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Abstract: Conventional pipeline failure pressure assessment codes do not allow for failure pressure
prediction of interacting defects subjected to combined loadings. Alternatively, numerical approaches
may be used; however, they are computationally expensive. In this work, an analytical equation based
on finite element analysis for the failure pressure prediction of API 5L X52, X65, and X80 corroded
pipes with a longitudinal interacting corrosion defect subjected to combined loadings is proposed. An
artificial neural network (ANN) trained with failure pressure obtained from finite element analysis
(FEA) of API 5L X52, X65, and X80 pipes for varied defect spacings, depths and lengths, and axial
compressive stress were used to develop the equation. Subsequently, a parametric study on the
effects of the defect spacing, length, and depth, and axial compressive stress on the failure pressure of
a corroded pipe with longitudinal interacting defects was performed to demonstrate a correlation
between defect geometries and failure pressure of API 5L X52, X65, and X80 pipes, using the equation.
The new equation predicted failure pressures for these pipe grades with a coefficient of determination
(R2) value of 0.9930 and an error range of −10.00% to 1.22% for normalized defect spacings of 0.00 to
3.00, normalized effective defect lengths of 0.00 to 2.95, normalized effective defect depths of 0.00 to
0.80, and normalized axial compressive stress of 0.00 to 0.80.

Keywords: artificial neural network; failure pressure prediction; pipeline corrosion

1. Introduction

A pipeline is a critical steel structure that transports hydrocarbons efficiently and
ensures energy security [1]. Pipelines are increasingly transitioning to high-strength steel,
which significantly improves transportation efficiency and lowers installation costs. Ac-
cording to statistics, pipeline construction cost can be decreased by 7% for each grade
improvement in steel strength [2]. As such, high-grade steel pipelines are becoming in-
creasingly popular in the oil and gas industry [3]. However, when dealing with steel pipes,
corrosion is a major issue, as it can result in catastrophic failures if not handled appropri-
ately [4–7]. With the increase of high-grade steel pipeline usage, the need for reliable and
efficient pipeline failure pressure assessment methods that cater for high-strength steel is
necessary for safe operations.

Among various types of corrosion that occurs in hydrocarbon pipelines, localized
corrosion is one of the most dangerous corrosion types, as the deterioration of the metal
occurs in an accelerated manner [5]. This type of corrosion typically causes the cracking or
perforation of a material, resulting in the rapid collapse of the structure. There are several
forms of localized corrosion that are commonly found in oil and gas pipelines caused by
various failure mechanisms. Among them, pitting corrosion is one of the most destructive
forms of corrosion [6,7].
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In a pristine pipe, the hoop stress is distributed evenly throughout the pipe. However,
in the presence of internal and external corrosion defects, the hoop stress distribution is
nonuniform [5,6]. In the region of defect, the deepest defect experiences the highest stress
from the exertion of internal pressure on the pipe walls. Strain builds up at the region
of defect when the pipeline is subjected to axial compressive stress, making it the most
critical region in the pipeline [7]. Generally, corrosion assessment codes are used to assess
the failure pressure of corroded pipelines in the industry. The ASME B31G, Modified
ASME B31G, SHELL92, RSTRENG, and DNV-RP-F101 (DNV) are some of the conventional
corrosion assessment codes used, as summarized in Table 1 [8–11].

Table 1. Conventional pipe failure pressure assessment codes [8–11].

Method Fundamental
Equation

Governing
Assumption

Material
Restriction

Defect
Idealization

ASME B31G NG-18
Failure pressure

caused by
flow-stress-dependent

mechanism

Low toughness Parabolic or
rectangular

Modified B31G NG-18 Low toughness Mixed shape

SHELL 92 NG-18 - Rectangular

RSTRENG NG-18 Effective area

DNV RP-F101 NG-18

Pipe failure controlled
by plastic flow (ultimate

tensile strength is the
flow stress)

Moderate
toughness Rectangular

Among them, the DNV method is known to be the most comprehensive assessment
code for the failure pressure of corroded pipes [12]. However, either the failure pressure
assessment of a pipe with single corrosion defect subjected to internal pressure and axial
compressive stress or with interacting defects subjected to internal pressure only is avail-
able [10]. In reality, pipelines are generally susceptible to interacting corrosion defects and
are subjected to combined internal pressure and axial compressive stress loading [12,13].
Furthermore, applying the corrosion assessment codes to assess high-toughness pipelines
will result in inaccurate failure pressure predictions, as these codes are recommended for
low- to medium-toughness pipelines [6,10].

