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Abstract: For a low-frequency sound signal propagating in a two-dimensionally inhomogeneous
shallow-water waveguide, the influence of random bathymetry (fluctuating bottom boundary) was
considered based on the local-mode approach and statistical modeling using first-order evolution
equations. The study was carried out in shallow sea conditions corresponding to the coastal waveg-
uides of the Russian Arctic seas. Here, a feature was the presence of an almost homogeneous water
layer with various characteristics of seabed sediments. To describe the latter, a random model of the
impedance was adopted. For the conditions of a strongly penetrable bottom boundary, on average,
the calculations predicted adequate weak effects of bathymetry fluctuations on the average sound
intensity compared to the effect of fluctuations in the sediment parameters and volumetric random
inhomogeneities of the water column. In addition, it was shown that, in terms of statistics, the rough-
ness of the bottom boundary perturbed the average sound intensity in a shallow-water waveguide
differently than volumetric fluctuations in the speed of sound. The dependence of the statistical
effects (the first and second moments of the signal intensity) on the parameters of the waveguide
and the frequency range was studied. As a result of numerical modeling, comparative quantitative
estimates of the influence of both the random roughness of the bottom interface and fluctuations of
bottom sediment parameters on the average losses of the propagating signal, not presented in the
literature, were obtained.

Keywords: shallow-water acoustics; range-dependent waveguides; local modes; randomly
inhomogeneous impedance of the bottom; rough bottom boundary; statistical modeling

1. Introduction

In this paper, the combined effect of random bottom inhomogeneities, its rough surface,
and fluctuations in liquid sediment parameters (impedance) on energy losses in the course
of the propagation of low-frequency acoustic signals in a two-dimensional shallow-sea
waveguide was considered. A variety of works have been devoted to the scattering of
sound on rough surfaces, the most famous of which are listed in references [1–12]. They
outline the main approaches to an approximate theoretical analysis of the problem. The
most common analytical methods are the perturbation theory, the Kirchhoff method, and
the integral equation method. Most researchers use semi-analytical approaches, in which
an approximate analytical model of wave scattering is first proposed, and in the next
stage, specific numerical calculations are carried out for it. As emphasized in review [10],
any complication in the scattering model is accompanied by a loss in the visibility of
interpretations and an increase in difficulties in the numerical simulation of the scattered
field. Early theoretical studies treated surface and volume scattering as completely different
problems. However, such an assumption in the acoustics of a shallow sea often does not
correspond to practice. Thus, for example, it is experimentally impossible to distinguish
scattering from rough seabed interfaces and scattering from volumetric inhomogeneities of
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sediments. For this reason, an increasing number of authors have recently been studying
these two types of sound scattering simultaneously (for example, [11,12]).

To calculate the scattered field from both volumetric and surface inhomogeneities of
the medium, the vast majority of researchers use the ray method, the parabolic equation
method (MPE), and the modal approach [5,8,13]. As is known, the ray method is only
applicable for high-frequency fields. It is also burdened with computational difficulties
at the regions of ray turning points and caustics. The MPE also experiences difficulties in
describing the areas of sound focusing in a waveguide, in the case of long-range propagation
with diffraction by inhomogeneities [14], and also with a strict formulation of the boundary
conditions for waveguides with irregular interfaces [13,15].

Works regarding modal waveguides in the low-frequency range that are close to our
study in the formulation of the problem are given in [6,16–18]. So, in [16], the Kirchhoff
method for Green’s function, first developed in [1–3,6], was used in the form of a mode
representation for layer-wise inhomogeneous waveguides with flat boundaries, and the
scattering on the roughness of the boundaries (bottom and surface) was calculated using
the perturbation method. For small distances of sound propagation, the correlation func-
tions of the field in the vertical and horizontal directions were calculated. Additionally,
the coherence between the regular and scattered parts of the sound field was calculated.
In [17,18], the local-mode approach, proposed earlier in [19,20], as well as the assumption
of convolution along the horizontal coordinate of the adiabatic solution for a 2D waveguide
with mode-coupling coefficients, was used to calculate scattering using the random rough-
ness of the seabed interface. The authors considered the scattering of broadband signals at
a fixed distance using the Fourier method. A comparison was made with the results of the
Born approximation, which was recognized as adequate in the simple Pekeris waveguide
model considered. The dependence of propagation losses on the properties of a randomly
inhomogeneous waveguide was not studied in [16–20].

With regard to the effect of non-stratified fluctuations in the parameters of bottom
sediments, primarily the speed of sound, on the propagation of sound, there are very
few such works. The influence of the 2D inhomogeneities of bottom sediments on the
transmission losses of low-frequency sound in a deterministic formulation was considered
in [21,22], as applied to the Russian shelf of the Arctic seas (the Kara Sea). In the statis-
tical formulation, for 2D sound velocity fluctuations in bottom sediments, studies were
performed in [23,24], wherein the possibility of a significant effect of the random character
of sediment parameters on transmission losses of low-frequency sound was shown.

