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Abstract: Offshore aquaculture is critical for a marine fishery economy. The spatial distribution of
aquaculture that characterizes it plays a vital role in the sustainable development of marine resources
and the protection of the marine environment. In recent years, China’s aquaculture has developed
rapidly; specifically, the scale of aquaculture has dramatically expanded, and large-scale aquaculture
has gradually grown in popularity. Although high-resolution satellite data can accurately extract
aquaculture areas, the extraction of a large area of the sea area requires a copious amount of data.
In contrast, medium-resolution satellite images allow for the extraction of aquaculture areas from
large sea areas with a smaller amount of data, offering significant advantages. Therefore, we used
Landsat8 satellite data to extract and count the number of aquaculture rafts based on the Hough
transform and Canny edge detection methods. We tested the accuracy of this method by selecting
Haizhou Bay as the study area for the experiment and accuracy verification and found that the
automatic extraction accuracy for the number of aquaculture rafts was more than 90%. Additionally,
we calculated statistics on the number of aquaculture rafts in Haizhou Bay over the past seven years.
The findings presented in this paper offer a significant reference value for local marine utilization,
marine environment protection, and marine disaster prevention and mitigation.

Keywords: satellite remote sensing; aquaculture raft; marine environment protection; sustainable de-
velopment

1. Introduction

As a rapid development in terms of aquaculture, China ranks first in the region
and features the highest aquaculture output worldwide [1]. According to data from
the UN Food and Agriculture Organization (FAO), over the past three decades, China’s
aquaculture industry has developed rapidly [2], accounting for more than 60% of the
world’s aquaculture area and output [3]. According to the Chinese Fishery Statistics Yearbook,
the output value of aquaculture in China during 2019 was CNY 357.53 billion, while the
aquaculture output was 20.65 million tons, and Chinese aquaculture occupied an area of
1.99 million hectares [4]. The main aquaculture method employed—raft cultivation in a
shallow sea area—has expanded rapidly due to the fact of its high economic output value
and high return [5]. Although this industry is currently making significant contributions
to the supply of aquatic products, it is also characterized by various problems such as
poorly planned distribution of aquaculture and blind expansion [6]. Economic interests
have driven the uncontrolled development of many aspects of raft culture, entering a
disorganized stage of development; on the basis of the blind construction of structures
and breeding rafts, the breeding density has become too high, far beyond the capacity of

J. Mar. Sci. Eng. 2022, 10, 781. https://doi.org/10.3390/jmse10060781 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10060781
https://doi.org/10.3390/jmse10060781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-9086-3701
https://orcid.org/0000-0002-7682-4327
https://doi.org/10.3390/jmse10060781
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10060781?type=check_update&version=1


J. Mar. Sci. Eng. 2022, 10, 781 2 of 16

the marine ecosystem, causing a disruption in it and the natural energy cycle [7–9]. At
the same time, aquaculture has negative impacts in the form of decomposing residual
materials, debris, and fish and shrimp excrement, along with household garbage from
aquaculture workers. All of these factors produce large amounts of nonprotein nitrogenous
substances and phosphorus nutrients waste products, leading to the eutrophication of
water, resulting in a decrease in water quality and serious damage to the ecology of coastal
areas [10–12]. Moreover, a large number of metal rafts produce heavy metal pollution,
which is harmful to human health [13]. Therefore, unplanned raft aquaculture is gradually
becoming a critical source of pollution in offshore waters, even exceeding land-based
pollution. Consequently, large-scale offshore raft farming areas have been subject to the
greatest damage from marine disasters [14,15], as frequent typhoons, storm surges, and
other marine disasters in recent years have also caused a non-negligible impact on offshore
farming areas, seriously affecting the healthy and sustainable development of the social
economy in coastal areas [16]. Therefore, conducting a large-scale statistical analysis of
offshore raft culture areas is particularly necessary. When engaging in scientific planning
of aquaculture areas to achieve sustainable and healthy development, the collection and
analysis of relevant regional data connecting aquaculture can help mitigate and defend
against natural disasters [17].

