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Abstract: The existence of fracture flow has an undesirable effect on the creation of the frozen wall.
Brine and liquid nitrogen combined freezing technology can ensure the safety of freezing engineering,
reduce the construction period and save cost. Considering the permeability of the rock matrix, fluid
exchange and Darcy–Stokes coupling effect between the rock matrix and fracture, a thermo-hydraulic
model of the fractured porous rock mass under water seepage is herein established. The interfacial
seepage field characteristics of fractured rock mass under different fluid flow models and interface
conditions are compared. The numerical simulations of the initial brine freezing and liquid nitrogen
reinforcement freezing are carried out. The results show that the overall permeability of fractured
rock mass computed by free flow considering the Darcy–Stokes effect is greater than that computed
by the Cubic law. The limit seepage velocity of the intact rock mass in brine freezing is 2.5 m/d, and
that of fractured rock mass decreases to 1 m/d. The fracture aperture and groundwater seepage
velocity are directly proportional to the closure time of the frozen wall. Liquid nitrogen freezing can
seal water quickly and shorten the closure time of the frozen wall when the seepage velocity of the
fractured rock mass is greater than the limit seepage velocity, and the rapid cooling of the upstream
region plays an important role in the formation of the frozen wall in fractured rock mass.

Keywords: coastal foundation pit engineering; artificial ground freezing; fractured rock mass; water
seepage; liquid nitrogen freezing

1. Introduction

With the further development of urban underground space construction, a large
number of underground infrastructure projects will face high permeability and water-rich
soil layers or soft rock formations. Due to the complex geological conditions and water
flow effects, the stability of coastal foundation pits is more prominent. Water sealing and
underground structure stabilizing are two key problems to be solved in the construction
process. Artificial ground freezing (AGF) technology is often utilized when shields are
required to support unstable water-bearing strata [1–5]. Multiple rows of vertical freezing
holes are arranged to form a closed frozen curtain around the tunnel excavation area
to resist water and soil pressure and isolate groundwater [6,7]. In engineering practice,
groundwater flow has been found to have adverse effects on the formation of the frozen
curtain. For example, water flow causes an uneven thickness in the frozen wall, and the
unfrozen zone cannot be sealed when the water flow velocity is high [8–12]. The occurrence
of fractures with a large water flow rate undoubtedly aggravates the adverse effect on the
formation of the frozen wall. For instance, the frozen area is disturbed during the shield
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tunneling process, leading to the formation of fractures and hydraulic channels in weak
places in the frozen wall [13,14]; and continuous water flow scours the frozen wall resulting
in the collapse of the frozen wall and eventually floods the shield [15,16]. Therefore, it is of
great practical significance to study the effect of fracture water flow on the development of
frozen walls.

The change of heat and moisture in rock masses under low temperature and water flow
is complicated because the temperature field and moisture migration are mutually coupled
and influence each other [17–19]. The migration of water causes the change of thermal
characteristics of rock and soil masses, which affects the distribution of the temperature
field; and in turn, the change of temperature obviously affects fluid density and viscosity
and results in a change of permeability in rock masses [20]. Numerous suggestions have
been proposed to describe the hydrothermal coupling mechanics in the AGF process.
For example, Wang et al. [8,21] conducted a comprehensive and systematic study on the
formation mechanism of an artificial frozen wall in a permeable stratum under high water
seepage velocity, based on a large-scale water–heat coupled physical model test system,
which provides references for the layout of frozen holes in a high-velocity permeable
stratum. Sudisman et al. [22] studied the change of temperature distribution surrounding
freezing pipes under the action of seepage by using infrared images, and realized the
visualization of heat distribution. Zhang et al. [23] proposed an indirect thermal-acoustic
coupling method by using ultrasonic in situ detection to study the evolution characteristics
of the temperature field and the rules governing change of acoustic characteristics during
the freezing process of a water-rich sand layer. Song et al. [24] carried out experimental
studies on the dual-pipe freezing temperature field of fractured rock mass under water
seepage, and the results show that fracture water seepage significantly delays the time of
frozen wall closure, and the thickness of the frozen wall is also reduced.

Numerical simulations can predict the evolution of the frozen zones accurately and
reliably and provide reasonable guidance for the AGF construction process [3]. Several
studies have been conducted to model the AGF process numerically. For example, Feng
et al. [25] simulated the hydrothermal coupling and phase transformation problems in the
freezing process of fractured rock mass, and analyzed the influence of fracture aperture
and fracture inclination on the freezing temperature field and seepage field. Li et al. [26]
proposed a heat–moisture coupling model to predict the dynamic formation process of the
freezing curtain by combining heat transfer, Richard’s equation and the Darcy equation of
porous media. Vitel et al. [27,28] proposed a thermo-hydraulic model of ground around
freeze-pipes and analyzed the influence of different vertical fracture locations and hydraulic
conductivity coefficients on the temperature field. The results indicated that water seepage
conditions have impact on the ground freezing process, whether the flow is due to the
regional hydraulic gradient or to permeable fractures located in areas near the frozen zone.
Huang et al. [29] established a heat–fluid coupling model of fractured rock mass under the
condition of low temperature freezing, taking into account the process of water–ice phase
transformation and water flow in fractures. Chen et al. [30] analyzed the evolution law of
freezing temperature field under the seepage of single-fractured porous media rock mass
by regarding the rock as an impermeable matrix; in this study, the water exchange between
the rock and unfilled fracture was not considered.