As established in [25,26], the greatest perturbing effect on the sound intensity is
achieved when the bottom boundary of a shallow-water waveguide is, on average, highly
penetrable. In such a situation, sound velocity fluctuations in the water layer can slow
down the decay of the average intensity (transmission loss) by tens of decibels in relatively
short distances, which are relevant for field studies in a shallow sea. Fluctuations in the
parameters of the sedimentary bottom layer lead to a similar effect of the attenuation
of the average transmission loss of low-frequency sound in water [24]. The degree of
manifestation of these effects in a shallow-water waveguide with a highly penetrable bottom
interface is mainly determined by the horizontal scales of parameter fluctuations [27]: the
larger these scales, the stronger the effects. It is of obvious interest to compare the effect of
both types of random inhomogeneities (volumetric fluctuations in the speed of sound and
the roughness of a bottom interface), present in the real environment of a shallow sea, on
the propagation of low-frequency sound signals. It is important to find out the features in
the behavior of the average energy characteristics of a sound signal when it is perturbed by
volumetric and surface inhomogeneities, to obtain quantitative estimates of the effect of
inhomogeneities, and to analyze the dependence on parameters.

The present study was carried out on the basis of statistical modeling [24,28,29] of the
average sound intensity and its fluctuations, which describe energy losses and scintillations
in the course of signal propagation in a randomly inhomogeneous medium of a shallow sea.
The solution for individual random realizations of the parameters was obtained using the
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universal local-mode approach developed in [30–34]. In the framework of this approach,
which is suitable for studying a wide class of inhomogeneities in a shallow sea, the mode
amplitudes were generally sought based on the reformulation of the original boundary
value problem into first-order causal equations.

2. Mathematical Statement of the Problem and Some Analytics

The acoustic field of frequency ω in a two-dimensionally inhomogeneous waveguide
of a shallow sea is described by linear acoustic equations with boundary conditions on the
surface and bottom interface of the waveguide. In the axially symmetric formulation of the
problem, in the presence of a variable density ρ in the medium (water column and liquid
bottom sediments), for the acoustic pressure function p, the equations of linear acoustics
are reduced to an equation of the form [13,15]

ρr−1 ∂

∂r

(
rρ−1 ∂p

∂r

)
+ ρ

∂

∂z

(
ρ−1 ∂p

∂z

)
+
ω2

c2 p(r, z) = −δ(r)δ(z− z0)

2πr
(1)

where (r,z) are the coordinates of the cylindrical system, and the point source of radiation is
located at the point (r = 0, z = z0); c is the speed of sound in water. The boundary condition
on the surface p(r,0) = 0, and the condition on the bottom corresponds to the continuity of
the pressure and the velocity component normal to the boundary H(r). It is assumed that
the field radiation conditions are satisfied at infinity z→ ∞. In the horizontal direction r,
both continuity conditions and radiation conditions are also implied. In the wave zone
of the source, the pressure field p(r,z) is sought using the expansion in local modes of an
irregular 2D waveguide:

p(r, z) = ∑
m

Gm(r) ϕm(r, z) ; ρ
∂

∂z

(
ρ−1 ∂

∂z
ϕm(r, z)

)
+
[
k2 − κ2

m(r)
]
ϕm(r, z) = 0 (2)

In Equation (2), k =ω/c, κm(r) are the eigenvalues, and ϕm are the eigenfunctions of
the Sturm–Liouville problem (m = 1, 2 . . . ), which, on the surface and at the bottom of the
ocean, satisfy the following boundary conditions: ϕm(r,0) = 0, ϕm(r,H) + gm(r)ϕ′m(r,H) = 0,
ϕ′m(r,H) = (∂ϕm(r,z)/∂z)|z=H. Here, gm(r) characterizes the impedance of the penetra-
ble bottom and, together with the rough boundary H(r), it is a random function due to
fluctuations in the sound speed c1 within the seabed (if necessary, without changing the for-
mulation of the problem, one can also consider density fluctuations ρ1). From Equation (2),
it is obvious that the eigenfunctions and eigenvalues, as well as the local modes of the
waveguide, will be random functions of r. Previously, it was shown [24–27] that in an
irregular waveguide, in the forward-scattering approximation, the modal amplitudes Gm(r)
are determined by the following analytical form of the solution (κmr >> 1):

G(r) = {Gm(r)} = A(r)exp


r∫

0

[
iκ(ξ)−

(
κ(ξ)V(ξ)κ−1(ξ)−VT(ξ)

)
/2
]
dξ

 b(0), (3)

where κ(r) is the diagonal matrix of eigenvalues {κm(r)}, A(r) = (i/8πr)1/2κ−1/2(r)κ−1/2(0),
b(0) = {ϕm(0,z0)κm

1/2(0)} is the column vector of the initial amplitudes of modes, and exp{...}

is the matrix exponential. V(r) is a matrix with elements Vmn(r) =
∞∫
0

ϕm(r,z)
ρ(r,z)

∂ϕn(r,z)
∂r dz,

and VT(r) is a transposed matrix V. The latter matrices describe mode coupling due to
horizontal changes caused by fluctuations of the sound speed within the seabed and the
random roughness of the bottom interface boundary. It is important to note that the
original formulation of the boundary condition at the bottom for Equation (1) implies the
continuity of the velocity component normal to the local area of the bottom interface, while
in the framework of the method of local modes, the vertical velocity component of the
modes is continuous in the local area of a rough bottom interface in the following way:
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ρ−1ϕ′m(r,H − 0) = ρ1
−1ϕ′m(r,H + 0). Therefore, in order to satisfy the required continuity

condition for the velocity component normal to the boundary H(r), Expression (3) must

involve the matrix VT(r) = − V(r) −
∞∫
0
ϕm(r, z)ϕn(r, z) ∂

∂r

(
1

ρ(r,z)