Due to the limits in terms of manpower and material resources, monitoring large-scale
raft aquaculture areas is difficult when using traditional onsite investigation methods.
However, satellite remote sensing represents an increasing mature earth observation tech-
nology that has made up for the shortcomings of traditional survey methods with features
such as wide coverage, all-weather capability, and strong synchronization. Thus, this
technological tool is playing an increasingly vital role in monitoring aquaculture areas [18].
Performing rapid extraction and calculation of statistics on seawater raft aquaculture areas
using satellite images is of great social and economic value with practical significance, and
it can be employed to conduct statistical research encompassing large-scale aquaculture
area data [19].

Seawater is the background of offshore aquaculture operations, and the surrounding
land features are relatively uniform. Researchers have achieved specific effects by applying
many methods of extracting aquaculture areas using high-resolution images. For example,
Zhang et al. proposed an accurate segmentation method for high-resolution remote sensing
images [20]. According to the multistage and multiscale segmentation model, through
the identification and fusion of meaningful paths between different levels, the purpose of
segmentation accuracy optimization was obtained, and the subsequent optimization of
segmentation had the greatest potential [20]. Jiang et al. described a method to optimize the
cross-entropy loss function via a uniformly distributed disturbance term that the scholars
constructed to optimize the model using GF-2 series remote sensing image data and a 3D-
CNN neural network. According to their findings, the neural network model was suitable
for the extraction of large-scale and multitemporal aquaculture areas [21]. Wang et al.
applied the original regional line segment association framework (RLPAF) to a study of
aquaculture areas with high-resolution images through a method based on object analysis.
The researchers suggested that the extraction of aquaculture rafts using high-resolution
remote sensing images, based on multiscale feature fusion and regional association, offered
obvious advantages over ordinary object-based image analysis methods [22]. Cheng et al.
tested an HDCU net threshold segmentation network based on HDC and U-NET. They
used GF-2 satellite images as experimental data to extract breeding areas and compared
the data with four other threshold segmentation methods to verify the effectiveness of this
method [23]. Overall, high-resolution satellite imagery used to examine aquaculture has a
higher extraction accuracy. Moreover, the extraction of culture zones on a small-scale sea
area has shown good performance in practical terms. However, the extraction of a large
area of seawater involves various difficulties. For example, applying high spatial resolution
in a large area of water requires much data splicing of remote sensing data. Furthermore,
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the huge amount of data involved in analyzing a large sea area also increases the difficulty
of practical operation.

The resolution of satellite data used to extract a large area of water featuring breeding
raft technology has a more considerable superiority. King and others used NDVI and edge
detection in remote sensing image spectral and spatial characteristics in the extraction of
seawater culture zones and compared it with the effect of pure culture zone recognition. The
method, which obviously improved extraction accuracy for complex water culture zones,
has excellent potential for the rapid extraction of large aquaculture areas [24]. Liu et al.
applied an unsupervised classification algorithm to classify and extract China’s offshore
raft aquaculture and cage aquaculture and calculated statistics on the proportion of China’s
offshore aquaculture area in each province. The authors used high-resolution images to
test the accuracy of the results. This technique now plays a vital role in China’s aquaculture
planning and ecological environmental protection [25]. Lu et al. used an object-oriented
extraction method to analyze the spatial distribution of laver cultivation in the Lianyungang
Sea area over the previous 15 years and discussed the transfer direction and distance of
cultivation in three different regions to facilitate the management of laver cultivation
areas [26]. At present, satellite image resolution based on the spectral ratio method is used
for the extraction of seawater culture zones for large areas, such as breeding raft farms
that are mainly distributed in estuary and coastal bay waters, where the sea background is
relatively complex. Around culture zones, the level of chlorophyll and the sediment content
are higher. Thus, the sea spectrum, to a certain degree, facilitates a reducing influence of
the extraction accuracy [27].

The previously described methods used medium- and high-resolution satellite data to
extract the spatial distribution of aquaculture areas and achieved many results. For large
areas of sea aquaculture raft number statistical calculations, few people are involved. In
the interest of facilitating rapid statistical analysis of the number of raft farming areas, this
paper proposes an approach involving automatic extraction and statistical calculations for
raft farming areas based on the fusion of edge detection and the Hough transform. The
new method uses medium-resolution satellite images. First, we applied edge detection
technology and incorporated the spatial characteristics of the aquaculture rafts in remote
sensing images to extract the aquaculture areas. This technique avoided the complex
spectral characteristics of a large sea area in improving the aquaculture rafts’ extraction
accuracy. Visual interpretation was used to evaluate the accuracy of the data, yielding an
overall accuracy of over 90%. Moreover, this study was the first to use medium-resolution
satellite data to automatically count the number of aquaculture rafts in a large area [28].