When fluid in fractured porous media passes through the fractures, it will be coupled
with the surrounding porous media. Because the water flow flux of fracture is much larger
than that of rock matrix during model tests. In the flow flux measurement, the total flow
flux is usually regarded as the flow flux of fracture, thus ignoring the seepage of rock
matrix despite this being clearly inconsistent with the actual engineering. For this reason,
theoretical analysis and numerical simulation research on the fluid flow and heat transfer
in fractured porous media considering the interface coupling effects between rock matrix
and fluid has become a hot issue. Chen et al. [31] used a dimensional reduction model
to model fractures in a two-dimensional region, and a differential method to simulate
single-phase Darcy flow in porous media with two-dimensional fractures. In order to
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study the role of natural fractures in porous media, Zuo et al. [32] combined an embedded
discrete fracture model (EDFM) with a streamline simulation method to simulate natural
fractures, and calculated the fluid flow tracks in rock matrix and fractures. Starting from a
mathematical flow model at the microscopic pore scale, Huang et al. [33] conducted scale
upgrading research based on the volume averaging method, and established a new set
of coupled Stokes–Darcy flow interface conditions. Alazmi et al. [34] summarized five
primary categories of fluid flow interface conditions and four primary categories of heat
transfer interface conditions between a porous medium and a fluid layer. The difference in
model calculation results under different boundary conditions was systematically analyzed.
It was shown that, in general, variations in interface conditions have a significantly more
pronounced effect on the velocity field than on the temperature field.

At present, there is limited research on fluid flow and heat transfer in artificial freezing
of fractured porous media that considers the interface coupling effects between rock matrix
and fluid. In the numerical simulations of AGF for fractured rocks under water seepage,
cubic law is usually used to describe the water flow in the fracture. Alternatively, the
fracture is considered as a strong permeability zone with higher permeability than that
of the rock matrix, and Darcy’s law is used to simulate the fluid flow in the fractures.
However, if the permeable rock contains fractures, the permeability of the rock matrix,
fluid exchange and coupling between the rock matrix and the fracture will affect the overall
permeability of the fractured porous medium [35]. The cubic law does not consider the
permeability of the rock matrix around the fracture, and therefore does not adequately
describe the permeability characteristics of fractured porous media. Moreover, in practical
engineering experience, when water gushes along the cracks, the water flow velocity is
relatively large, which does not satisfy Darcy’s law [36]. In order to study the influence
of high speed fracture-water flow on the frozen wall development in fractured rock mass,
a thermo-hydraulic model of fractured rock mass is established in this current research.
Based on the classical continuous boundary conditions and the slip velocity boundary
conditions, the fluid exchange and hydrothermal coupling between rock matrix seepage
and fracture water under low temperature are taken into account in the thermo-hydraulic
model. Numerical simulations of double freezing pipes in fractured rock mass are carried
out. The interfacial seepage field characteristics of fractured rock mass under different
fluid flow models and interface conditions are compared. An analysis is undertaken of the
influences of groundwater seepage velocity and fracture aperture on the interfacial seepage
characteristics and temperature distribution of fractured rock mass under the initial brine
freezing and liquid nitrogen reinforcement freezing.

2. Thermo-Hydraulic Coupling Model of Fractured Rock Mass
2.1. Governing Equations for Fluid Flow
2.1.1. Rock Matrix

According to the theory of porous media, saturated porous rock subjected to freezing
consists of three phases, namely solid particles (s), pour liquid water (l) and pour ice
(i). During the freezing process, the hydraulic and thermal behavior of porous rock is
described by the freezing characteristic curve, and governed by the conservation equations
of mass, momentum and energy. Based on the volume averaging method, these equations
can be obtained by adopting a Representative Elementary Volume (REV) in porous rock [3].

Based on the law of conservation of mass, in the absence of sources and sinks, the
mass change between water and ice in the rock matrix is equal to the mass of unfrozen
water flowing into or out of the rock matrix. The conservation equation of saturated porous
medium under freezing conditions can be written as [29]:

n
∂(ρ1S1 + ρi(1− S1))

∂t
+∇ · (ρ1ur) = 0 (1)

where t is the time; n is the porosity of rock and considered as constant; ρl and ρi are the
density of liquid water and ice, respectively; and ur is the superficial water seepage velocity
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in rock matrix, with ur = nuir, and uir represents the intrinsic average water seepage
velocity in rock matrix. The term S1 represents the saturation of liquid water, which is
influenced by the freezing temperature and the pressure difference across the interface
between liquid and ice, which is called the capillary pressure [6,27]. Van Genuchten
proposed a parametric model for the isothermal, hysteretic unsaturated fluid phase content
and hydraulic conductivity functions of unsaturated soils, which is also popularly used in
representing the freezing characteristics of soil and rock medium [37]. Based on the Van
Genuchten model, the freezing characteristic function of rock matrix can be expressed as:

Sl =

[
1 + (

pi−pl
P

)
1/(1−m)