In recent years, machine learning has been researched to replace the time-consuming
methods and conventional codes. The failure pressure predictions obtained by utilizing
these tools are more accurate and less conservative compared to the conventional ap-
proaches [14]. Belachew et al., (2011) developed empirical equations for failure pressure
prediction of corroded pipelines by investigating the influence of defect geometries on pipe
failure pressure of an API 5L X52 pipe using the finite element method (FEM). They found
that conventional corrosion assessment methods result in conservative failure pressure
predictions [7]. Following this approach, Arumugam et al., (2020) [4], developed empirical
equations for the failure pressure prediction of a medium-toughness API 5L X52 pipe with
a single corrosion defect subjected to combined loadings by utilizing the Buckingham
Pi theorem. They found that the proposed model resulted in more accurate predictions
compared to the DNV method [4]. However, unlike the conventional codes, there were
numerous equations, each for a specific range of parameters.

Lo et al., (2021) developed empirical equations for longitudinally interacting corrosion
defects of API 5L X65 pipes subjected to combined loadings. Their study utilized an artificial
neural network (ANN) for the development of the empirical equations. An ANN was
trained using data generated using FEM. The proposed model was capable of predicting
the failure pressures accurately with a coefficient of determination (R2) value of 0.99 [5].

All these studies revealed the conservativeness of the DNV method. The DNV equa-
tions were derived based on a series of full-scale burst tests and finite element analysis
(FEA) which were then reduced for practical applications. Thus, the failure pressure predic-
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tions produced by DNV reflect an average or mean approximation of the burst capacity
of corrosion-damaged pipelines. Additionally, its conservatism stems from the fact that
it uses a material’s ultimate tensile strength (σUTS) as the flow stress, rather than its true
ultimate tensile strength (σ∗UTS), even though materials fail when stresses exceed σ∗UTS.

To overcome the limitations of the current codes, Silva et al., (2007) investigated the
relationship between interacting corrosion defects and pipe burst pressure using FEA and
ANN, with the FEA providing training data for the ANN. They found in their study that
combining FEA with ANN for the purpose of assessing the structural integrity of corroded
pipelines is a promising and efficient technology [15]. Xu et al. used this approach in 2017 to
investigate the effect of corrosion defect geometry on the failure pressure of a corroded pipe
by integrating FEA and ANN. They ensured the accuracy of their finite element model by
using appropriate meshing and boundary conditions. The resulting FEA model accurately
predicted failure pressures with a relative error of less than 1%, and their ANN model
accurately predicted failure pressures of pipelines with interacting defects with a relative
error of less than 2% [16]. However, they did not investigate the compressive stresses acting
on the pipe during their research.

The development of a generalized empirical corrosion assessment method for the
failure pressure prediction of single and interacting corrosion defects subjected to combined
loading for pipe grades ranging from medium to high toughness is a challenge due to the
complexity and multiple parameters to be considered during the assessment [17,18]. In
the DNV code, the defect length, defect depth, defect width, defect spacing for interacting
defects, axial compressive stress, and the ultimate tensile strength of the material are taken
into account [10]. As mentioned earlier, despite being the most comprehensive assessment
method in the industry, the DNV code is recommended for low- to medium-toughness pipes
only. In addition, it is not applicable to interacting defects subjected to combined loadings.

By incorporating axial compressive stress acting on a pipe, Lo et al. [5] and Vijaya
Kumar et al. [6] advanced their research in this area. In their investigation, they employed
the created ANN to derive an empirical equation in matrix form. The equation was created
as a function of the normalized axial compressive stress, the normalized defect depth,
length, and spacing. Both experiments demonstrated that when compared to full-scale
burst testing, the established equations could accurately predict the failure pressure of a
corroded pipe with an error percentage of less than 5%.

Based on Table 2, to fill the void of the conventional assessment methods, this study
proposes an empirical model for the failure pressure prediction of interacting defects in the
longitudinal direction subjected to combined loadings for API 5L X52, X65, and X80 pipes
(the most commonly used pipes in the industry).

Table 2. Summary of common corrosion assessment approaches.

Method Advantage Limitation

DNV-RP-F101 (most
comprehensive)

Most comprehensive code for low-
to medium-toughness pipes

Conservative
Does not cater for interacting
defects subjected to combined

loading

Finite Element Method
Highly accurate

Caters for all material grades and
defect orientation

Complex
Requires usage of software

Time-consuming

Artificial Neural
Network

Able to process complex
nonlinear data

Robust

Requires a large dataset for
training and development

An artificial neural network developed with training data obtained from finite element
analysis (FEA) approach similar to that of Lo was adopted. The following are the main
contributions of this study:
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1. Development of failure pressure assessment method for medium- to high-toughness
pipeline with longitudinally aligned interacting corrosion defects subjected to internal
pressure and axial compressive stress.

