h x b  (5)

   1 tt t t tc f c i c  
(6)

where to is the output result of the output gate. The output value ( to  of the current unit 

and the hidden state ( th  passed to the next unit can be obtained from the output gate. 

The specific calculation process is as follows: 

    1 ,t o t t oo W h x b  (7)

   tanht t th o c  (8)

2.2.3. GRU 

GRU [27] is a variant of LSTM that optimizes the structure of LSTM while maintain-

ing the performance of LSTM. It also solves the problems of gradient explosion and gra-

dient disappearance of the standard RNN. The GRU network has only two gate struc-

tures: the update gate and reset gate. The update gate is equivalent to the combination of 

the forgetting gate and input gate in LSTM, so the GRU network has fewer parameters 

and a faster training speed. The internal structure of the GRU structural unit is shown in 

Figure 5. tx  and 1th   are sequence data and historical states, respectively, and the reset-

ting gate ( )tr  is used to control whether the calculation of the candidate state ( )th
  de-

pends on 1th   of the previous municipality. The operations are as follows: 

 1t r t r t rr W x U h b     (9)

The candidate status of the current moment is: 

      1tanht h t h t t hh W x U r h b  (10)

The update gate ( )tz  is used to control how much information is saved in the current 

state ( )th  from the historical state 1( )th   and how much new information it needs to re-

ceive from the candidate state ( )th
  rb , hb  above and zb  below are all bias vectors. The 

calculation formula of tz is: 

    1t z t z t zz W x U h b  (11)

The hidden state ( )th  is then calculated as: 

     1 1 tt t t th z h z h  (12)

 

Figure 5. GRU unit structure. 
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2.2.4. Empirical Mode Decomposition 

EMD, proposed in 1998, is a relatively new method for processing nonstationary 

signals [19], and works based on the time scale characteristics of a piece of data without 

setting any basis function in advance. This point is fundamentally different from Fourier 

decomposition and wavelet decomposition, which are based on the harmonic basis func-

tion and wavelet basis function, respectively. Therefore, the EMD method can be applied 

to any type of signal decomposition in theory and has obvious advantages in dealing 

with nonstationary nonlinear data. The time series of wave characteristics is composed 

of different oscillation scales and is a kind of complex nonlinear nonstationary signal. 

The prediction of the machine learning model with multiple oscillating scales is difficult, 

so proper signal preprocessing technology is needed to improve its performance. 

Intrinsic mode functions (IMFs) are the signal components of each layer after ele-

ment signals are decomposed by EMD. Any signal can be divided into the sum of sever-

al connotative modal components. Intrinsic mode functions (IMFs) have two constraints: 

1. In the whole data segment, the number of local extreme value points and the num-

ber of zero crossing points must be equal or differ by a maximum of one. 

2. At any time, the average value of the upper envelope formed by the local maximum 

point and the lower envelope formed by the local minimum point is zero; that is, 

the upper and lower envelope are locally symmetric with respect to the time axis. 

Given time series  x t , the EMD decomposition steps and flowchart (Figure 6) are 

as follows: 

1. The upper and lower envelope lines ( tu and tl  respectively) are drawn according to 

spline interpolation among all the local maxima and the local minima of  x t . 

2. Find the mean of the upper and lower envelope and plot the mean envelope 

      = /2m t l t u t   . 

3. Subtract the mean envelope from the original signal  x t  to obtain the intermediate 

signal  f t . 

4. Determine whether  f t meets the two conditions of IMF. If so,  f t is an IMF1; let 

us call it  1f t . If not, the analysis of (1)–(4) is repeated on the basis of  f t until the 

two IMF conditions are met. 

5. After the first IMF is obtained using the above method, the original signal is sub-

tracted from IMF1 as the new original signal, and then IMF2 can be obtained 

through the analysis of (1)–(4) to complete EMD decomposition. Finally, the signal 

that does not satisfy the decomposition condition is denoted  r t . 

6. Through EMD algorithm, signals can be decomposed into: 

     


 
1

n

i
i

x t f t r t  (13)
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Figure 6. The EMD flowchart. 