]−m
, (2)

where P and m are parameters related to the pore structure. The terms pl and pi denote the
pore water pressure and ice pressure, respectively. Assuming the chemical potentials of
water and ice phases are in differential equilibrium, the Clausius–Clapeyron equation can
be obtained to describe the water–ice phase change process as follows [38]:

dpi =
ρi
ρl

dpl −
ρiL
T0

dT, (3)

where L is the specific latent heat of water and ice phase change. Taking the atmospheric
pressure and the temperature T0 = 273.15 K as references, and integrating Equation (3) gives:

pi − pl =
ρiL
T0

(T0 − T). (4)

Submitting Equation (4) into Equation (2), the relationship between the liquid satura-
tion degree and temperature in freezing rocks can be expressed as [27]:

Sl =

[
1 +

(
ρiL
PT0

(T0 − T)
)1/(1−m)

]−m

. (5)

With w = PT0
ρiL

, Equation (5) can be written as:

Sl =

[
1 +

(
T0 − T

w

)1/(1−m)
]−m

. (6)

Darcy’s equation is used to characterize the water seepage characteristics in rock
matrix, and the pore water seepage velocity in rock matrix can be expressed as:

ur = −
KrKr

µlr
(∇pr − ρlg) (7)

where µlr is the water viscosity in rock matrix; pr represents the water seepage pressure in
rock matrix; g is the gravity acceleration vector; Kr is the intrinsic permeability of rock ma-
trix; and Kr is the relative permeability of rock matrix, which describes the blocking effect of
ice presence to the liquid water flow, and varies between 0 and 1. The relative permeability
of rock matrix can be expressed as a function of water saturation as follows [39]:

Kr(Sl) = S1/2
l [1− (1− S1/m

l )
m
]
2
. (8)

Considering the influence of freezing temperature, the viscosity of water in rock matrix
can be expressed as [29]:

µlr= 2.1× 10−6 exp(
1808.5

T
) (9)
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2.1.2. Fracture

For steady-state and incompressible laminar flow in fracture, the inertia force can be
omitted in approximate treatment, that is, a Stokes-equation can be used to describe the
flow characteristics in fracture:

ρ1
∂uf
∂t

= ∇ · (µlf(∇uf +∇uT
f ))−∇pf (10)

where uf is the water flow velocity in fracture and µlf is the viscosity of water in fracture.
The water flow in fracture satisfies the law of conservation of mass, and can be written as
follow [29,30]:

∂(ρ1wu + ρi(1− wu))

∂t
+∇ · (ρ1uf) = 0 (11)

where wu is the content of unfrozen water in fracture. In order to obtain the stable and faster
calculations, the following analytical function, a smooth approximation of the Heaviside
function, is used to describe the unfrozen water in fracture [27]:

wu =
1

1+e−ς(T−θ)
(12)

where ζ and θ are parameters related to the freezing characteristics of fracture water.
For the fracture water flow under low-temperature, the dynamic viscosity of water

reflects the influence of the temperature field on the water flow velocity field. There is
liquid water in the fracture when the temperature is above the freezing point. When the
temperature drops below freezing point, ice crystals grow, and the fracture is filled with a
mixture of ice and water. As the ice content increases, the viscosity of water in the fracture
gradually increases, and the fracture water stops flowing after water is frozen. At this time,
it is considered that the water viscosity in the fracture rises to infinity. Therefore, water
viscosity in fracture can be expressed as a function of temperature as follows [40]:

µlf =


µl0, T > 273.15 K
µl0(1 + 2.5V+10.25V2+0.00273e16.6V), 271.05 K ≤ T ≤ 273.15 K
∞, T < 270.15 K

(13)

where µl0 = 0.001 Pa·s is the constant liquid water viscosity at temperature 293.15 K, and V
is the ice content, which can be written as:

V = 1− wu (14)

2.1.3. Boundary Conditions at the Interface between Rock Matrix and Fracture

There is a small transition zone near the interface of porous media seepage and free
flow in fractures. The transition zone can be considered to be a boundary layer zone where
the fluid flow and heat transfer characteristics of a porous medium and a fluid adjust to one
another [34]. The water flow coupling between fracture and rock matrix regions transfers
physical quantities only at the interface. The physical model of the transition zone belongs
to the Darcy–Stokes coupling problem, and the schematics of Darcy–Stokes problem are
depicted in Figure 1. On the interface between fracture flow and porous media seepage, the
fluid obeys the principle of mass flux continuity, continuity of normal stress, and the special
Beavers–Joseph–Saffmann boundary condition on the tangential stress [33,41], which are:

nf.(uf − ur) = 0 on Γr−f
pf − nT

f · τ · nf = pr on Γr−f
−nf · τ · t =

µlrα√
tT·Kr ·t

(uf − ur) · t on Γr−f

(15)

where the subscripts f and r denote fracture water flow and rock matrix seepage flow,
respectively; the terms t and n are the unit tangential and normal vectors to the interface
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Γr−f; τ is the stress tensor; and α is the velocity slip coefficient, which depends on the
geometric and structural characteristics of the rock at the interface between rock-region
and fracture-region.
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2.2. Governing Equations for Heat Transfer
2.2.1. Porous Rock Matrix

Based on the local thermal equilibrium hypothesis, the conservation equation of energy
for low temperature porous rock matrix, with consideration of the heat convection and
water–ice phase transition, can be expressed as follows [29]:

(ρC)r
eq

∂Tr

∂t
+ ρlClur · (∇Tr) + Qr = −nrρlL

∂S1

∂Tr
(16)

where Tr is the temperature of the rock matrix. The term (ρC)r
eq is the equivalent heat

capacity of rock, which can be written as [24]:

(ρC)r
eq = (1− nr)ρsCs + nrS1ρlCl + nr(1− S1)ρiCi (17)

where Cs, Cl and Ci are the heat capacity of rock particles, liquid water and ice, respectively.
According to Fourier’s law, the term of conductive heat flux Qr is proportional to the
temperature gradient, and can be expressed as [3]:

Qr = ∇ · (−λr∇Tr) (18)

where λr is the equivalent heat transfer coefficient of rock, and can be calculated by using
the geometric mean [3]:

λr = λs
1−nλ

nSl
l λ

n(1−Sl)
i (19)

with λs, λl and λi representing the heat transfer coefficient of solid particles, water and
ice, respectively.