2. Materials and Methods
2.1. Study Area and Aquaculture Raft Data

Raft farming in Asia accounts for more than 90% of the world’s total [29,30]. In Shan-
dong and Jiangsu provinces, China, raft farming has a large area and relatively high yield,
impacting the environment. Haizhou Bay, located to the east of Lianyungang, Jiangsu
Province, has suitable natural conditions, a superior environment, and developed aquacul-
ture. Therefore, this paper selected the aquaculture area of Haizhou Bay in Lianyungang,
Jiangsu Province, China, as the study area for the statistical calculation of the number of
aquaculture rafts (Figure 1).

In the paper, Landsat 8 OLI image data were selected to detect the coastal breeding
rafts in the study area. The image data were obtained from the United States Geological
Survey (http://glovis.usgs.gov/, accessed on 7 July 2021). Specific image data are shown
in Table 1 in which the five selected areas are all Landsat 8 OLI images available in Haizhou
Bay from 2013 to 2020. The image data in areas 1, 2, and 3 were used to extract breeding
rafts and for accuracy verification of the statistical calculation of the aquaculture rafts, while
the image in areas 2, 4, and 5 were employed to analyze dynamic changes in aquaculture
rafts from 2013 to 2020.

http://glovis.usgs.gov/
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Figure 1. Map of (a) the coverage of the experimental area and aerial photographs of the research 146 
areas (b–d); (b–c) images of aquaculture rafts at different locations in Haizhou Bay; (d) a local image 147 
of the breeding area. 148 

In the paper, Landsat 8 OLI image data were selected to detect the coastal breeding 149 

rafts in the study area. The image data were obtained from the United States Geological 150 

Survey (http://glovis.usgs.gov/, accessed on 7 July 2021). Specific image data are shown in 151 

Table 1 in which the five selected areas are all Landsat 8 OLI images available in Haizhou 152 

Bay from 2013 to 2020. The image data in areas 1, 2, and 3 were used to extract breeding 153 

rafts and for accuracy verification of the statistical calculation of the aquaculture rafts, 154 

while the image in areas 2, 4, and 5 were employed to analyze dynamic changes in aqua- 155 

culture rafts from 2013 to 2020. 156 

Table 1. Introduction to the study areas. 157 

Name Date Image Path/Row 

Area 1 16.01.2019 120,036 

Area 2 04.02.2020 120,036 

Area 3 04.12.2020 120,036 

Area 4 01.12.2013 120,036 

Area 5 09.02.2016 120,036 

Figure 1. Map of (a) the coverage of the experimental area and aerial photographs of the research
areas (b–d); (b–c) images of aquaculture rafts at different locations in Haizhou Bay; (d) a local image
of the breeding area.

Table 1. Introduction to the study areas.

Name Date Image Path/Row

Area 1 16 January 2019 120,036
Area 2 04 February 2020 120,036
Area 3 04 Decemebr 2020 120,036
Area 4 01 Decemebr 2013 120,036
Area 5 09 February 2016 120,036

2.2. Processing Methods

The new method mainly included the following steps (as shown in a technical flow
chart in Figure 2): Step 1—preprocessing of the satellite data including data fusion and
water and land separation; Step 2—extraction of the aquaculture area by edge detection
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technology; Step 3—using Hough transform technology, processing of the image after
edge detection, and through threshold optimization and adjustment, the extraction and
automatic statistics of the identification graph (aquaculture raft) are realized, and the
number of aquaculture areas is obtained through the automatic statistics of the chart.
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Figure 2. Workflow of the study.

2.2.1. Data Preprocessing

This study employed cloud-free Landsat8 L1 images with medium-resolution for the
study area in 2013, 2016, 2019, and 2020. Table 1 provides more data regarding the images.

Different from other methods used to extract cultured areas based on the difference
between cultured areas and seawater NDVI, the extraction of aquaculture areas in this
study did not need the use of characteristics of the NDVI; thus, the atmospheric correction
of images was not required. As the Landsat8 L1 data were geometrically corrected before
release, data preprocessing in this study mainly involved data fusion. In other words,
more accurate and rich synthetic image data could be obtained by processing images of
various resolutions. In this paper, the resolution of the Landsat8 multispectral band was
30 m and that of the panchromatic band was 15 m. To further improve the extraction
accuracy of aquaculture areas, the data fusion method was used to combine images at
the pixel level while ensuring the spectral information to enhance the image effect and
facilitate image feature extraction. In this study, the multispectral and panchromatic band
images were fused by ENVI’s Gram–Schmidt method to improve the spatial resolution of
the multispectral band remote sensing images [31].