2. Establishment of a correlation between defect geometry, axial compressive stress, and
failure pressure of a medium- to high-toughness pipeline with longitudinally aligned
interacting corrosion defects subjected to internal pressure and axial compressive
stress.

2. Methodology
2.1. Development of the Artificial Neural Network

The first step in the development of the artificial neural network was to generate com-
prehensive training data for longitudinally aligned interacting corrosion defects subjected
to internal pressure and axial compressive stress for pipe grades ranging from medium-
to high-toughness materials. The second step involves training of the ANN, followed by
validation of the model.

2.1.1. Generation of ANN Training Data

The training data for the ANN were generated using FEA for a range of parameters
for API 5L X52, X65, and X80 pipe grades. The material properties are tabulated in Table 3
and the geometric parameters of the corroded pipe are tabulated in Table 4. The material
properties of the pipe body are represented by a nonlinear true stress–strain curve of the
materials during the finite element simulations, as illustrated in Figure 1. FEM has proven
to be a reliable tool for structural analysis and many researchers have utilized this method
to generate training data for the development of an ANN [5,19]. However, prior to the FEA,
the FEM was validated against full-scale burst tests to ensure that the methodology and
applied boundary conditions are correct.

Table 3. Material properties of the pipe grades used in this study [5,7,20].

Properties
Pipe Body Pipe End

CapAPI 5L X52 API 5L X65 API 5L X80

Modulus of elasticity, E 210.0 GPa 200.0 TPa

Poisson’s ratio, υ 0.3 0.3

Yield strength, σy 359.0 MPa 464.0 MPa 534.1 MPa -

True ultimate tensile strength, σ∗UTS 612.0 MPa 629.0 MPa 718.2 MPa -

Table 4. Geometric parameters of the corroded pipe models.

Input Parameters Values

Outer diameter of pipe, D (mm) 300

Length of pipe, L (mm) 2000

Wall thickness, t (mm) 10

Normalized defect width, w/t 10

Normalized effective defect depth, (d/t)e 0.00–0.80

Normalized effective defect length, (l/D)e 0.00–2.95

Normalized longitudinal defect spacing, sl/
√

Dt 0.0– 3.00

Normalized longitudinal compressive stress, σc/σy 0.00–0.80
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Figure 1. True stress–strain curve for API 5L X52, X65, and X80 steel pipe [5,7,20].

In this study, quarter pipes with rectangular shape idealization of corrosion defects
were modeled using AutoCAD. Quarter models reduce computation time while rectangular
defect idealization allows for a safer, lower bound failure pressure prediction without
compromising on accuracy [4,5,7,10,21]. The pipes were modeled with end caps for even
distribution of axial compressive stress and the full length of the model was set to 2000 mm
to eliminate end cap influence [4,5,7,10]. Figure 2 illustrates an example of the quarter
model used during the FEA.

Figure 2. A quarter pipe model with longitudinally aligned interacting corrosion defects viewed
from the (a) front (b) side.
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Prior to the finite element simulations, the quarter models were meshed using AN-
SYS 16.1 Structural Product of Mechanical ANSYS Parametric Design Language (APDL),
referred to as ANSYS. Hexahedral SOLID185 (linear order) and tetrahedral SOLID186
(quadratic order) elements were used to mesh the pipe body and end cap, respectively [4,5,7,22].
These elements were used to represent the solid structure [23].

With a total of three layers and mesh size of 2 mm in length and depth, the mesh
settings at the defect region were in line with the recommendations by the British Standards
Institution (BSI) [24]. Prior to finalizing the mesh settings, a convergence test was carried
out to optimize the number of elements to ensure minimum computation time without
compromising accuracy. Moving away from the defect region, a mesh bias with an aspect
ratio of 0.5 was applied to the elements with a total of 80 divisions. The details and results
of the convergence test are presented in Table 5.

Table 5. Convergence test details and results.

Number of Element Layers Normalized Failure Pressure, Pf/Pi

1 0.92

2 0.93

3 0.95

4 0.95

5 0.95

Since quarter models were utilized in this study, symmetrical boundary conditions
were applied to the model for the model to be treated as a whole pipe. Degree of freedom
(DOF) in the x, y, and z directions were constrained at 4/5 of the model length away from
the region of interest. As for the applied loadings in this transient analysis, incremental
ramped loading was used to apply internal pressure and axial compressive stress on the
pipe walls [4,7]. The loadings were applied in two timesteps, first axial compressive stress,
then internal pressure during the second timestep. The following assumptions were made
during the FEA:

1. Isothermal condition (constant temperature throughout the simulation).
2. Isotropic and homogenous pipe model (uniform material properties in all directions).