2.2.2. Fracture

Taking the REV of water flow in fracture as the research object, there are mainly three
effects of convective heat transfer between water molecules, heat conduction of the fluid
and thermal convection between the fracture water and the rock matrix that will cause the
heat exchange of the REV. The convective heat transfer flow between water molecules can
be expressed as [29]:

Qconv = −ρlCluf · (∇Tf) (20)
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where Tf is the temperature of fracture. According to Fourier’s law, the heat conduction of
the fluid can be written as:

Qcond = ∇ · (−λf∇Tf) (21)

where the term λf is the equivalent heat transfer coefficient of fracture, and can be obtained
by using the geometric mean:

λf = λwu
l λ

(1−wu)
i (22)

The thermal convection between fracture water and rock is [29]:

Qf
conv = h(Tf − Tr) (23)

where h is the convection heat transfer coefficient between rock and fracture water. For the
fractures with aperture less than 1 cm, it can be considered that the surface temperature
of the porous rock is equal to the temperature of the upper and lower surfaces of fracture
water, and the heat transfers between fracture and rock is mainly related to the temperature
gradient of the bedrock. From this, it can be obtained that [29]:

Qf
conv = λf

∂Tr

∂nfr
(24)

Based on the assumption that the temperature of rock matrix surface is equal to that
of fracture water, in the absence of source and sink terms for external heat exchange, the
thermal balance equation of the REV in fracture flow can be obtained according to the law
of conservation of energy:

(ρC)f
eq

∂Tf
∂t

+ Qcond + Qconv = Qf
conv − ρlL

∂wu

∂Tf
(25)

Submitting Equations (20), (21) and (24) into Equation (25), it can be seen that:

(ρC)f
eq

∂Tf
∂t

+ ρlCluf · (∇Tf) +∇ · (−λf∇Tf) = λf
∂Tr

∂nfr
− ρlL

∂wu

∂Tf
(26)

where (ρC)f
eq is the equivalent heat capacity of the fracture, and can be written as:

(ρC)f
eq = (1− wu)ρiCi + wuρlCl (27)

3. Numerical Calculation Model of Freezing Fractured Rock Mass
3.1. Establishment of Model of Freezing Fractured Rock Mass under Water Seepage

There are many studies on the design parameters for underground infrastructure con-
struction projects, and freezing effects on intact rock and soil mass. By contrast, there are
relatively few such studies that research the freezing process of fractured rock mass under
water seepage or consider the influence of fracture water on freezing effects. However, for
rock mass with a large flow rate of fracture water leading to difficulties associated with grout
plugging, artificial freezing technology is the only feasible construction method [29]. Therefore,
it is very important to study the freezing effect of fractured rock mass under the coupling
of water seepage and heat transfer. Numerical simulation methods have the advantage of
reproducing engineering conditions that cannot be achieved by experimental methods. As
depicted in Figure 2, in this study, the structural plane where the fracture is located is taken as
the research object in the calculation model. It is assumed that there are two freezing pipes
with a radius of 140 mm and a space of 1.4 m, and the fracture passes vertically through the
middle of the two freezing pipes. The direction of water seepage is parallel to the vertical
boundary from the top to the bottom. The hydraulic heads on the outlet boundaries are set to
0 m, the hydraulic difference between opposite surfaces is equal to the hydraulic head at inlet
boundaries, and other boundaries are set as a no-flow boundary. The temperature of freezing
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pipes is kept at 247.15 K during the freezing process. The physical and thermodynamic
parameters of the rock involved in the study are listed in Table 1.
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Table 1. Parameters related to the freezing process in fractured rock mass [27,29].

Property Symbol Value Units

Density of porous medium particles ρs 2700 kg/m3

Density of liquid water ρl 1000 kg/m3

Density of ice ρi 917 kg/m3

Thermal conductivity of porous
medium particles λs 4.3 W/m/K

Thermal conductivity of liquid water λl 0.6 W/m/K
Thermal conductivity of ice λi 2.2 W/m/K

Specific heat capacity of porous
medium particles Cs 837 J/kg/K

Specific heat capacity of liquid water Cl 4200 J/kg/K
Specific heat capacity of ice Ci 2100 J/kg/K

Latent heat of water and ice phase
change L 334 kJ/kg

Porosity n 0.41 1
Intrinsic permeability K 7.1 × 10−15 m2

Freezing point of water T0 273.15 K
Parameter α α 0.6
Parameter m m 0.5
Parameter ζ ζ 4
Parameter θ θ 271.65

3.2. Model Mesh Independence Analysis

The numerical model was simulated using the proposed governing equations. To
solve such a highly nonlinear problem, the partial differential equations (PDEs) models of
COMSOL were employed, and the corresponding partial differential equations are specified
for the fracture region. The Newton method was used to solve the highly nonlinear system
of governing equations, and the convergence criteria were set to 0.01. The computational
model domain was meshed by free triangular mesh. Mesh independence tests were carried
out for the present modeling to discover the optimum mesh size. In the modeling, the mesh
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with the finest level was chosen to ensure accuracy of calculation. The mesh of the area of
fracture and frozen pipes are refined locally. This leads to a total of 89,012 elements after
meshing. In addition, the time step size is set to 0.1 d to provide accurate results, and the
total time step is 300 days.