3. Results 

3.1. Error Metrics 

In this study, wave prediction models for 1, 3, 6, 12, and 24 h were established at 

three locations with U10, U10, and SWH as inputs based on the RNN, LSTM, and GRU 

methods. The mean absolute error (MAE ), root mean square error ( RMSE ), and correla-

tion coefficient ( R ) were selected as the evaluation indexes of the model to evaluate the 

accuracy of the model, which are defined as follows: 


 

n

1

1
ˆ

n
i ii

MAE y y  (14)

 


 
2

1

1
ˆ

n

i i
i

RMSE y y
n

 (15)

  

   


 

 


 



 

1

22

1 1

ˆ ˆ

ˆ ˆ

n

i ii

n n

i i ii i

y y y y
R

y y y y

 (16)

where n represents the total number of samples, iy represents the tag value, y  is the av-

erage of the tag values, ˆiy  is the predicted value of the model, and ŷ is the average of 

the predicted values. Meters are the units used forMAE  and RMSE in this paper. 
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Based on the fact that wind is the relevant factor in the generation of waves, U10, 

V10, and SWH at historical moments were taken as input parameters, and the significant 

wave heights at 1, 3, 6, 12, and 24 h were taken as the label values. Using RNN, LSTM, 

and GRU networks to predict the significant wave heights in different forecast periods, 

we compared the predictions from the three machine learning algorithms. 

To fairly compare the prediction performance of the three networks for significant 

wave heights in different sea areas, we set roughly the same total number of parameters 

for each model so that the calculation efficiency of the three models was roughly the 

same. Specifically, we referred to the method used by Chung et al. [28].The loss function 

in the machine learning model is used to evaluate the gap between the predicted value 

and the label value, so as to guide the next training in the right direction. Since the out-

put of the model is a specific value, the mean squared error (MSE ) is used as the loss 

function. MSE  is defined as follows: 

 
2

1

1
ˆ

n

i ii
MSE y y

n 
   (17)

where iy represents the tag value, and ˆiy is the predicted value of the model. 

The role of the optimizer is to optimize the weights in the network model so that 

the output of the model reaches the optimal value. The widely used Adam optimizer 

was used as the optimizer. The iteration period was chosen to be 15, because the loss 

function no longer decreases after the number of iterations exceeds 15 when training the 

model. Model size details are shown in Table 2. 

Table 2. Dimensions of each model. The specific meaning of First layer is the number of neurons 

in the first layer. The specific meaning of Second layer is the number of neurons in the second lay-

er. 

 First Layer Second Layer Total Parameter 

RNN 95 180 59,990 

LSTM 60 80 60,885 

GRU 70 90 59,945 

3.2. Results 

The error metrics of three different locations selected by the three algorithms in the 

Bohai Sea (B), the East China Sea (D), and the South China Sea (N) are summarized in 

Table 3. The results of 1 h prediction show that the three networks were excellent in the 

1 h prediction of waves. However, in the three sea areas, the prediction accuracy of 

LSTM and GRU was better than that of RNN. Of these, LSTM and GRU networks had 

basically the same ability to predict significant wave heights at identical locations. For 

example, the 1 h MAE of the two algorithms for position B was 0.031 and 0.029, and R 

values were consistent. The absolute errors of the MAE and RMSE of the LSTM and 

GRU networks at position D were 0.002 and 0.006, respectively, and the other error indi-

cators were basically consistent. The possible reason why the RNN network lags behind 

is that LSTM and GRU networks can make full use of the information of the previous 

time period without the problems of gradient explosion and gradient disappearance. 

Table 3. Error of different methods at each point. The bold text in the table represents the optimal 

forecast value for different locations at the same forecast time. 

 RNN LSTM GRU EMD-LSTM 

Time 

Span 
MAE RMSE R MAE RMSE R MAE RMSE R MAE RMSE R 

B 
1 0.036 0.051 0.998 0.031 0.049 0.998 0.029 0.046 0.998    

3 0.087 0.131 0.976 0.072 0.123 0.979 0.073 0.120 0.980    
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6 0.182 0.272 0.891 0.156 0.258 0.900 0.159 0.256 0.901    