The failure pressure was determined using von Mises yield criterion, where the pipe
is said to have failed when the von Mises stress reaches the true ultimate tensile strength
of the material [4,25,26]. As the defect region is the most critical part of the pipe, the von
Mises stress is concentrated at this region (depicted by the red contour in Figure 3) and
ultimately causes the pipe to fail when the stress penetrates throughout the wall thickness.
In ANSYS, the von Mises stress is calculated as a function of hoop, radial, and axial stress.
The timestep at which the effective stress equals to the true ultimate tensile strength of the
material is used to determine the failure pressure of the pipe.

Before proceeding with the FEA, the FEM was validated against burst tests to ensure
its accuracy and correct application of loads. Burst tests carried out by Bjorney et al. [27]
and Benjamin et al. [28] were used to validate the method. The summary and results of
the validation are presented in Tables 6 and 7. The greatest differences between the results
obtained from FEM and burst tests were only 5.92% and 2.46% for single and interacting
defects, respectively. Negative values indicate conservative predictions with the predicted
pressure not exceeding the actual failure pressure. Hence, it is evident that the FEM is
reliable to be used as a failure pressure data generation tool for the training of the ANN.
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Figure 3. Illustration of the region of failure depicted by the red contour.

Table 6. Summary of burst test details by Bjorney et al. and Benjamin et al.

Grade Specimen d (mm) l (mm) w (mm) σl (MPa) sl (mm) sc (mm)

X52
[27]

Test 1 5.15 243 154.5 0.0 - -

Test 5 3.09 162 30.9 48.0 - -

Test 6 3.09 162 30.9 84.0 - -

X80
[28]

IDTS 2 5.39 39.6 31.9 - 0.0 0.0

IDTS 3 5.32 39.6 31.9 - 20.5 0.0

IDTS 4 5.62 39.6 32.0 - 0.0 9.9

Table 7. FEM validation against full scale burst tests by Bjorney et al. and Benjamin et al.

Specimen Burst Pressure (MPa) FEA Failure Pressure
(MPa)

Percentage
Difference (%)

Test 1 23.2 22.95 −1.08

Test 5 28.6 28.35 −0.87

Test 6 28.7 27.00 −5.92

IDTS 2 22.68 22.40 −1.23

IDTS 3 20.31 20.12 −0.94

IDTS 4 21.14 20.62 −2.46

2.1.2. Training of the Artificial Neural Network

MATLAB R2021b (MathWorks Inc., Natick, MA, USA) was used to develop a multi-
layer feedforward neural network with Levenberg–Marquardt backpropagation algorithm,
as illustrated in Figure 4. This algorithm falls under a supervised learning paradigm where
the neural network is presented with a set of input parameters and the expected out-
put [8,29]. This algorithm is a more efficient algorithm due to its second-order convergence
rate, which requires lesser iterations.
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Figure 4. A simple multilayer feedforward neural network.

The input parameters of the model are the true ultimate tensile stress, normalized de-
fect depth, length and spacing, and normalized axial compressive stress. The corresponding
output of the ANN is the normalized failure pressure of the pipe was obtained using FEA.
The failure pressure of the corroded pipes obtained using FEM was normalized using the
intact pressure (Equation (1)) of the pipe before it was fed to the ANN for training [5,6,30].

Pi =
σ∗UTS t

ri
(1)

The optimization of the neural network in terms of the number of hidden layers and
neurons was based on a convergence test. The aim was to develop a neural network with
the least number of neurons, as the complexity of the empirical equation increases with
the number of neurons. The activation functions used are hyperbolic tangent function
(Equation (2)) at the hidden layers and linear function (Equation (3)) at the output node.

a(x) =
2

1 + e−2x − 1 (2)

f (x) = x (3)

A total of 70% of the dataset was used for training the ANN, while 15% each of the
remaining dataset were reserved as the validation and test dataset, to prevent overfit-
ting [5,17,29]. The training process starts with the random initialization of the weights and
biases of the ANN. After each iteration, the algorithm calculates the mean square error of
the validation dataset. The iteration was stopped upon reaching the maximum number of
epoch or validation checks. The weights and biases at the epoch that produces the best vali-
dation performance were chosen and applied to the ANN. The ANN was validated based
on its ability to produce results close to the training data. This was measured using the
coefficient of determination (R2) value of the neural network with a value of 0.99 deemed
acceptable.