2.2.2. Land and Water Separation

For the remote sensing images’ land and water separation, we mostly relied on
the green band with other band ratio indexes, namely, the normalized difference water
index (NDWI) and modified normalized difference water index (MNDWI) with water
extraction [32,33]. For some land images, there exist more rivers, ponds, small areas of land,
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and other water bodies in the image, and the utilization ratio of the index of the marine
and land separation effect was poor. The accurate extraction of ocean water could not be
achieved. Therefore, we used the mask method and ENVI software to accurately cut the
sea water area, eliminating the background image of land, separating the ocean water body
from the land, and accurately extracting the sea water areas.

2.2.3. Extraction of Raft Aquaculture Areas

The edge detection algorithm can be used to detect the edges of objects in images and
recognize the edges of aquaculture rafts. An extraction diagram of a raft breeding area
based on edge detection is shown in Figure 3. First, the edge features of the image were
extracted from the original image, and the edge was recorded as a two-dimensional matrix,
where the edge was one and the background was 0. The algorithm was used to fuse the
edge feature image with the original image to obtain a satellite image marked by the edge
feature [34,35]. The details of these steps are outlined below.
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The edge detection algorithm used in this study was the Canny operator, which is an
edge detection algorithm, implemented by John in 1986, with a multistage wide spectrum
algorithm [36]. The main flow is shown in Figure 3.

In the first step, the Gaussian filter convolved with the image. The Canny operator is
susceptible to noise, and Gaussian blur was used to reduce the influence of noise so as to
prevent noise in the image of the edge detection results [26]. The function is expressed as:

H(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
(1)

where (x, y) represents the coordinates of the pixel points, and σ represents the distribution
parameters of the Gaussian filter. The smaller σ is, the smaller the noise suppression ability
and the higher the precision of the edge positioning. The value of σ determines the effect of
image denoising.

In the second step, the Sobel operator was used to calculate the first derivative of
horizontal and vertical directions, namely, the image gradient (Gx and Gy), to process the
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smoothed image further. The gradient and direction of the boundary can be calculated
as follows:

Gx(i, j) =
[I(i, j + 1)− I(i, j) + I(i + 1, j + 1)− I(i + 1, j)]

2
(2)

Gy(i, j) =
[I(i, j)− I(i + 1, j) + I(i, j + 1)− I(i + 1, j + 1)]

2
(3)

where I(i, j) is the gray value at point (i, j). The gradient value G(i, j) at point (i, j) and
the gradient direction θ(i, j) are:

G(i, j) =
√

G2
x(i, j) + G2

y(i, j) (4)

θ(i, j) = arctan
(

Gy(i, j)
Gx(i, j)

)
(5)

After obtaining the magnitude and direction of the gradient, the whole image was
scanned, and the non-boundary points were removed; that is, 0 was set. By scanning
each pixel, we determined whether it was the most prominent point in the same gradient
direction around it.

In Step 4, to further determine the boundary, two thresholds (i.e., low threshold (TL)
and high threshold (TH)) need to be set for boundary judgment. When the gray value of
the image is lower than TL, the value higher than TH is considered as the image boundary.
When the gray value is between the two, if the point is connected to the real boundary
point, it is considered as the boundary. This paper calculated the TL and TH boundaries
according to the percentage of non-edge pixels in total pixels and the ratio of high and low
thresholds.