12 0.308 0.447 0.659 0.283 0.434 0.680 0.284 0.431 0.683 0.132 0.197 0.944 

24 0.388 0.554 0.345 0.372 0.552 0.371 0.378 0.552 0.373 0.223 0.335 0.825 

D 

1 0.058 0.081 0.997 0.027 0.059 0.997 0.029 0.053 0.998    

3 0.090 0.140 0.986 0.068 0.120 0.988 0.071 0.121 0.987    

6 0.149 0.243 0.951 0.133 0.224 0.956 0.135 0.226 0.955    

12 0.253 0.409 0.843 0.250 0.399 0.855 0.245 0.394 0.857 0.159 0.229 0.954 

24 0.407 0.617 0.586 0.421 0.622 0.602 0.410 0.602 0.610 0.268 0.396 0.853 

N 

1 0.050 0.516 0.999 0.027 0.043 0.999 0.027 0.044 0.999    

3 0.075 0.106 0.997 0.058 0.088 0.997 0.055 0.085 0.997    

6 0.121 0.169 0.990 0.107 0.160 0.990 0.104 0.154 0.991    

12 0.216 0.297 0.966 0.201 0.292 0.966 0.195 0.283 0.968 0.124 0.171 0.992 

24 0.386 0.516 0.894 0.360 0.510 0.892 0.369 0.499 0.896 0.176 0.263 0.974 

To clearly reveal the difference in the 1 h prediction performance of the wave height 

of the three networks in different regions, we randomly selected 400 consecutive hours 

of predictions for each location. The results are shown in Figure 7. From top to bottom, 

the three subgraphs show the comparison of the real value and the predicted value of 

different networks at sites B, D, and N. The red line represents the true value, the blue 

line represents the predicted value of the RNN network, the orange line represents the 

predicted value of the LSTM network, and the green line represents the predicted value 

of the GRU network. A careful observation of Figure 6 shows that the variation trend of 

the GRU network and the LSTM network at different positions was basically the same as 

that of the real value, whereas the volatility of RNN was slightly greater. The reason for 

the fluctuation may be that the traditional recurrent neural network misses important in-

formation or memorizes a large amount of unimportant information, whereas the LSTM 

and GRU networks control the accumulation speed of information by introducing a gat-

ing mechanism, including selectively adding new information and selectively forgetting 

the previously accumulated information. Thus, these networks have a stronger ability to 

mine information and have better stability. 

 

 

Figure 7. One-hour forecast results; the abscissa represents the time, the ordinate represents the 

wave height, the red line represents the real wave height, the blue represents the predicted value 

of the RNN, the yellow represents the predicted value of LSTM, and the green represents the pre-

dicted value of GRU. 

The 3 h and 6 h forecast results in Table 3 show that, with the increase in the predic-

tion time interval, the prediction accuracy decreased as the MAE and the RMSE of each 
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point gradually increased, and the correlation coefficient R gradually decreased. For ex-

ample, the MAE of GRU network at N site for 1, 3, and 6 h was 0.027, 0.055, and 0.104, 

respectively. The RMSE was 0.044, 0.085, and 0.154. R was 0.999, 0.997, and 0.991. It can 

also be seen clearly that among the three locations B, D, and N, the forecasting ability of 

location N was still superior to that of locations B and D. The MAE and RMSE of the 3 h 

significant wave height of the RNN network at point N were 0.075 and 0.106, respective-

ly, which are better than those of B. The MAE of the 3 h significant wave height of N-

point LSTM network increased by 19.4% and 14.7% compared with B and D, respective-

ly. Furthermore, the MAE of the 3 h significant wave height of the N-point GRU net-

work increased by 24.7% and 22.5% compared with B and D, respectively. Similarly, the 

prediction performance of the LSTM and GRU networks at 3 and 6 h was still better than 

that of the traditional RNN. For example, the MAE of the 3 h RNN networks at position 

N was 29.3% and 36.4% higher than that of LSTM and GRU networks, respectively. 

Compared with the LSTM and GRU networks, the MAE of the 6 h RNN network at posi-

tion B was increased by 16.7% and 14.5%. The 3 and 6 h predictive performances of 

LSTM and GRU networks were similar, and the maximum absolute error of MAE for the 

same location was only 0.003. 

Figure 8 shows the comparison between the predicted results and the real values of 

the three networks at different locations in 3 and 6 h (400 time points were randomly se-

lected). With the increase in prediction time, the connection in the time series grew 

weaker, leading to the increase in prediction accuracy. The variation trend in the pre-

dicted results of the three models at different locations within 3 h was basically con-

sistent with that of the real value. The 6 h prediction results can be observed as follows: 

some peak points at B and D, and the predicted values lag. The variation trend in the 

predicted value and the real value at position N was basically the same, and there was 

basically no lag phenomenon. The likely reason for this is that the data distribution of 

the significant wave height at position N was more uniform, and the fitting effect was 

better. 