2.2. Development of the Empirical Equation

The empirical equation was developed based on the weights and biases of the trained
ANN. The entire neural network is represented by matrix equations, which become the
basis of the developed corrosion assessment equations. Based on Figure 4, the neurons in
the input layer (ix) are connected to each neuron in the adjacent hidden layer (hx) through
synoptic weights (wx). Every piece of information transferred from the input layer is
multiplied with the corresponding synaptic weight and they are summed up. The summed
product forms an input to an activation function (a[x]), and a bias value (bx) is added to the
result of the function. The new sum is then transferred to the neurons in the next hidden
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layer and the process is repeated till it reaches the output neuron [16]. This process can be
represented in matrix form as in Equations (4) and (5) [29].[

h1
h2

]
=

[
w1 w3
w2 w4

][
i1
i2

]
+

[
b1
b2

]
(4)

[o] =
[

w5 w6
][ a(h1)

a(h2)

]
+ [bo] (5)

During the training process, the inputs of the ANN are normalized to standardize the
parameters and prevent dominance of inputs with large values. The input parameters and
output of the developed equation have to be normalized and denormalized accordingly
using Equations (6) and (7), respectively, as a min–max normalization, where a minimum
and maximum value of −1 and 1 were used.

in =
(in, max − in, min)(i− imin)

(imax − imin)
+ in, min (6)

o =
(on − on, min)(omax − omin)

(on, max − on, min)
+ omin (7)

3. Results
3.1. Development of Artificial Neural Network

A total of 1843 datasets were used to train the ANN. A convergence test was carried
out to optimize the number of hidden layers and neurons to ensure that the complexity of
the empirical equation is minimalized. The outcome of the convergence test is tabulated in
Table 8. As a result, an ANN with one hidden layer and seven neurons in the hidden layer
was developed, as illustrated in Figure 5. With a maximum epoch number of 2000 and
1500 validation checks, 15% of the training dataset was reserved as the validation dataset
and not introduced to the ANN during training.

Figure 5. Architecture of the developed ANN.
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Table 8. Performances of the developed ANN models based on their R2 value.

Model No. of Neurons in Hidden 1 R2 Value

1 1 0.9326

2 2 0.9358

3 3 0.9448

4 4 0.9542

5 5 0.9865

6 6 0.9854

7 7 0.9930

8 8 0.9929

9 9 0.9756

10 10 0.9686

Both Models 7 and 8 resulted in R2 values greater than 0.99. Among the two models,
Model 7 consisted of a lower number of neurons; thus, it was chosen as the ANN of
choice to develop the empirical equation. The regression plot, mean squared error (MSE)
that represents the best performance validation, training state, and error histogram of
Model 7 are shown in Figures 6–9, respectively. Based on Figure 6, it was observed that
both the dotted lines (target output) as well as the solid lines (line of best fit) in the plots
overlap almost completely. This indicates that the ANN produces results that are very
close to the desired output. The MSE (Figure 7) of the model was 2.0594. The R, MSE,
RMSE, MAE, and MAPE values of the model for training, validation, and test phase are
tabulated in Table 9. The R, MSE, RMSE, MAE, and MAPE values are calculated using
Equations (8)–(12), respectively.

R =
∑N

i=1(yi − yi)
(
ŷi − ŷi

)√
∑N

i=1(yi − yi)
2 ∑N

i=1
(
ŷi − ŷi

)2
(8)

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (9)

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (10)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (11)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

Table 9. R, MSE, RMSE, MAE, and MAPE of Model 7 for training, validation, and test phase.

Phase R MSE RMSE MAE MAPE (%)

Training 0.9967 0.0002 0.0141 0.0499 −7.81

Validation 0.9967 0.0002 0.0141 0.0537 −6.43

Test 0.9953 0.0003 0.0173 0.0325 −5.35
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Figure 6. Regression plot of Model 7.

Figure 7. Validation performance of Model 7.
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3.2. Development of Empirical Equation

The weights and biases of Model 7, represented in a matrix form, are the empirical
equations for the failure pressure prediction of longitudinal interacting corrosion defects
subjected to internal pressure and axial compressive stress for medium- to high-toughness
pipes. The steps involved in predicting the failure pressure of a corroded pipe are summa-
rized below:

Step 1: Calculation of the normalized effective length and depth of defect.
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(l/D)e =
l1 + (s1 + l2)

D
(13)

(d/t)e =

(
d1l1+d2l2

l1+(s1+l2)

)
t

(14)

Step 2: Normalization of input parameters.