)
dz [15,32]. It is this matrix

that provides the correct account for continuous variations in the interface H(r) with a
jump-like change in density when passing through this interface. Naturally, if, along with
density jumps at the interfaces, there are continuous changes in density in the medium, they
are also taken into account by the matrix VT(r). Let us give expressions for the eigenvalues
κm(r) and matrix V(r) that are useful in analysis and calculations. For a continuous interface
H(r), in the presence of inhomogeneities c1(r,z) in the sediment half-space, the following
expressions [15,27] are valid:

∂κ2
m(r)
∂r =

(
1
ρ1
− 1
ρ

)
∂H(r)

∂r

{(
∂ϕm(r,z)

∂z |z=H

)2
− [k2

1(r, H)− κ2
m(r)]ϕ2

m(r, H)

}
+

+
(k2−k2

1(r,H))ϕ2
m(r,H)

ρ1

∂H(r)
∂r +

∞∫
H(r)

ϕ2
m(r,z)
ρ1

∂k2
1(r,z)
∂r dz ;

(4a)

Vmn(r)= [κ2
n(r)− κ2

m(r)]
−1
(

1
ρ1
− 1
ρ

)
∂H(r)

∂r

{
∂ϕm(r,H)

∂z
∂ϕn(r,H)

∂z − [k2
1(r, H)−

−κ2
m]ϕm(r, H)ϕn(r, H)

}
+

(k2−k2
1(r,H))ϕm(r,H)ϕn(r,H)

[κ2
n(r)−κ2

m(r)] ρ1

∂H(r)
∂r +

+
∞∫

H(r)

ϕm(r,z)ϕn(r,z)
[κ2

n(r)−κ2
m(r)] ρ1

∂k2
1(r,z)
∂r dz.

(4b)

In the first approximation, if we put on the right sides of Equations (4a) and (4b) the eigen-
values and eigenfunctions of the unperturbed waveguide, κm(r) ≈ κ0m, ϕm(r,H) ≈ ϕ0m(H),
the upper equation for κm(r) with the initial condition κ0m can be integrated over r. Then, it
can be seen from (4a) that κm(r) are determined not by the shape of the interface, but by the
local depth of the waveguide H(r), by the density jump

(
1
ρ1
− 1
ρ

)
at the interface H(r), and

also by the perturbation of the sound speed δc1 in the sediment half-space: k1 =ω/c1(r,z),
c1(r,z) = 〈c1〉 + δc1(r,z), 〈c1〉 is the mean value. At the same time, the elements of the cou-
pling matrices V(r) in (4b) depend on the local slopes of the interface ∂H(r)/∂r, on the
derivatives of sound velocity perturbations ∂[δc1(r,z)]/∂r, and on the density difference
when passing the interface boundary. In addition, a well-known fact in (4b) is the inverse
proportionality Vmn (r) ~ [κn(r) − κm(r)]−1. Although Equations (4a) and (4b) are exact
and allow one to perform a useful qualitative analysis of the influence of inhomogeneities
within the framework of the perturbation method, quantitatively, this approximation is of
little use for the waveguide models with a highly penetrable bottom interface studied in
this work. Therefore, for numerical simulation, precise calculations of both the modal wave
numbers κm(r) and the elements Vmn(r) of the coupling matrices were performed according
to the algorithms of the authors [24,26,28,30,34]. When performing the calculations, we
were guided by the criterion of the smoothness of random variations in the local slopes
∂H(r)/∂r << 1.

Expression (3) takes into account the scattering of modes at any angles not exceed-
ing 90◦. Further in the work, we call this the OW (one-way propagation) solution [13].
Backscattering can also be taken into account within the approach used [30–34]. However,
in the problems of low-frequency sound propagation in the sea, the role of backscattering
is negligible [15,33]. Therefore, in order to not complicate the study with irrelevant details,
backscattering was not considered here.

If both the density of the medium and boundaries do not change in the horizontal
direction, then the matrix V(r) in (3) transforms to skew-symmetric: Vmn (r) = −Vnm (r),
Vnn = 0. If the inhomogeneities of the medium change smoothly and the scattering angles
are small, so that κ(r)V(r)κ−1(r) ≈ V(r), then the WKB approximation in the horizontal
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direction can be obtained from Equation (3) [8,22], as well as the approximation of the
MPE [30,35]. Often, these WKB and MPE methods for waveguide models with horizontal
boundaries and constant (in r) density provide a good approximation to the true OW.
However, for waveguides with variable densities and the rough bottom boundary studied
in this work, these approximations, as well as the adiabatic approximation (Vmn = 0), do
not strictly satisfy the boundary condition on the non-planar interface H(r).