 

(a) (b) 

Figure 8. Three-hour and 6 h prediction results with more instructions. The abscissa represents the 

time, the ordinate represents the significant wave height, the red line represents the real significant 
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wave height, the blue line represents the predicted value of the RNN, the yellow line represents 

the predicted value of LSTM, and the green line represents the predicted value of GRU. (a) repre-

sents the 3 h forecast for different locations; (b) represents the 6 h forecast for different locations. 

By checking the significant wave height prediction results at 12 and 24 h given in 

Table 3, we can see that both the forecast results of 12 h and the forecast error results of 

24 h showed large errors compared with the real value, because the large increase in 

forecast time caused a sharp drop in the links in the data series, leading to worse fore-

cast results. In the 12 h forecast, the MAE of the worst forecast error of the three net-

works at different locations was 0.308 and the corresponding RMSE was 0.447, whereas 

the MAE of the optimal forecast error was 0.195 and the corresponding RMSE was 0.283. 

The worst MAE and RMSE of the 24 h forecast were 0.421 and 0.622, respectively. The 

MAE of the optimal forecast error was 0.360, and the corresponding RMSE was 0.510. It 

can be seen that the RNN, LSTM, and GRU networks continued to maintain good per-

formance in the long-term prediction of waves. Regarding the long-term prediction of 

significant wave heights, the LSTM and GRU networks still had better and more stable 

prediction performance than the RNN network. To more intuitively show the difference 

between the significant wave heights of different networks at 12 and 24 h, the prediction 

results of 400 moments randomly selected for each location are shown in Figure 9. As 

shown, the prediction results of 12 and 24 h had an obvious lag or advance trend, but 

the overall trend was still roughly consistent, indicating that RNN, LSTM, and GRU 

networks still have a certain reference value for the prediction of the long-term signifi-

cant wave height. At the same time, the 12 and 24 h forecast results show that the fore-

casts of the three networks at the local maximum point were all underpredicted, espe-

cially at point B. 

 

(a) (b) 

Figure 9. Twelve-hour and 24 h prediction results; the abscissa represents the time, the ordinate 

represents the significant wave height, the red line represents the real significant wave height, the 

blue line represents the predicted value of the RNN, the yellow line represents the predicted value 

of LSTM, and the green line represents the predicted value of GRU. (a) represents the 12 h forecast 

for different locations; (b) represents the 24 h forecast for different locations. 
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With the increase in the prediction time interval to 12 or 24 h, the prediction per-

formance of the three networks degraded significantly. To improve the prediction accu-

racy at these long prediction time intervals, the EMD method was specifically used in 

the establishment of the LSTM network. The EMD method decomposes the signal to ob-

tain IMF and residual components. Then, with U10 and V10 combined as the input data 

set. Model training, validation, and testing were performed at three locations: B, D, and 

N. 

The time series of significant wave heights decomposed by EMD is shown in Fig-

ures 10–12. The significant wave height time series at positions B and N are decomposed 

into 15 IMFs and one residual by the EMD method, whereas the significant wave height 

time series at position D is decomposed into 16 IMFs and one residual. 

 

Figure 10. The EMD method was used to decompose the significant wave height results at position B. 
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Figure 11. The EMD method was used to decompose the significant wave height results at position D. 

 

Figure 12. The EMD method was used to decompose the significant wave height results at position N. 

Table 3 shows the prediction error results of three positions using the EMD method. 

The error results show that EMD-LSTM was significantly improved compared to the 

LSTM network in predicting significant wave heights at different positions. The 12 h 

correction results at point N show that the MAE and RMSE of EMD-LSTM were 0.124 

and 0.171, respectively, which are 36.4% and 39.6% higher than those of the LSTM net-

work, respectively. Moreover, the correlation coefficient reached 0.988. The MAE and 
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RMSE of point D based on EMD-LSTM were 0.159 and 0.229, respectively, which are 

36.4% and 42.6% smaller than those of LSTM, respectively. The correlation coefficient al-

so increased from 0.855 to 0.954. Similarly, the errors of the other two points were signif-

icantly corrected, indicating that the EMD-LSTM method still performed well in the 

24vh correction results. 