3.3. Validation of the Thermo-Hydraulic Model

The laboratory model conducted by Song et al. [24] was a numerical simulation based
on the above governing balance equations to validate the proposed thermo-hydraulic model.
The plane view of distribution of thermal couple along the fracture face and dimensions
and boundary conditions of the model representing the experiment is depicted in Figure 3.
There are four measuring lines located on the horizontal plane 20 cm away from the fracture
plane to acquire the temperature distribution during the freezing process, in which S1, S2,
S3 are parallel to the direction of water seepage, and F1 is perpendicular to the direction of
water seepage. As listed in Table 2, the physical and thermodynamic parameters adopted in
the simulation are the same as those involved in the study of reference [24]. Since the water
seepage of rock matrix is ignored in the model test, the fluid flow velocity of fractured rock
mass obtained in the test is the water flow velocity of fracture. Therefore, the same setting
is adopted in the numerical simulation, and the seepage velocity of rock matrix is 0 m/d.
The initial temperature of the rock sample is 23.7 ◦C, and the temperature of freezing pipes
is stable at −25 ◦C. The diameter of the freezing pipes is 0.014 m.
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Table 2. Physical and thermodynamic parameters related to the rock sample (adapted from reference [24]).

n K/(m/s) ρs/(kg/m3) λs/(W/m/K) Cs/(J/kg/K) m T0 (K)

0.23 6.81 × 10−8 2700 1.66 1430 0.5 273.15

In this study, a scenario of seepage flow with velocity 1.58 m/day has been simulated.
The comparisons between the simulated and measured experimental temperatures along
the parallel direction of water seepage (S1) are illustrated in Figure 4. It can be seen that,
due to the heterogeneity of the experimental sample and the influence of the experiment
environment, while the numerical simulation is in an ideal state, there are certain devia-
tions between the simulated data and the measured temperatures, and the deviations are
acceptable. The numerical simulation results adequately reflect the temperature decline
trend in the fractured rock mass.
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4. Results and Analysis
4.1. Seepage Field Characteristics of Fractured Rock Mass

In order to study the influence of the fluid exchange at the interface between the rock
and fracture, and the Darcy–Stokes coupling effects on the water seepage field of fractured
rock mass, the interfacial seepage field characteristics of fractured rock mass under different
fluid flow models and interface conditions were analyzed and compared.

4.1.1. Fracture Apertures

The velocity characteristic of fractured rock mass with different fracture apertures
are shown in Figure 5 for two cases: when the fracture flow is depicted by Cubic law
(case 1), or as free flow while considering the Darcy–Stokes effect (case 2). It can be seen
that the flow velocity and flux of fracture computed by free flow and considering the
Darcy–Stokes effect are greater than that of fracture computed by Cubic law. As fracture
opening increases, the differences between the two cases decrease (Figure 5a). This result is
consistent with the research conclusion reached by Beavers and Joseph, namely: when the
permeability of rock matrix is constant, the extra flow flux under slip velocity condition
decreases with the increase in fracture opening [42] The water seepage velocity of rock
matrix of case 2 is also larger than that of case 1 (Figure 5b). It can be seen that the overall
permeability of fractured rock mass computed by free flow considering the Darcy–Stokes
effect is greater than that of fracture computed by Cubic law. It is not possible to accurately
depict the permeability characteristics of the freezing fractured rock mass, however, nor
the temperature characteristics of the freezing fractured rock mass.

4.1.2. Permeability of Rock Matrix

The velocity characteristic of fractured rock mass with different rock matrix perme-
ability are shown in Figure 6, when the fracture flow is depicted either by Cubic law (case
1) or by free flow considering the Darcy–Stokes effect (case 2). It can be seen that rock
matrix permeability has an insignificant influence on the fracture flow characteristics under
a given water head. With the increase in rock matrix permeability, the flow velocities and
fluxes of fracture in case 1 and case 2 barely change (Figure 6a). The seepage velocities
and flux of rock matrix in case 2 are slightly larger than that in case 1. With the increase in
rock matrix permeability, this gap gradually increases (Figure 6b). It is also observed that,
even with the increase in rock permeability, the overall permeability of fractured rock mass



J. Mar. Sci. Eng. 2022, 10, 787 11 of 24

computed by free flow considering the Darcy–Stokes effect (case 2) are greater than that of
fracture computed by Cubic law (case 1).
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Figure 5. Velocity characteristic of fractured rock mass with different fracture aperture under
∆H = 3 m: (a) fracture and (b) rock matrix, where df = fracture aperture.
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Figure 6. Velocity characteristic of fractured rock mass with different rock matrix permeability when
df = 5 mm (∆H = 3 m and α = 0.3): (a) fracture and (b) rock matrix.