By calculating the pressure field p(r,z) according to Equations (2) and (3) for each
random realization c1(z,r), H(r) from an ensemble of N realizations, it is easy to obtain
the change in the average intensity or the average function of transmission loss for sound
propagating along the path in a randomly inhomogeneous waveguide:

〈I〉 =
〈
|p|2

〉
= ∑

n

〈
|Gn|2 |ϕn|2

〉
+ ∑

(n 6=m)

〈Gn G∗m(ϕn ϕ
∗
m)〉. (5)

In Equation (5), angled brackets mean statistical averaging, which is replaced by
algebraic formulas in calculations. The first sum of modes in Equation (5) represents the
incoherent terms and describes the averaged (over the scale of interference) intensity decay
law in the waveguide. The second sum of coherent terms describes the wave interference
structure of the sound field, which is superimposed on a smooth averaged law of decay.
With statistical averaging, the contribution to the intensity of the sum of coherent terms
at low frequencies decreases rapidly with distance. However, for multimode situations,
which take place, for example, in the high-frequency range and with weak attenuation in
the waveguide of low-number modes, the oscillatory intensity structure Equation (5) can
also be noticeable at distances of tens of kilometers. In this case, to estimate the effect of
inhomogeneities on the levels of transmission loss, it is rational to only take into account
the first sum of incoherent terms in Equation (5), which is carried out later for a signal with
a frequency of 500 Hz.

Similarly to Equation (5), according to well-known relations, other statistical charac-
teristics of the intensity of interest can be calculated. For example, an important indicator
of sound intensity in a randomly inhomogeneous waveguide is the scintillation index S2,
where S = (〈I 2〉 − 〈I〉 2)1/2/〈I〉 [7,24,36].

3. Stochastic Waveguide Model

A shallow-water waveguide was considered, consisting of a water layer and a bottom
in the form of a half-space of liquid sediments. The water–sediment interface randomly
fluctuated (it was a statistically rough surface). A tone sound signal of frequencies 250 and
500 Hz propagated in the waveguide. To carry out a numerical analysis, in accordance with
Equations (2), (3), and (5) of Section 2, a reference was made to the values of parameters that
are typical for the Russian shelf zone of the Arctic seas, in particular, the Kara Sea [8,21,22].
The waveguide had an average depth 〈H(r)〉 = 40 m, a horizontal surface, and a rough
boundary of the bottom. In the water layer, there were uniform profiles of sound speed
c = 1460 m/s and density ρ = 1 g/cm3. The seabed consisting of unconsolidated sediments
was modeled by an absorbing liquid half-space with a refractive index at the water–bottom
interface n = (c/c1)(1 + iβ1), β1 = 0.02. In bottom sediments, following the measurement
data given in [21,22], we set the impedance using the density, ρ1(r) = 〈ρ1〉 = 1.85 g·cm−3,
and the speed of sound c1(r,z), which randomly varied along the propagation path of
a signal. We also took into account the fact that random variations in density δρ1(r),
ρ1(r) = 〈ρ1〉 + δρ1(r), have a much weaker effect on sound propagation than fluctuations in
the speed of sound. This fact is well known from the theory (see, for example, [5,8,13,24]).
The variations in density in bottom sediments can be neglected if not-too-low radiation
frequencies are examined (f = 2πω > 1 Hz) and there are no large-amplitude jumps of
|δρ1/〈ρ1〉| in the liquid sediments. Random field c1(r,z) = 〈c1〉 + δc1(r,z) assumed Gaussian
fluctuations with an exponential correlation function: Bc1 (r2 − r1, z2 − z1) = σc1

2 exp(−|r2
− r1|/Lrc −|z2 − z1|/Lzc). Gaussian fluctuations of the rough water–sediment interface
were set similarly: H(r) = 〈H〉 + δh(r), Bh (r2 − r1) = σh

2exp(−|r2 − r1|/Lh). Thus, the
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stochastic waveguide studied further in this work was completely specified by the first
and second statistical moments of the main fluctuating parameters: c1(r,z), ρ1(r) and H(r).
In Figure 1a,b, as an example, a graphical illustration of a stochastic waveguide model
is shown. This model is presented for several arbitrary realizations (from the statistical
ensemble of realizations) of random bathymetry and sound speeds at the water–sediment
interface for the scale of Lrc = Lh = 1 km.

Figure 1. Illustration of a stochastic waveguide model. (a)—three random realizations of waveguide
bathymetry fluctuations; (b)—three random realizations of fluctuations in the speed of sound c1 at
the interface z = H(r). Lrc = Lh = 1 km.

The impedance function gm(r) in the boundary condition to Equation (2) was de-
termined by its local values in the cross sections of the comparison waveguides. For
homogeneous stratifications of the sound speed and density both in water and sediments,
the comparison waveguides were Pekeris waveguides. Note that the choice of the exponen-
tial form of the correlation functions Bc1 and Bh was dictated by convenience. The results
of statistical analysis were affected not by the type of functions, but by the characteristic
scales of inhomogeneities Lrc, Lh [26].

4. Results of the Propagation Loss Statistical Analysis

The statistical modeling of average intensity (4) was performed for two scenarios of a
shallow-water waveguide. For the first scenario, the water-bottom interface was highly
penetrable: 〈c1〉 = c = 1460 m/s. For the second scenario, it had a certain degree of rigidity:
〈c1〉 = 1500 m/s. In the first case, as was shown in [25,26] for volumetric sound velocity
fluctuations in the water layer, as well as for fluctuations of the impedance gm(r) in [23,24],
the maximum statistical effect was achieved in the course of sound signal propagation.
Based on the processing data of works [21,22], the characteristic scale of inhomogeneities
Lrc was chosen to be 1 km, Lzc = 30 m (Lzc >> λ, where λ is the sound wavelength), and the
intensity of fluctuations σc1

2 = 〈(δc1/〈c1〉)2〉 = 1.7·10−3 (corresponds to |δc1| ≈ 60 m/s).
The characteristic scale of change in H(r) was considered to be Lh = 100 m [16] and 1 km [36],
and the intensity of fluctuations σh

2 = 〈(δh)2〉 = 1 m2. In the process of numerical simulation,
to obtain a reliable statistical result by averaging, an ensemble of realizations N = 103 was
used. Below are the numerical results of the statistical modeling of the intensity for the
specified waveguide scenarios in the presence of interface boundary roughness and sound
velocity c1 fluctuations in the underlying liquid sediments, which means that the bottom
impedance was random. Throughout the graphs, transmission loss is given in decibels
relative to the level at a distance of 1 m from the source.