To intuitively display the effect of the EMD method on wave state modification at 

12 and 24 h, 400 prediction points at random were selected from the test data set, as 

shown in Figure 13. The red line represents the true wave height, the blue line represents 

the forecast value of the LSTM network, and the orange line represents the forecast val-

ue of the EMD-LSTM network. The locations represented by the three subgraphs from 

top to bottom are B, D, and N. The 12 h forecast results show that the EMD-LSTM fore-

cast value was more in line with the trend in the real value, and effectively alleviated the 

phenomenon of the LSTM forecast method at the local maximum point of the forecast 

and hysteresis. The most likely reason that the EMD method can effectively correct the 

forecast results is that the time series of significant wave heights is nonlinear and nonsta-

tionary, and there are large seasonal and regional differences in the wave characteristics 

in the offshore China seas. Furthermore, there is a close relationship between wave char-

acteristics and monsoons. EMD has inherent advantages in analyzing nonlinear and 

nonstationary sequences. Using the EMD method to decompose the time series of signif-

icant wave height may effectively reveal the changing rule of the significant wave height 

and achieve a better forecast effect. EMD-LSTM still performed better than the LSTM 

network in predicting the 24 h wave height, which was especially obvious at the peak 

point of position B. Overall, the use of the EMD method significantly improved the pre-

diction of 12 and 24 h significant wave heights. 

 

(a) (b) 

Figure 13. Twelve-hour and 24 h correction results. The abscissa represents time, the ordinate rep-

resents significant wave height, the red line represents the true significant wave height, the blue 

line represents the predicted value of LSTM, and the yellow line represents the predicted value of 

EMD-LSTM. (a) represents the 12 h forecast for different locations; (b) represents the 24 h forecast 

for different locations. 
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4. Discussion 

The combination of EMD and the LSTM network to predict the future 12 and 24 h 

significant wave heights performed better than the LSTM network alone. To test if the 

EMD method can effectively correct the prediction results, we first calculated the time 

series, ( )n t , of relative errors between the predicted values and the real values of the two 

methods. ( )n t  consists of the predicted value minus the true value at each moment. 

Then, we plotted the power spectrum of ( )n t . The power spectrum is defined as the sig-

nal power within a unit frequency band. It represents the change in signal power with 

frequency, that is, the distribution of signal power in the frequency domain. In Figure 

14a, the three subplots are the power spectra of the Bohai Sea (B), the East China Sea (D), 

and the South China Sea (N) with a forecast time of 12 h ( )n t , respectively. In these plots, 

the blue line and the orange line represent the power spectrum of ( )n t  using the LSTM 

method and the EMD-LSTM method, respectively. In the power spectrum, Figure 14b is 

the 24 h power spectrum; the abscissa is the frequency, and the ordinate is the power. 

Obviously, except for the first subgraph on the right, the power spectra of 12 and 24 h of 

the EMD-LSTM relative error time series at all three locations show that the power spec-

tra of EMD-LSTM relative error time series were always below those of the LSTM net-

work, within the frequency range of 0–100 Hz. This indicates that the EMD method had 

an obvious correction effect on wave height prediction at lower frequencies. However, 

for the high-frequency interval, there was no difference between the two methods from 

the results shown in Figure 13. Therefore, the power corresponding to each frequency 

was logarithmically processed; that is, 1010 logPSD PD  , where PD represents the 

power value, and PSD represents the power value after logarithmic operation. Figure 15 

shows the coordinate system after transformation. It is obvious that, in the frequency 

range of 100–500 Hz, the orange line in the subgraph of different locations of the two 

methods is always at the bottom; that is, the EMD-LSTM method obviously played a 

correction role. The EMD method had a significant correction effect on the prediction of 

12 and 24 h significant wave heights in both low-frequency and high-frequency regions. 

The method of combining EMD and LSTM network decomposes the significant wave 

height into the IMFs with different frequencies, and then sends them together with U10 

and V10 into the LSTM network as input values. It is precisely because of the decompo-

sition into IMFs with different frequencies that the LSTM network could better capture 

the trend in data change, and thus produce a better forecast effect. 
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(a) (b) 

Figure 14. Power spectra of 12 and 24 h significant wave heights. The blue line represents the 

power value and frequency change curve of the relative error of the LSTM method. The orange 

line represents the power and frequency variation curve of the relative error of the EMD method. 