(σ∗UTS)n = 0.01883(σ∗UTS)− 12.52542 (15)

(
sl/
√

Dt
)

n
=

(
sl/
√

Dt
)

2
− 1 (16)

(l/D)en = 0.67796(l/D)e − 1 (17)

(d/t)en = 2.5(d/t)e − 1 (18)

(
σc/σy

)
n = 2.5

(
σc/σy

)
− 1 (19)

Step 3: Calculation of the normalized output value.

n1
n2
n3
n4
n5
n6
n7


=



0.0688 −0.0064 −0.0871 −0.4542 0.0134
4.1762 −0.9858 0.7973 −1.0771 0.0326
−0.0716 −0.0491 1.9513 −0.5663 0.1156
−0.4715 0.0655 −0.2014 −0.5615 2.0202
−0.3294 −0.0570 −0.0377 0.4955 0.1493
5.7885 0.7705 −0.4408 0.8720 −0.0218
−2.6418 −1.4969 −0.4993 0.6062 −0.0590




(
σ∗UTS

)
n(

sl/
√

D/t
)

n
(l/D)en
(d/t)en
(σc/σy)n

 +



0.6290
−2.4461
3.0881
−2.1390
0.7555
2.1732
−6.3074


(20)

on =
[

1.8266 2.5203 −3.1848 −0.4180 −0.8126 −2.7257 −2.3925
]


a(n1)
a(n2)
a(n3)
a(n4)
a(n5)
a(n6)
a(n7)


+
[
−0.04112

]
(21)

where
a(nx) =

2
1 + e−2(nx)

− 1 (22)

Step 4: Calculation of failure pressure.

Pf = 0.94(0.4on + 0.6)Pi (23)

3.3. Evaluation of the Developed Empirical Failure Pressure Assessment Method

The approach produces failure pressure estimates that are comparable to those gener-
ated using FEM, which served as the training data for Model 7. The percentage difference
between the failure pressure predicted using FEM and the empirical equation for the pa-
rameters used to train the ANN is represented using a probability distribution function, as
shown in Figure 10. With a standard deviation of 1.37, the percentage differences range
from −10.00% to 1.22%. The confidence level that the percentage error of the predictions is
less than 10.00% is 99.9%, as the errors are within eight standard deviations of the mean.
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Overestimation occurred in only 0.32% of the 1843 datasets, with a maximum percentage
difference of only 1.22%. Thus, this approach is reliable.

Figure 10. Probability distribution of the percentage error obtained using the new empirical failure
pressure assessment method and FEM based on the parameters of the ANN training data.

As there is a scarcity of data on burst tests of corroded pipes subjected to combined
loadings for interacting defects, FEM was used to further validate the new prediction
method based on a set of arbitrary data for API 5L X52, X65, and X80 material. The
parametric details, failure pressure predictions using FEM and the empirical equation, and
the percentage difference between the approaches are summarized in Table 10.

Table 10. Comparison of the failure pressure obtained using FEA and the empirical equation for
arbitrary models.

σ*
UTS (s/

√
Dt) (l/D)e (d/t)e (σc/σy) Pfn,FEM Pfn,Eq Percentage Difference

612.0 0.00 0.45 0.20 0.25 0.80 0.73 −9.21

612.0 0.50 0.35 0.45 0.55 0.60 0.57 −4.95

612.0 1.00 0.85 0.35 0.60 0.59 0.55 −7.49

612.0 2.00 0.40 0.35 0.25 0.75 0.69 −7.43

612.0 2.50 1.20 0.20 0.20 0.76 0.72 −5.28

612.0 3.00 2.00 0.50 0.60 0.48 0.43 −9.94

612.0 3.50 0.35 0.45 0.55 0.64 0.59 −7.51

612.0 3.00 0.45 0.20 0.25 0.83 0.77 −7.59

612.0 0.00 0.35 0.45 0.55 0.59 0.54 −8.06

612.0 0.50 1.60 0.50 0.10 0.52 0.47 −8.97

612.0 1.05 2.00 0.75 0.30 0.28 0.27 −4.56

612.0 2.25 2.40 0.20 0.20 0.74 0.69 −6.85

612.0 2.50 0.45 0.20 0.25 0.82 0.76 -7.40

612.0 3.75 2.00 0.50 0.60 0.47 0.43 −8.88

612.0 3.50 0.40 0.35 0.25 0.78 0.70 −9.77

612.0 3.00 0.35 0.45 0.55 0.65 0.59 −8.80

612.0 0.00 0.45 0.20 0.25 0.75 0.73 −3.16

612.0 0.50 0.35 0.45 0.55 0.60 0.54 −9.60
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Table 10. Cont.