Let us start the analysis with the first waveguide scenario, when the water–bottom
interface was highly penetrable, 〈c1〉 = c. In such a waveguide, a signal propagating along
the path passed bottom sections with inhomogeneities of the acoustically “soft” (c1 < c)
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and “rigid” (c1 > c) types [24] (see Figure 1b), which is typical for the sea shelf with gas
saturation in bottom sediments [21,37]. One example of this is the Arctic shelf zones,
whose bottom sediments are known to be characterized by an increased content of gas with
random spatial distribution. In the case when c1 < c, even in the absence of absorption β1
no propagating modes were excited in the waveguide, and all modes were proven to be
leaky. In the second case, for c1 > c, depending on the degree of “rigidity” of the bottom,
a number of the first modes were trapped and weakly attenuating (if β1 6= 0). To find
the local eigenvalues κm(r) and eigenfunctions ϕm(r), reference to the Pekeris cut on the
complex plane of κm was made. Therefore, the required number of propagating and leaky
modes [13] forming a field at distances r > 100–200 m was taken into account in the sum (2).
As a rule, with the waveguide hydrology and sound frequency described above, it was
sufficient for statistical modeling to use 6–10 different types of modes in calculations. From
the average intensity curves presented in Figures 2 and 3, it follows that bottom impedance
fluctuations, on average, had a much stronger effect on signal transmission losses than the
bottom interface roughness (compare curves 2 and 1 with 3). Fluctuations δc1, as noted
above and shown in [23,24], led to a slower decrease in the average intensity with distance.
At a distance of 10 km from the source, as seen in Figure 2 (curve 2), this slowdown was
13–14 dB [24] at the scale Lrc = 1 km. The slowdown became even more significant as
the correlation scale Lrc increased. At the same time, fluctuations of the boundary δh(r),
which, as is known from the literature, scatter the signal, on the contrary, increased the
transmission loss. However, this effect in the low-frequency region was proven to be very
small, amounting to tenths of a decibel for the inhomogeneity scale Lh = 1 km (see the
inset in the upper right corner of the graph in Figure 2). Some enhancement of the effect
(up to ≈1 dB) to a distance of 10 km was observed for a 10-times smaller correlation scale
Lh = 100 m (see Figure 3, curves 1 and 2, and the inset in the upper right corner of the
graph). In this case, due to the lower smoothness of the interface roughness, the coupling
of modes in the water column slightly increased. As a result, the acoustic energy, being
pumped into modes with higher numbers, transferred relatively faster from the water
to bottom sediments. At a distance of more than 3 km from the source, the interference
structure of the intensity was suppressed, and the curves shown in Figures 2 and 3 became
quite smooth. The average intensity in the middle part of the water layer began to be
formed, mainly by the least-attenuated first mode.

Figure 2. Attenuation of the average intensity of a signal with a frequency of 250 Hz in a waveguide
with fluctuations both in the impedance of the bottom δc1 and the bathymetry δh. Lrc = Lh = 1 km;
z = z0 = 24 m. Curves: 1 is the OW solutions (2) and (3); 2 is the OW solution for δh = 0 (markers); 3 is
intensity averaged over the interference scale for δc1 = δh = 0.
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Figure 3. The average intensity is similar to Figure 2, but roughness of the bottom interface has a
smaller scale, Lh =100 m (see left inset on the graph).

Figure 4 shows a graph of the average intensity when the source was located near
the rough boundary. For this observation horizon, the contribution of the first mode
to the sound field was weakened (due to a decrease in the amplitudes ϕ1(0,z0), ϕ1(r,z)
near the bottom), while modes of higher numbers, m = 2–4, on the contrary, increased.
Therefore, qualitatively, the curves shown in Figure 4 oscillated more noticeably than
in Figures 2 and 3, but the intensity decreased somewhat faster with distance (compare
curves 3 and 5 in Figures 2–4). Quantitatively, the effect of the intensity decay increase
on ≈1 dB due to fluctuations of the bottom interface (at Lh = 100 m), mentioned above, was
also preserved for the horizon near this interface. This confirms the fact that, as pointed out
in [24], the form of solution (3) implies the weak dependence of the magnitude of statistical
effects on the horizons of the source and receiver in the waveguide.

Figure 4. Attenuation of the average intensity is similar to Figures 2 and 3 near the bottom. Lrc = 1 km;
z = z0 = 36 m. Curves: 1 (markers) is OW solutions (2) and (3) for δh = 0; 2 is the OW solution for
Lh = 100 m; 3 is the OW solution for Lh = 1 km; 4 (dots) is intensity in the unperturbed waveguide
(δc1 = δh = 0); 5 is the intensity 4, averaged over the scale of interference.