(a) represent the 12 h change curves of positions B, D, and N from top to bottom; (b) represent the 

24 h change curves of positions B, D, and N from top to bottom. 

 

(a) (b) 

Figure 15. Power spectra of 12 and 24 h significant wave height. (a) represent the 12 h change 

curves of positions B, D, and N from top to bottom; (b) represent the 24 h change curves of posi-

tions B, D, and N from top to bottom. 

5. Conclusions 

The use of machine learning to predict the significant wave height of waves is a 

novel method. Compared with the traditional numerical model, the machine learning 

model has the characteristics of a lower computational cost and higher efficiency. As a 

branch of machine learning, RNNs can process sequence data well and reveal potential 
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connections between data. As the problem of gradient disappearance and gradient ex-

plosion occurs in the processing of long time series data in the ordinary RNN, a good so-

lution is to introduce a gating mechanism, thus spawning the LSTM and GRU networks. 

This study mainly examined the prediction performance of the circulating neural net-

work, LSTM network, and GRU network for 1, 3, 6, 12, and 24 h wave heights in differ-

ent sea areas. The EMD method was used to correct the phase lag in the prediction re-

sults of 12 and 24 h from the LSTM network. 

The RNN, LSTM, and GRU networks all performed well in the prediction of the 

significant wave height, and particularly in the prediction of the significant wave height 

at 1, 3, and 6 h. The prediction results of the three networks basically accurately cap-

tured the trend in data changes. Among these, 1 h prediction results at different loca-

tions show that the MAE of the best prediction results of RNN, LSTM, and GRU net-

works was 0.036, 0.027, and 0.027, respectively. The MAE of the best prediction results of 

3 h networks was 0.075, 0.058, and 0.055, and the MAE of 6 h networks was 0.121, 0.107, 

and 0.104. Overall, the performance of the LSTM and GRU networks was better than 

that of the RNN network, although no specific conclusion was drawn about the superi-

ority of LSTM and GRU networks. At the same time, we found that the prediction effect 

of point N was better than that of the other two points. Through analyzing the sample 

data, the most likely reason for this is that the data set of position N was more diverse. 

For the 12 and 24 h of significant wave height prediction, the accuracy of the prediction 

from the three networks obviously increased compared to those of the 1, 3, and 6 h of 

significant wave height prediction. The GRU network at the N position had the best 

prediction effect on the significant wave height for 12 h, and the relevant error indicators 

were 0.195 (MAE), 0.283 (RMSE), and 0.968 (R). The 24 h prediction results further in-

creased significantly, and the worst MAE was 0.421 and the corresponding R was only 

0.602. It was found that the prediction results of the three networks at the peak points 

are ahead or lagging. To correct this phenomenon, the LSTM was modified using the 

EMD method, and then the SWH of 12 and 24 h was predicted. The forecast results show 

that the EMD method can effectively improve the forecast accuracy and had a significant 

correction effect on the phenomenon of forecasting and hysteresis. 

In general, the LSTM and GRU networks have a better ability to predict wave char-

acteristics than RNN networks. The prediction performance of the gating-based LSTM 

and GRU networks is comparable. The EMD-LSTM method has high accuracy for the 

prediction of waves in a longer time range. Waves are random, so it is challenging to 

predict them accurately. The machine learning method provides new ideas for ocean 

wave forecasting and has broad development and application prospects. Much research 

on the prediction of SWH has taken a univariate as the input feature; that is, the histori-

cal wave height is used to predict the significant wave height at the future time. Alt-

hough there is a strong correlation between the wave height at a later moment and the 

wave height at an earlier moment, there is no doubt that the wind is crucial to wave 

formation. Therefore, the historical data of U10, V10, and SWH were studied to predict 

the significant wave height in the future. The formation of waves has a complex physical 

mechanism, which is not only affected by wind, but also related to the water depth, sea 

surface temperature, air humidity, and other climatic factors [2]. Accurately selecting the 

input parameters for wave prediction remains a challenge. The next step is to compare 

the effects of different factors on wave height prediction by incorporating other parame-

ters into the input characteristics. 
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