σ*
UTS (s/

√
Dt) (l/D)e (d/t)e (σc/σy) Pfn,FEM Pfn,Eq Percentage Difference

612.0 1.00 0.85 0.35 0.60 0.58 0.54 −6.91

629.0 2.00 1.20 0.20 0.20 0.78 0.73 −6.23

629.0 2.50 2.00 0.50 0.10 0.50 0.45 −9.90

629.0 3.00 2.00 0.50 0.60 0.35 0.34 −3.32

629.0 3.50 0.40 0.35 0.25 0.53 0.48 −8.78

629.0 0.00 0.45 0.20 0.25 0.84 0.77 −8.88

629.0 0.50 2.40 0.75 0.30 0.27 0.26 −5.20

629.0 1.00 0.45 0.20 0.20 0.80 0.77 −3.60

629.0 2.00 0.35 0.45 0.25 0.65 0.62 −4.53

629.0 2.50 0.85 0.35 0.55 0.58 0.55 −5.30

629.0 3.00 2.00 0.50 0.60 0.35 0.34 −3.32

629.0 3.25 0.40 0.35 0.25 0.55 0.52 −5.22

629.0 0.00 0.40 0.35 0.25 0.70 0.69 −1.69

629.0 0.50 1.20 0.20 0.60 0.69 0.64 −7.47

629.0 1.00 2.00 0.50 0.60 0.48 0.45 −6.30

629.0 2.00 2.40 0.75 0.20 0.23 0.22 −2.61

629.0 2.50 0.40 0.45 0.10 0.60 0.56 −6.49

629.0 3.50 0.35 0.45 0.55 0.28 0.28 −1.22

629.0 3.00 0.45 0.20 0.25 0.66 0.61 −7.57

629.0 0.00 0.40 0.35 0.25 0.76 0.69 −9.45

718.2 0.50 0.45 0.35 0.25 0.77 0.71 −8.08

718.2 1.00 0.35 0.20 0.55 0.79 0.76 −3.72

718.2 2.00 0.85 0.50 0.10 0.57 0.52 −8.60

718.2 2.50 0.85 0.50 0.10 0.45 0.42 −7.11

718.2 3.00 0.40 0.35 0.25 0.45 0.45 −0.35

718.2 0.00 2.00 0.75 0.30 0.28 0.26 −5.92

718.2 0.50 2.40 0.45 0.20 0.58 0.54 −6.39

718.2 1.00 0.40 0.35 0.25 0.76 0.71 −6.64

718.2 2.00 0.45 0.20 0.55 0.80 0.75 −6.83

718.2 2.50 0.35 0.50 0.20 0.46 0.42 −8.37

718.2 3.00 0.40 0.35 0.25 0.45 0.45 −0.35

718.2 2.35 0.40 0.35 0.25 0.64 0.58 −9.77

Referring to Table 10, the average percentage error of the obtained results is −6.29%,
suggesting that the predicted failure pressures are similar to the failure pressures deter-
mined using FEA. The percentage difference between these two methods falls between
−9.90% and 0.38%. The predicted failure pressures fall within the 99.9% confidence level for
true ultimate tensile strength values of 612 MPa, 629 MPa, and 718 MPa, normalized defect
spacings of 0.00 to 3.00, normalized effective defect lengths of 0.00 to 2.95, normalized
effective defect depths of 0.00 to 0.80, and normalized axial compressive stress of 0.00 to 0.80.
In practical applications, the mechanical properties of a pipe within the same grade may
vary. Even if the mechanical property of the grade varies by ±5.00%, the equation results
in predictions that are within a percentage error of 13.00% without any overestimation.
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4. Extensive Parametric Studies Using the Developed Empirical Equation

The empirical equation was utilized to conduct a parametric analysis on pipes of
different grades with interacting corrosion defects to determine the effects of corrosion
geometry and true ultimate tensile strength on the failure pressure of a pipe.

Based on Figure 11, it was observed that the normalized failure pressures for low-,
medium-, and high-toughness materials almost overlap. This indicates that the materials
exhibit the same pipe failure pattern. Referring to Figure 11a, it was observed that the
normalized failure pressure increases as the normalized defect spacing is increased. This
is due to the reduction in area of interaction among two defects that are longitudinally
aligned. However, for a normalized effective defect length of 1.2, normalized effective
defect depth of 0.4, and normalized axial compressive stress of 0.5, the increase in failure
pressure is significant, with a maximum increment of 40% for API 5L X52.

As for the normalized effective defect length, for a normalized defect spacing of 0.5,
normalized effective defect depth of 0.4, and normalized axial compressive stress of 0.5, the
drop in failure pressure is significant for all three materials for a normalized effective defect
length of 0.0 to 1.2, as depicted in Figure 11b. Beyond that, the normalized failure pressure
begins to plateau. This pattern was observed to be similar for all other values of normalized
defect spacing, normalized effective defect depth, and normalized axial compressive stress.
Unlike normalized effective defect length, the normalized effective defect depth has a high
influence on the failure pressure of a pipe with a steep drop in failure pressure as the
depth increases, as illustrated in Figure 11c. This pattern was consistent for all other values
of normalized defect spacing, normalized effective defect length, and normalized axial
compressive stress.