Let us turn to the consideration of the second scenario. This was a shallow-water
waveguide with, on average, a more rigid water–bottom interface: 〈c1〉 = 1500 m/s,
n = 0.97(1 + 0.02i). For this case, the effect of sound velocity fluctuations in sediments
(impedance) was significantly weakened due to the presence of a larger number of the first
weakly attenuated modes. Therefore, for better visualization, the graphs only show the
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effects of the random roughness of the interface boundary (impedance fluctuations were
excluded from the consideration). Below Figures 5 and 6 show the laws of intensity decay
for the radiation and observation horizons studied earlier both in the middle part of the
water layer and near the bottom.

Figure 5. Attenuation of 〈I〉 of a signal with f = 250 Hz in the range r = 9–10 km in a waveguide
with bathymetry fluctuations. 〈c1〉 = 1500 m/s, δc1 = 0. z = z0 = 24 m. Curves: 1 is OW solution for
Lh = 100 m; 2 is OW solution for Lh = 1 km; 3 (markers) is I, averaged over the interference scale (δh = 0).

Figure 6. Similarly to Figure 5, the average intensity in the range r = 7–10 km in the waveguide.
z = z0 = 36 m. Curves: 1 is OW solution for Lh = 100 m; 2 is OW solution, Lh = 1 km; 3 (markers) is I in
the unperturbed waveguide (δh = 0), averaged over the scale of interference; 4 is I in the unperturbed
waveguide (δh = 0).

Figures 5 and 6 show the same features of the average intensity behavior in the
waveguide that are established above. These are the weakness of the influence of the
random roughness at low frequencies, which did not exceed 1 dB at a distance of 10 km
from the source, and the very slow accumulation effect of the influence of inhomogeneities
with increases in the propagation distance (compared with the effect on the intensity of a
random impedance in Figures 2–4). Additionally, an increase in the influence of interface
inhomogeneities with a decrease in the characteristic scale Lh was obvious. In addition, we
noted the pronounced oscillatory behavior of the intensity in the course of signal radiation
and observation near the interface, where the contribution was significant not only of the
first mode m = 1, but also of a number of higher modes. This became especially noticeable
when the interface ceased to be highly penetrable (the condition c ≈ c1 was violated). Thus,
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an increase in the “rigidity” of the interface boundary (c1 > c) led to the characteristic
wavy dependences shown in Figure 6. An increase in the acoustic “softness” (c1 < c) of the
interface boundary led to similar results.

Let us now consider a higher signal frequency f = 500 Hz in a shallow-water waveguide
with a rough interface. As is known, with increasing sound frequency, all scattering effects
should increase. Therefore, it is important to understand in what range of a frequency
one should still expect any significant influence of the random roughness of the interface
boundary. As can be seen from Figures 7 and 8, even at a frequency of 500 Hz, perturbations
worthy of attention were caused by inhomogeneities of the interface boundary only when
the source and receiver were oriented directly near the interface (Figure 8). In this case,
the interface boundary itself was not strongly penetrable, but it effectively reflected a
number of the first modes (in this case, m = 1–6), which were propagating (trapped) in the
waveguide. Therefore, we observed a pronounced interference pattern in the graphs, which
caused noticeable differences between the curves at the considered distances from the
source. If, however, the condition, c ≈ c1, was satisfied at the interface, then the influence
of the boundary inhomogeneities would be similar to those shown in Figures 2–4 for
a frequency of 250 Hz and would only be determined by the scale of inhomogeneities
Lh. To obtain adequate conclusions, it was expedient to reduce the interference pattern in
Figure 8 to a form free from oscillations by averaging all the curves over the interference
scale. This was achieved by only including the incoherent mode sum in Equation (5) in
the analysis (see comments under Equation (5)). As can be seen from Figure 9, now, the
difference in curves 1 and 2 from curve 3 was within the same range of 0.1–1 dB as for a
frequency of 250 Hz (Figures 5 and 6), depending on the scale Lh of the random roughness
of the interface boundary. It should be noted that the effect of volumetric fluctuations in
the speed of sound (impedance), which manifested itself in slowing down the decay of
intensity, increased in the waveguide in proportion to the frequency. Therefore, in the
higher-frequency range (500–1000 Hz), sound velocity fluctuations δc1 would mask the
effect of the interface roughness even more strongly than that shown in the curves in
Figures 2–4 for 250 Hz.

Figure 7. 〈I〉 in the range r = 7–10 km in a random waveguide with bathymetry fluctuations,
f = 500 Hz. 〈c1〉 = 1500 m/s, δc1 = 0. z = z0 = 24 m. Curves: 1 is OW solution, Lh = 100 m; 2 is
OW solution, Lh = 1 km; 3 (markers)—I in the unperturbed waveguide (δh = 0), averaged over the
interference scale.
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Figure 8. Similarly to Figure 7, the average intensity, but near the bottom. z = z0 = 36 m. Curves: 1 is
OW solution, Lh = 100 m; 2 is OW solution, Lh = 1 km; 3 is intensity I in the unperturbed waveguide
(δh = 0), averaged over the interference scale; 4 is intensity I in the unperturbed waveguide (δh = 0).