4.1.3. Velocity Slip Coefficient

The velocity characteristic of fractured rock mass with different velocity slip coef-
ficients and various fracture apertures when the fracture flow is depicted by free flow
considering the Darcy–Stokes effect are depicted in Figure 7. It can be found that the
water flow velocity and flux through fractures increases with the rise in velocity slip coeffi-
cients. When velocity slip coefficient is greater than 0.3, the trend of increase slows down
(Figure 7a). The same patterns emerge in the rock matrix (Figure 7b). It is also noticed
that there is coupling effects between fracture aperture and slip coefficient on the fracture
seepage velocity. When the slip coefficient is 0.01, the water flow velocity through fractures
increases with size of fracture aperture. As the slip coefficient increases, the water flow
velocity through fractures fluctuates with the increase in fracture aperture.
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Figure 7. Flow velocity and flux through fractures in fractured rock mass with different apertures
and different slip coefficients (∆H = 3 m, df = fracture aperture): (a) fracture and (b) rock matrix.

4.2. Temperature Field Characteristics of Fractured Rock Mass

In order to study the development of the frozen wall in the brine freezing process of
fractured rock mass, including consideration of the influence of the fluid exchange at the
interface between the rock and fracture, the interfacial temperature, interfacial velocity and
closure time were analyzed respectively.

4.2.1. Interfacial Temperature

The interfacial temperature distributions of the intact rock during the freezing process
under different seepage velocities are shown in Figure 8. The ordinate y represents the
interface coordinate, positive values representing locations upstream of the interface, and
negative values representing those downstream of the interface. Comparing the interfacial
temperature distribution of intact rock mass with different groundwater seepage velocity
after freezing for 30 days, it can be seen that the temperature upstream of the interface
is higher than that downstream, and that the cooling area downstream of the interface is
larger. It can also be seen that the existence of groundwater seepage changes the original
temperature field distribution of the rock mass. Due to convective heat transfer, water
becomes the flow medium of heat, transferring the cooling capacity from upstream to
downstream [21]. With the increase in water seepage velocity, the degree of asymmetry is
greater (Figure 8).
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Figure 8. Interfacial temperature distribution developments of intact rock mass under different
groundwater seepage velocities in the freezing process: (a) v = 1 m/d; (b) v = 1.5 m/d; (c) v = 2 m/d.

When the groundwater seepage velocity is 1 m/d, the frozen wall can intersect after
30 days of freezing (Figure 8a). When the groundwater seepage velocity is 1.5 m/d, the
frozen wall intersects after 60 days of freezing (Figure 8b). When the groundwater seepage
velocity is 2 m/d, the frozen wall can intersect after 240 days of freezing (Figure 8c). When
the groundwater seepage velocity is 2.5 m/d, the frozen wall does not intersect after
300 days of freezing, and the thickness of the frozen wall barely increases even with the
continuous increase in freezing time, making the intersection of frozen walls difficult. When
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the groundwater seepage velocity is 3 m/d, the heat in the low temperature area is quickly
taken away with the water flow, and the rock mass soon enters a heat balance state [4].
Therefore, the limit velocity of groundwater seepage in this study is 2.5 m/d.

From the temperature distribution during the freezing process at the interface of
the fractured rock mass (Figure 9), it can be seen that as opposed to the “heart”-shaped
distribution of temperature field of fractured rock mass that simulate the fluid flow in
fracture by Darcy’s law [25] the temperature distribution of fractured rock mass computed
by free flow and considering the Darcy–Stokes effect presents a “butterfly” distribution
before the intersection of the frozen wall. This is because the temperatures at fracture and
rock around the entrance and exit of fractures decrease more slowly than elsewhere. In
fractured rock mass, the flow velocity of fracture water is much higher than the seepage
velocity of rock. Even if the rock matrix parts have been frozen, the fracture part still needs
a long time to become frozen and for complete water plugging to happen. Moreover, due
to the superposition effect of cooling capacity upstream and downstream, the cooling area
downstream is larger than that upstream. When the fracture water is frozen and the frozen
wall is crossed, the fractured rock mass rapidly cools down. The temperature distribution
of the frozen body of fractured rock mass is symmetrical along the interface and presents
as a “drum” distribution.
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4.2.2. Interfacial Velocity

This study considers that water plugging is complete when the velocity of water flow
in the fracture is reduced to 0.05 m/d. Figure 10 depicts the seepage velocity distribution of
rock at the interface (y = 0) during the freezing process of fractured rock mass with a fracture
aperture of 5 mm under different groundwater seepage water velocities. The distances with
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seepage velocity equal to zero represent the formation of frozen body thickness. Figure 11
shows the flow velocity distribution of fracture water (x = 0) during the freezing process of
fractured rock mass with a fracture aperture of 5 mm under different groundwater seepage
water velocities.
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Figure 10. Variations in interfacial seepage velocity of rock in fractured rock mass with fracture
aperture of5 mm during freezing, under different groundwater seepage velocities: (a) v = 0.1 m/d;
(b) v = 0.3 m/d; (c) v = 0.5 m/d; (d) v = 1.0 m/d.
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Figure 11. Variations in interfacial fracture flow velocity of fractured rock mass with fracture aper-
ture of 5 mm during freezing under different groundwater seepage velocities: (a) v = 0.1 m/d;
(b) v = 0.3 m/d; (c) v = 0.5 m/d; (d) v = 1 m/d.