Figure 11. Failure pressure predictions for API 5L X52, X65, and X80 pipe for multiple normalized
(a) defect spacing; (b) effective defect length; (c) effective defect depth; (d) axial compressive stress.
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Based on Figure 11d, for a normalized defect spacing of 0.5, normalized defect length of
1.2, and normalized defect depth of 0.4, the increase in normalized axial compressive stress
resulted in a significant (a maximum of 28.33%) decrease in failure pressure for normalized
axial compressive stress values of 0.4 and above. For normalized axial compressive stress
values below 0.4, the drop in failure pressure was only a maximum of 2.32%. This trend
was also observed for all other values of normalized defect spacing, normalized defect
length, and normalized defect depth.

On the whole, all three materials exhibit the same pipe failure pattern, as the normal-
ized failure pressure values of the pipes of different grade are almost similar. Defect depth
has the most significant influence on the failure pressure of a corroded pipeline, with a
maximum pressure drop of 71.22% and an average failure pressure reduction of 70.92%, fol-
lowed by the defect length with a maximum pressure drop of 25.42% and average pressure
reduction of 24.99%, axial compressive stress with a maximum pressure drop of 36.97% and
average pressure reduction of 30.81%, and defect spacing with a maximum pressure drop
of 1.69% and average pressure reduction of 1.64%. The current equation is limited only to
the prescribed parameter ranges and materials. Future studies should consider more types
of material, and more than two combinations of defects. To create a robust artificial neural
network, more training data covering more material grades and combinations of defects
should be considered during the generation of the ANN data.

5. Conclusions

An empirical equation to predict the failure pressure of API 5L X52, X65, and X80
pipe with longitudinally aligned interacting corrosion defects subjected to internal pressure
and axial compressive stress as a function of true ultimate tensile strength, normalized
defect spacing, depth and length, and axial compressive stress was developed. The new
equation predicted failure pressures for these pipe grades with an R2 value of 0.9930 and an
error range of −10.00% to 1.22% for normalized defect spacings of 0.00 to 3.00, normalized
effective defect lengths of 0.00 to 2.95, normalized effective defect depths of 0.00 to 0.80,
and normalized axial compressive stress of 0.00 to 0.80.

Following that, a parametric study based on the equation was carried to demonstrate
a correlation between defect geometries and failure pressure of API 5L X52, X65, and X80
pipes. It was found that the three materials exhibit the same pipe failure pattern, as the
normalized failure pressure values of the pipes of different grade are almost similar. Defect
depth has the most significant influence on the failure pressure of a corroded pipeline, with
a maximum pressure drop of 71.22% and an average failure pressure reduction of 70.92%,
followed by the defect length (maximum pressure drop of 25.42% and average pressure
reduction of 24.99%), axial compressive stress (maximum pressure drop of 36.97% and
average pressure reduction of 30.81%), and the defect spacing (maximum pressure drop of
1.69% and average pressure reduction of 1.64%).
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Nomenclature

Abbreviation Unit Description
ANN - Artificial neural network
DOF - Degree of freedom
FEA - Finite element analysis
FEM - Finite element method
D mm Pipe diameter
E Pa Modulus of elasticity
L mm Pipe length
Pf Pa Pipe failure pressure
Pf n,Eq - Normalized pipe failure pressure obtained using the

newly developed equation
Pf n,FEM - Normalized pipe failure pressure obtained using FEM
Pi Pa Pipe intact pressure
d mm Defect depth
de mm Effective defect depth
d1 mm Depth of defect number 1
d2 mm Depth of defect number 2
i - Input parameter value
imax - Maximum input parameter value
imin - Minimum input parameter value
in - Normalized input parameter value
in, max - Normalized maximum input parameter value
in, min - Normalized minimum input parameter value
l mm Defect length
l1 mm Length of defect number 1
l2 mm Length of defect number 2
nx - Neuron in hidden layer
o - Output parameter value
omax - Maximum output parameter value
omin - Minimum output parameter value
on - Normalized output parameter value
on, max - Normalized maximum output parameter value
on, min - Normalized minimum output parameter value
ri mm Pipe internal radius
sc mm Circumferential defect spacing
sl mm Longitudinal defect spacing
t mm Pipe wall thickness
υ - Poisson’s ratio
w mm Defect width
σl Pa Axial compressive stress
σUTS Pa Ultimate tensile strength
σ∗UTS Pa True ultimate tensile strength
σy Pa Yield stress
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