2.2.4. Number of Aquaculture Raft Extraction

A raft farming area can be accurately identified in remote sensing images through
the edge detection method used above. An obviously closed graph is formed at the edge
of each farming raft, as shown in Figure 4. In this paper, based on the Hough transform
principle and the advantages of the high efficiency, high speed, and low cost of machine
vision, the Hough transform algorithm parameters were optimized to identify the closed
graph in Figure 4. Depicted as circles, and automatically counting the number of circles [37],
the number statistics of aquaculture rafts is realized. Hough transform is mainly used in
computer vision to transform spatial detection into the problem of parameter space through
the point–line duality of image space and parameter space [38–41], which is widely used in
computer vision.
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The basic idea of the Hough transform circle detection is to map the edge pixels in the
image space to the parameter space, accumulate the corresponding cumulative values of
coordinate point elements in the parameter space, and finally determine the center and
radius of the circle according to the cumulative values [42].
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The general equation of a circle can be written as:

(x− a)2 + (y− b)2 = r2 (6)

where (a, b) is the center of the circle, and r is the radius. In the Cartesian coordinate
system, the point (x, y) on the circle is converted to the polar coordinate plane, and the
corresponding formula is: {

x = a + r cos θ
y = b + r sin θ

(7)

Suppose an edge point (x0, y0) in the image space maps to the parameter space with
radius r0. Substitute the edge point (x0, y0) into (7) and then perform the corresponding
transformation, which can be written as:{

a = x0 − r0 cos θ
b = y0 − r0 sin θ

(8)

when θ ∈ [0,2π) is traversed, the point (x0, y0) in the image space is mapped to the shape of
the parameter space as a circle. Therefore, every edge point in the image space corresponds
to the parameter space as a circle.

If four edge pixel points, A, B, C, and D, are extracted from the remote sensing images
and mapped to the parameter space with radius R, it can be seen from the figure that each
point in the image was mapped to the parameter space as an A circle. The four circles in the
parameter space intersect at the O point. The point with the maximum cumulative value in
the parameter space was found through the statistics of coordinate points in the parameter
space. In the case of the determination of radius, it can be seen that the cumulative value of
point O was the largest in the parameter space, which is also the center of the circle in the
image space.

In the operation of this paper, the radius of the detection circle was used as the
threshold value. By setting the upper and lower limits of the detection circle’s radius, the
extraction of breeding areas can be further accurately achieved. Then, the point (x, y) in the
remote sensing image is mapped to the parameter space (a, b, r), and any point in the image
corresponds to a conical surface in the parameter space. In this way, the detection of the
circle changes from two-dimensional to three-dimensional. Since r has a threshold limit,
the mapping to the parameter space is a roundtable. Multiple circles intersect at a point
(a0, b0, c0), reflecting the circle’s coordinates and radius. In circle recognition, we can find
the center and radius by calculating the maximum cumulative value and then marking all
circle pixels through traversal.

The number of circles, namely, the number of raft breeding areas, can be obtained
automatically by calculating the center of circles detected by the Hough transform.

2.3. Threshold Setting

According to the description in the second part, the method in this paper mainly
involved three thresholds, which were the setting of the high and low thresholds of edge
detection and the threshold setting in the Hough transform detection.

In the use of edge detection in the process of the recognition of raft culture zones, due
to the influence of ocean waves and other image characteristics, it is easy to cause ocean
waves to exist in the process of edge detection and image noise interference by setting
the detection threshold too small, easily causing breeding raft leak identification, leading
to extraction that is not comprehensive. If the detection threshold is too large, it easily
causes the false recognition of noise such as waves and ripples [43]. Therefore, choosing
appropriate high and low detection thresholds can ensure that the raft breeding area can be
accurately identified, eliminating the interference of other noises.

The Hough transform also plays a key role in threshold size control during the detec-
tion of the closed graph. If the threshold scale is set too large, it easily identifies multiple
aquaculture rafts as a single one, resulting in a small statistical number. If the threshold



J. Mar. Sci. Eng. 2022, 10, 781 9 of 16

scale is set too small, it is easily identifies more than one aquaculture raft, or the image
noise is mistakenly identified as an aquaculture raft, resulting in the number of automatic
statistics being greater than the actual number of aquaculture rafts. Therefore, the cor-
rect setting of the threshold values in the Hough transform process can ensure that each
aquaculture raft is identified as a figure and counted in the quantity statistics.