The frozen area of rock increases rapidly, and the fracture water flow velocity decreases
rapidly when the groundwater seepage velocity is 0.1 m/d. After 50 days of freezing, the
seepage velocity of rock decreases completely to 0. Meanwhile the flow velocity of fracture
water decreases to the target value after 70 days of subsequent freezing, and the frozen rock
mass completes water plugging. When the groundwater seepage velocity is 0.3 m/d, the
seepage velocity of rock drops to 0 after 60 days of freezing, and the flow velocity of fracture
water drops to the target value after 80 days of subsequent freezing. When the seepage
velocity of groundwater is 0.5 m/d, the seepage velocity of rock drops to 0 after 80 days
of freezing. After 180 days of freezing, the flow velocity of fracture water decreases to the
target value, and the frozen rock mass completes water plugging. When the groundwater
seepage velocity is 1 m/d, the frozen area grows slowly. After 280 days of freezing, the
seepage velocity of rock drops to 0, while the flow velocity of fracture water is still at a
high level, which leads to the failure of intersection of the frozen wall. In conclusion, with
the increase in groundwater seepage velocity, the freezing time of rock increases, and the
presence of fractures increases the closure time of the freezing wall intersection because of
the large water flow velocity in the fractures. The limit seepage velocity of the fractured
rock mass is 1 m/d.

4.2.3. Development of Frozen Wall Thickness

The thickness of the frozen wall has an important effect on the strength and stability
of the frozen wall. The frozen wall development rates of fractured rock mass with different
fracture apertures under different seepage velocities are shown in Figure 12. The inside
of freezing pipe represents the side near the fracture, and the outside of freezing pipe
represents the side away from the fracture. It can be seen that with the increase in fracture
aperture, the flow velocity in fracture increases and the water flux increases, so the heat
carried away by fracture flow increases, which slows down the development of the frozen
wall. In addition, the development rates of the frozen wall near the fracture are clearly
slower than those far away from the fracture. When the water seepage velocity reaches
the limit seepage velocity of 1 m/d and fracture aperture is greater than 7 mm, then the
development of the frozen wall near the fracture stalls due to the large amount of cold
energy brought away by the fracture water flow.
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Figure 12. Development rate of frozen wall of fractured rock mass with different fracture apertures
under different groundwater seepage velocities.

4.2.4. Closure Time of Frozen Wall

The freezing wall closure time distributions of fractured rock mass with different
fracture apertures under different seepage velocities are depicted in Figure 13. It can be
seen that, in the freezing process of fractured rock mass, fracture aperture and groundwater
seepage velocity are positively proportional to the freezing wall intersection time. With
the increase in groundwater seepage velocity, the freezing wall intersection time increases
continuously. When the seepage velocity is 1 m/d and the fracture aperture is 3 mm,
the freezing wall cannot cross closure within 200 d. However, adjusting the distance
between freezing pipes has little effect on the temperature distribution of fractured rock
mass. Moreover, the seepage velocity at the fracture is at an extremely high level, and
material plugging measures cannot be taken at the fracture. It is then necessary to use
liquid nitrogen freezing for plugging and reinforcing.
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4.3. Liquid Nitrogen Reinforcement Freezing Process of Fractured Rock Mass

Liquid nitrogen freezing technology is widely used in engineering rescue because of
its simple freezing equipment, fast freezing speed and high freezing wall strength [43,44].
When the flow velocity of underground water is large and conventional brine freezing
cannot seal the unfrozen zone, the liquid nitrogen reinforcement freezing engineering
method is often used in practice to seal the unfrozen zone, so as to form a closed frozen
curtain. The liquid nitrogen freezing hole can be rearranged inside the original brine
freezing hole [45]. In this study, the original freezing hole was chosen as the freezing
hole for liquid nitrogen without restoring the original brine maintenance freezing, and the
temperature of liquid nitrogen frozen wall was kept at 183.15 K during the liquid nitrogen
reinforcement freezing process. The simulations of liquid nitrogen reinforcement freezing
of fractured porous media rock mass were carried out after 200 days of brine freezing, and
the interface temperature and fracture flow velocity were analyzed, as was the closure time
of the freezing wall fractured rock mass with different apertures.

4.3.1. Interfacial Temperature

The interfacial temperature distributions of fractured rock mass with different fracture
apertures during the liquid nitrogen reinforcement freezing process are shown in Figure 14.
It can be seen that the freezing wall closure time of fractured rock mass can be shortened
quickly by liquid nitrogen reinforcement freezing. The interfacial freezing temperature
distribution in fractured rock mass during the liquid nitrogen freezing process is similar to
that of brine freezing. Before the freezing wall is enclosed, with the freezing temperature
field showing a “butterfly-shaped” distribution, the initial cooling rate of the rock mass is
rapid when the freezing wall is being formed, and the freezing temperature field shows a
“drum” distribution after water plugging is complete. With the increase in fracture aperture,
the water flux in fracture increases, and the heat carried away by fracture water increases.
Therefore, the frozen wall of the fractured rock mass with larger fracture aperture takes
more time to cross during the liquid nitrogen reinforcement freezing process. At the same
time, it was found that due to the superposition effect of the upstream and downstream
cooling capacity caused by the seepage of groundwater in the rock and the water flow
through fractures, the cooling of the upstream region takes a long time. In other words,
the rapid cooling of the upstream region plays an important role in the formation of the
entire frozen wall in unfilled fractured rock mass. Therefore, when designing the freezing
pipe layout, the installation density of the liquid nitrogen freezing pipe in the upstream
area should be appropriately increased, so as to improve the freezing efficiency of the
whole system.