Figure 9. Average decay laws for the average intensity in a random waveguide with bathymetry
fluctuations, f = 500 Hz. 〈c1〉 = 1500 m/s, δc1 = 0. z = z0 = 36 m. Curves: 1 is OW solution, Lh = 100 m;
2 is OW solution, Lh = 1 km; 3 is intensity I in the unperturbed waveguide (δh = 0).

5. Scintillation Index Behavior in the Randomly Inhomogeneous Waveguide

As noted above, an important statistical characteristic, in addition to average propaga-
tion losses, is the scintillation index S2, which describes sound intensity fluctuations and
makes it possible to additionally understand the features of the influence of certain random
inhomogeneities on the propagation of an acoustic field in a waveguide. Figure 10 shows
the behavior of the scintillation index for the first waveguide scenario, which corresponds
to Figures 2–4.

Here, the graphs for different horizons of the source location and the observation
point showed an increase in intensity fluctuations along the entire low-frequency signal
propagation path. The value of S2 from distances r > 3 km exceeded the value 1, which
indicated the presence of strong field fluctuations in the waveguide even at rather small
distances from the source. In this case, the growth of fluctuations continued without a
transition to the saturation regime. Strong fluctuations mean that, at r > 3 km, the dominant
part of the sound field in the waveguide was formed by a random component. The situation
was similar to that which arises in a waveguide in the presence of volumetric sound velocity
fluctuations [24–26,35]. The growth of scintillations confirmed that in this case, the main
influence was due to random inhomogeneities of the impedance of bottom sediments,
and not due to the random roughness of the interface. In this case, the influence of the
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random profile c1(r,z) had a pronounced cumulative character with the signal propagation
distance. The last conclusion is confirmed by Figures 11 and 12, in which the scintillation
index is presented for a waveguide with a randomly rough interface, but in the absence
of sedimentary inhomogeneities. The graphs in Figures 11 and 12 correspond to intensity
fluctuations, for which the statistical average is given in Figures 5–8.

Figure 10. Behavior of the scintillation index of a signal of 250 Hz in a waveguide with fluctuations
both in the sediments δc1 and the bathymetry δh. Lrc = 1 km; c = 〈c1〉 = 1460 m/s. Top graph
corresponds to Lh = 1 km; curves: 1 is OW solution, z = z0 = 36 m, 2 is for z = z0 = 24 m. Lower graph
corresponds to Lh = 100 m; curves: 1 is OW solution, z = z0 = 36 m, 2 is for z = z0 = 24 m.

Figure 11. Behavior of the scintillation index of a signal of 250 Hz in a waveguide with bathymetry
fluctuations δh. 〈c1〉 = 1500 m/s, δc1 = 0. Top graph corresponds to Lh = 1 km; curves: 1 is OW
solution, z = z0 = 36 m, 2 is for z = z0 = 24 m. Lower graph corresponds to Lh = 100 m; curves: 1 is OW
solution, z = z0 = 36 m, 2 is for z = z0 = 24 m.
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Figure 12. S-behavior of a signal of 500 Hz in a waveguide with fluctuations δh. 〈c1〉 = 1500 m/s,
δc1 = 0. Top graph corresponds to Lh = 1 km; curves: 1 is OW solution, z = z0 = 36 m, 2 is for z = z0 = 24 m,
3 is noncoherent sum of modes for z = z0 = 36 m. Lower graph shows similar (to top graph) curves
for Lh = 100 m.

It is clearly seen that there was no increase in the intensity fluctuations along the path
in the absence of sediment inhomogeneities. Now, the scintillation index could only exceed
the value of 1 locally, at those distances where minima appeared in the interference pattern
of the signal intensity. This is typical for source and receiver horizons located near a rough
interface, which is not highly penetrable but has a certain reflectivity. In this situation,
a number of first weakly damped modes were excited, which formed the interference
pattern of the sound field at the considered distances. In the emerging minima of the
interference pattern (see Figures 6–8), intensity fluctuations were maximum. Naturally,
when considering the incoherent sum of modes in Equation (5), the scintillation index
corresponding to curves 1 and 2 in Figure 9 would not contain local maxima shown in
Figure 12. The intensity scintillations averaged over the interference scale take the form of
curves 3 in Figure 12 for z = z0 = 36 m.

In conclusion, we note that the statistical modeling performed in this work was
based on the algorithms developed by the authors in [28–30,38]. Numerical results were
obtained using program codes developed by the authors (see a brief description in [24])
and implemented in the MATLAB environment.

6. Discussion

In this paper, we studied the decay laws for the average intensity of a low-frequency
acoustic signal (sound frequency f ~ hundreds of hertz) propagating in a shallow-water,
two-dimensional, randomly inhomogeneous waveguide over distances ~10 km, which
is typical in the study of a shallow sea. Of interest was a comparative analysis of the
statistical effect of both fluctuations in the speed of sound in the sedimentary layers of
the seabed and the random roughness of the water–bottom sediment interface on the
energy loss of the signal in the course of propagation. Poorly studied scenarios with
a bottom boundary of a shallow-water waveguide that is highly penetrable to signals
seemed to be especially relevant for modeling. Such situations often occur in the water
areas of seas with gas saturation in non-consolidated and weakly consolidated bottom
sediments [8,21,37]. One example of this is the Arctic shelf zones, which are characterized
by a variety of non-consolidated sediment properties, including elevated and spatially
randomized gas content in sediments. In addition, in these regions, a distinctive feature
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is the quasi-homogeneous stratification of the sound speed in the water column, which
practically excludes volumetric random inhomogeneities of the sound speed (associated
with the presence of internal waves) from the consideration. In other areas of the sea
shelf, internal waves, as a rule, are the dominant factor of random perturbations and mask
the influence of other inhomogeneities. Despite the extensive literature on the effect of
both surface and volumetric random inhomogeneities in a waveguide on a propagating
acoustic signal, it turned out that for the frequency range f < 1 kHz, there is no clear answer
with quantitative estimates to the questions posed about the influence of different types of
inhomogeneities on the energy losses of a sound signal and the specifics of this influence.
In this work, on the basis of numerical statistical modeling, fundamental answers to these
questions were obtained.