3. Results

Figures 5–7 and Table 2 show the results of using edge detection algorithms for the
relatively accurate identification of breeding rafts when waves did not exist. During calm
seas, the water provides a relatively homogeneous background, and through the setting
of thresholds, using edge detection to identify more accurate aquaculture zones, there
was almost no deterrent to other phenomena. In the case of a large sea area, the seawater
background is relatively complex. For example, features, such as waves and ships on the
sea surface, may introduce noise, leading to the phenomenon of misidentifying other types
in edge detection. In comparison, NDVI and other texture features rely on the spectral
difference between seawater background and aquaculture area to identify aquaculture
areas. In this context, the influence of algae chlorophyll, suspended sediment, and other
factors may lead to spectral similarity between aquaculture areas and seawater background,
resulting in a higher extraction error recognition rate for aquaculture areas. Using the
spatial characteristics of remote sensing images for edge recognition, as well as using
the difference in pixel gradients for extraction and recognition of aquaculture areas, this
significantly reduces or prevents a large false recognition rate caused by the similarity
between aquaculture areas and parts of the seawater background spectrum.
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Table 2. Accuracy evaluation results of three different experimental areas.

Research Area Extraction Quantity Precision FAR MAR

Research Area 1 730 92.21% 2.19% 7.79%
Research Area 2 5753 90.23% 0.75% 9.77%
Research Area 3 6879 92.98% 0.78% 7.02%

In the remote sensing image processed by the edge detection algorithm, the aquacul-
ture raft in the image was characterized by an obvious edge, which proved convenient
for identifying aquaculture rafts using the Hough transform. Nevertheless, in comparison
to the identification of aquaculture rafts by edge detection, using the Hough transform
principle to count the number of aquaculture rafts automatically involved a certain amount
of misidentification and omission due to the uncertainty of the results introduced in the
previous step.

As can be seen from the diagram, using the Hough transform method for processing
images marginalized characteristics, the recognition of breeding rafts supported the calcu-
lation of accurate and automatic statistics, and for the ocean waves of edge detection in
the process of information, such as noise using the Hough transform, can also further filter
accurately.

This paper also identified aquaculture rafts in the whole sea area of Haizhou Bay.
According to the changes in sea area covered by aquaculture rafts, as shown in Figure 8a–c,
and in different years and statistical calculations, as shown in Figure 9, it can be seen that
from 2013 to 2020, the aquaculture area and the number of aquaculture rafts in Haizhou
Bay of Lianyungang increased rapidly, from more than 3000 aquaculture rafts in 2013 to
more than 6000 rafts in 2016 and reaching nearly 12,000 rafts by 2020.

For small area waters, as shown in Figure 4, automatic identification using the method
described here was utilized to extract basic shapes that could render precise statistics on the
number of breeding rafts. Because of the uncertainty in each step that was introduced as a
result, this automatically led to a decline in identify extraction accuracy and the number of
breeding rafts over a large area of water, despite a certain amount of error identification
and omissions. However, the accuracy rate was above 90%, confirming the effectiveness of
the automatic identification and the statistical method related to the number of aquaculture
rafts over a large sea area.

The most commonly used accuracy evaluations include accuracy rate, false alarm rate,
and missed alarm rate. Equations (9)–(11) were used to evaluate the accuracy [17]:

Precision =
TQ− FN

TQ + FQ− FN
(9)

FAR =
FN
TQ

(10)

MAR =
FQ

TQ + FQ− FN
(11)

where FQ is the number of unextracted aquaculture rafts, FN is the number of incorrectly
extracted aquaculture rafts, TQ is the number of automatically extracted aquaculture rafts
by this method, TQ − FN is the number of correctly extracted aquaculture rafts by this
method, and TQ + FQ − FN is the real number of aquaculture rafts.
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4. Discussion

Based on the above method and accuracy verification, we identified and counted
aquaculture rafts in the whole sea area of Haizhou Bay. Because chlorophyll is concentrated
in raft culture, there are also predecessors using NDVI to extract aquaculture raft [33].
However, extensive coastal raft culture is easily confused with the heterogeneous water
background. This results in unsatisfactory extraction when surveying a large water area
with a heterogeneous water background [44]. For the use of general object-based supervised
classification to achieve extraction, the selection of a large number of samples during the
training stage when the background water area is heterogeneous is also required [45–47].
This paper was based on edge detection and Hough transform, and it identified and
counted aquaculture rafts in the whole sea area of Haizhou Bay. It can be seen that in the
sea area of Haizhou Bay, where the water background was relatively complex, the method
in this paper avoided the characteristic of a complex optical background of a large water
area and achieved the identification and statistics of aquaculture rafts over a large area
(Figure 8).