4.3.2. Development of Frozen Wall Thickness

The frozen wall development rates of fractured rock mass with different fracture
apertures under liquid nitrogen reinforcement freezing are shown in Figure 15, with the
water seepage velocity reaching the limit seepage velocity of 1 m/d. It can be seen that,
compared with brine freezing, the development rate of the frozen wall is greatly improved
under liquid nitrogen reinforcement freezing. The development rate of the frozen wall near
the fracture is also significantly increased.
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Figure 15. Development rate of frozen wall of fractured rock mass with different fracture apertures
under liquid nitrogen reinforcement freezing.

4.3.3. Interfacial Velocity and Closure Time

The fracture flow velocities (x = 0) during the liquid nitrogen reinforcement freezing
process of unfilled fractured rock mass with different fracture apertures are depicted in
Figure 16. The relationship between the closure time of the frozen wall and the water
flux in fracture are illustrated in Figure 17. It can be seen that the fracture water flow
velocity decreases gradually with the cooling process and it rapidly drops to 0 when the
temperature reaches the freezing point of fracture water, indicating that the fracture area
is frozen. When the fracture aperture is less than 5 mm and the flux in unfilled fractures
is less than 2000 m3/d, the frozen wall can cross the closure within 30 days to complete
water plugging. As fracture aperture increases, so does water flux in the fracture, and
the time required for liquid nitrogen reinforcement freezing is longer. It is noted that the
flux of fracture grows non-linearly as the fracture aperture increases when the fracture
aperture increases from 5 mm to 10 mm. This phenomenon is caused by the Darcy–Stokes
coupling effect between rock seepage and fracture water flow. From the relationship
between flow velocity and flux in fractures of fractured rock mass with different apertures
and different slip coefficients (Figure 7a), it can be seen that the flux in fracture does not
increase linearly with the fracture aperture. Moreover, the coupling effect between seepage
field and temperature field may have an influence on this non-linear relationship.
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5. Conclusions

The current experimental conditions are unable to accurately reflect the engineering
environment of freezing fractured rock mass under water seepage. In the field of numerical
simulation of freezing fractured rock mass under water seepage, there are only limited
studies that consider the couple effect of Darcy flow of rock matrix and free flow through
fracture. The current study establishes a universal hydrothermal coupling model for artifi-
cial freezing of fractured rock mass considering the permeability of the rock matrix, fluid
exchange and the Darcy–Stokes coupling effect at the interface between rock and fracture.
The interfacial seepage field characteristics of fractured rock mass under different fluid
flow models and interface conditions were analyzed and compared. The effects of different
groundwater seepage velocities on the velocity distribution as well as the development
of frozen wall thickness and closure time of freezing wall intersection during the brine
freezing process of fractured rock mass were analyzed. The freezing wall development
in fractured rock mass was studied, notably when the brine freezing of the frozen wall
was defective and later converted to liquid nitrogen reinforcement freezing. The following
conclusions are drawn from the study:

(1) The overall permeability of fractured rock mass computed by free flow of fracture
water considering the Darcy–Stokes effect is greater than that computed by the Cubic
law. It is not possible to accurately depict either the permeability characteristics or
the temperature characteristics of freezing fractured rock mass. Nevertheless, it is
clear there are coupling effects between fracture aperture and slip coefficient on the
seepage velocity of fracture.

(2) The numerical simulation results of temperature field distribution and development
of fractured rock mass that fracture water flow depicted by free flow and considering
Darcy–Stokes effect is different from that of fractured rock mass that considers the
fracture as a strong permeability zone with higher permeability than that of the
rock matrix, and used Darcy’s law to simulate the fluid flow in fracture. Before the
intersection of the frozen wall, the temperature distribution of fractured rock mass
presents a “butterfly” distribution. After the frozen wall is closed, the temperature
distribution of frozen rock mass is symmetrical along the interface and presents in a
“drum”-shape distribution.

(3) Compared with brine freezing, the development rate of the frozen wall is greatly
improved under liquid nitrogen reinforcement freezing, and the closure time of the
frozen wall can be significantly shortened. The rapid cooling of the upstream region
plays an important role in the formation of the entire frozen wall in fractured rock
mass. Due to the coupling effect between fracture apertures and slip coefficients and
seepage field and temperature field, the flux of fracture grows non-linearly as the
fracture aperture increases when the fracture aperture increases from 5 mm to 10 mm.

In this study, the influence mechanism of water seepage on frozen wall formation
of fractured rock mass was analyzed through the study of the interaction between water
seepage of rock matrix and water flow of fracture and frozen wall formation. The proposed
numerical simulation methods can better reproduce the conditions that cannot be achieved
by experimental methods. The research results are helpful for proposing appropriate
design methods and construction measures of freezing fractured rock mass, and provide
the foundation for the expansion of the field of liquid nitrogen rapid freezing application.
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