7. Conclusions

In the course of the study, the following results, which are novel, were obtained:

1. It has been established that in shallow sea conditions with a highly penetrable (on
average) water–bottom interface, the random roughness of the bottom boundary in
the low-frequency range (hundreds of hertz and below) can be neglected in terms of
signal intensity (average propagation loss). Of course, this statement does not apply to
the subtle effects of changes in the interference structure and correlation functions of
individual modes, modeled, for example, in [16]. From the point of view of the energy
losses of a signal propagating in a shallow sea, the effect of volumetric random sound
velocity inhomogeneities present in the underlying bottom sediments (similarly, in
the water column) is much more pronounced. The greatest effect of the influence of
a penetrable rough boundary on the average intensity, which was obtained for the
range 200 Hz < f < 500 Hz, is ≈1 dB at a distance of 10–15 km from the source, while
sound velocity fluctuations in sediments (random impedance) in the same waveguide
scenario can result in an effect of 15 dB or more.

2. It is important to emphasize the different nature of the influence of the rough boundary
and random bottom sediments on the signal intensity. If sound velocity fluctuations in
sediments have an obvious distance-accumulating effect on signal losses (reductions
in these losses, simultaneously leading to an increase in intensity fluctuations and, as
a result, fast signal stochastization in the waveguide), then for random bathymetry,
the effect of accumulation at the considered distances is almost absent. The latter is
also confirmed by the behavior of the scintillation index.

3. In terms of the modes propagating in the waveguide, the boundary inhomogeneities
have a much stronger effect on higher modes with steeper grazing angles, which
decay more strongly in the course of propagation. For the volumetric inhomogeneities
of the speed of sound, a more uniform influence on all modes that form the field in
the wave zone of the source (both on the first and higher modes) is characteristic.

4. The difference between the influence of the rough boundary and random bottom
sediments on the signal intensity is also manifested in the fact that the dependence
on the characteristic scales of fluctuations is directly opposite. For inhomogeneities
of the boundary interface, the effect increases with decreasing correlation radius (the
slopes of the boundary locally increase), while the stronger the effects of volumetric
sound velocity inhomogeneities, the larger the correlation scale is [26,27].

5. The influence of interface inhomogeneities almost does not change with increasing
signal frequency in the range f < 1 kHz (changes in the multimode interference
pattern are of no interest in terms of averaged intensity laws). At the same time, the
influence of volumetric fluctuations in the speed of sound increases in proportion to
the frequency.

6. If the water–sediment interface ceases to be highly penetrable (the condition c ≈ c1 is
violated), then the effect of random sound velocity inhomogeneities in sediments on
the signal transmission loss decreases. At the same time, an increase in the “rigidness”
of the boundary, or its “softness”, does not lead to a fundamental change in the
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influence of its random roughness on the decrease in intensity and the stochastization
of the signal in the waveguide.

7. Since the effect of random boundary roughness is rather small for the waveguide
scenarios considered and the frequency range f < 1 kHz, it seems reasonable to use
an approximate approach (the perturbation method in terms of eigenvalues and
eigenfunctions) to describe the effect of two-dimensional random inhomogeneities in
a shallow sea, developed in works [39–42]. At the same time, it should be kept in mind
that in the presence of strong fluctuations in the waveguide caused by volumetric
inhomogeneities in the speed of sound, this method is not suitable [24–27].

The patterns of behavior of the average intensity and its fluctuations, which describe
the signal transmission loss in the random environment waveguide–interface–bottom sedi-
ments, revealed in this work, are of interest from a fundamental point of view. Statistical
modeling allows a more detailed understanding of the physical picture of the considered
phenomena than can be conducted on the basis of approximate theoretical methods of anal-
ysis [1–12]. The obtained results regarding the influence of the considered inhomogeneities,
their physical analysis, and quantitative estimates can be useful in practical terms for pre-
dicting the transmission loss (and fluctuations) of low-frequency signals in shallow Arctic
regions and marine areas with similar conditions. Such a forecast is necessary when solving
problems of underwater detection, communications, and the exploration of minerals on
the shelf of the Arctic seas. An important private problem of ecology is the problem of
reducing the impact of anthropogenic signals and noise on marine mammals living on the
shelf of the Arctic seas [8,21].

Undoubtedly promising, from our point of view, are studies that generalize the re-
sults of statistical modeling obtained in this work to three-dimensionally inhomogeneous
waveguides. Such waveguides can have, in particular, non-planar interfaces and sound
velocity fluctuations in the horizontal plane [43]. The modeling method used in this work
and described earlier in [24–29,34,44] in many important cases allows one to study the
influence of three-dimensional random inhomogeneities in question.
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