As can be seen from Figure 8, in the face of the optical background sea area loaded in
Haizhou Bay, the algorithm in this paper achieved the accurate identification and statistics



J. Mar. Sci. Eng. 2022, 10, 781 13 of 16

of aquaculture rafts and achieved the purpose of monitoring the aquaculture area. However,
the presence of ships and relatively obvious waves on the sea surface generated noise in the
process of remote sensing image recognition and extraction, as shown in Figure 10. Thus,
sporadic misidentification occurred on the sea surface without aquaculture areas, which
can be explained by the fact that the ships’ and waves’ spatial characteristics and sizes were
similar to that of aquaculture rafts.
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(c,d) noise caused by ships and waves.

Figure 11 shows local area diagrams of the extraction statistics of aquaculture rafts from
satellite data acquired in 2016. Observably, the method presented in this paper was able to
improve the accuracy of the identification, extraction, and quantification of aquaculture
rafts from medium-resolution satellite data by using edge detection and Hough transform
technology. It can also be seen from Figure 11b that very few aquaculture rafts with
obscure edge features could not be correctly extracted because their spatial characteristics
too closely resembled the seawater background, resulting in the omission of automatic
statistics. For the vast majority of aquaculture rafts, their spatial characteristics could be
used for successful extraction.
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cation and extraction of aquaculture rafts on the sea surface, respectively; (c,d) partial displays of
extracted statistical results.

As can be seen from the statistical chart of the number of aquaculture rafts in Figure 9,
between 2013 and 2020, the number of rafts increased by almost 10,000. Moreover, the
number of rafts in 2020 was approximately four times that of laver rafts in 2013. The large-
scale growth of laver rafting has had a noticeable promotional effect on the “laver economy”
in Lianyungang’s coastal area, driving the development of locally related industries and
increasing residents’ income. However, an immense area of growth in local laver cultivation
may lead the number of rafts to increase in unsustainable quantities.
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Negative factors include the possibility of illegal construction and unsystematic de-
velopment and breeding, leading to an increasingly serious ecological impact on the sea
area of Haizhou Bay. First, the laver cultivation raft provides an ideal attachment place for
enteromorpha prolifera and other green algae. After the annual harvest of laver, the large
number of cultivation rafts increases the possibility of enteromorpha prolifera attachment
growth and outbreak. Second, seaweed cultivation involves marine plants absorbing nu-
trients from seawater, which can effectively reduce eutrophication. Therefore, during its
growth phase, seaweed can remove a large number of nutrients, such as nitrogen and
phosphorus, from the water environment, reducing the likelihood of a green-tide disaster.
In this way, the massive growth of breeding raft farming in recent years has also played a
particularly positive role in the marine ecological environment.

5. Conclusions

In this investigation, Landsat-8 satellite images were used to study aquaculture rafts
in Lianyungang. A method that combined the edge detection and Hough transform tech-
nology was adopted to carry out statistical research involving the automatic identification
and extraction of aquaculture rafts, and the accuracy of the automatic statistical results
was verified by visual interpretation of the remote sensing imagery as the truth value.
This method was able to extract and count the number of aquaculture rafts accurately,
avoiding the error caused by manual calculation or subjective estimation based on local
aquaculture data. The regularity of the shape of the rafts could be used to calculate the
area of rafts according to the number of rafts. This paper also applied the method to the
images in 2013, 2016, and 2020, identifying laver breeding rafts changes from 2013 to 2020
in Haizhou Bay to statistically calculate laver rafts, and found that the laver breeding raft
number increased four-fold over seven years, probably inducing, to a certain degree, the
rapid growth in the number and volume of raft frames and the enteromorpha disasters that
occurred there. Interestingly, meanwhile, increasing the cultivation quantity of laver during
its growth cycle can effectively reduce the eutrophication of seawater and positively affect
the ecological environment of the sea area.

This method had the following limitations: (1) For the threshold used in this paper,
manual adjustment was required to optimize the threshold size to match the appropriate
threshold. (2) At present, the calculation of the number of aquaculture rafts in this method is
only applicable to aquaculture rafts with a relatively regular and uniform appearance. Thus,
further study is needed to investigate methods for calculating the number of aquaculture
areas with different types of mixed farming. (3) For the noise phenomena generated
by ships and waves on the sea surface, it remains necessary to distinguish the spatial
characteristics of ships and aquaculture rafts through follow-up studies to eliminate noise
interference. According to these deficiencies, reducing environmental noise and statistically
calculating the number of different types of aquaculture rafts is a promising topic for
future studies.
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