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Abstract: Bacteria are one of the causes of green rot disease (GRD) in Saccharina japonica mariculture,
which may lead to complete failure of seedling production. However, the association between
bacterial community and host disease severity remains largely unknown. Therefore, in this study,
the bacterial communities associated with GRD-infected seedlings with naturally varying disease
severity from two seedling hatcheries in Northern China were analyzed to investigate the interactions
between bacterial communities and GRD. The results indicated incorrect nutrient supply in both
sites. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes were prevalent in all samples.
Significant structural alterations were detected for epibacterial communities, which were further
evidenced by differently abundant bacterial taxa associated with seedlings with varying disease
severity. The predicted pathways of bacterial adhesion and antimicrobial compounds biosynthesis
were significantly enriched in less severely diseased seedlings, whereas glutathione metabolism and
lipopolysaccharide biosynthesis were significantly increased in more severely diseased seedlings. The
predicted categories of a two-component system, flagellar assembly, bacterial chemotaxis, and biofilm
formation were significantly enriched in the bacterioplankton in more severely infected seawater. The
differential bacterial community compositions and predicted functions provide new clues to elucidate
the mechanism underlying the interaction between GRD occurrence and bacterial communities.

Keywords: bacterial community; green rot disease; Saccharina japonica; seedlings

1. Introduction

Epiphytic microorganisms, dominated by bacteria that closely interact with macroal-
gal species, are crucial for the sustainability of macroalgal health [1–3]. The functional
capability of epiphytic microbes is known to have a direct influence on host health by
providing CO2 and fixed nitrogen [1,2], growth or morphological factors [4–6], adaptation
to different environments [7], and resistance to pathogens [8,9]. However, exposure to
stressful environments (e.g., elevated temperature) could lead to unbalanced interactions
between host defense, epiphytes, and environments, thus favoring disease occurrence,
which has been well evidenced by the bleaching disease of the red alga Delisea pulchra [10].
Nevertheless, it is often difficult to attribute a particular macroalgal disease to a single
pathogen, owing to the opportunistic nature of pathogens [11], polymicrobial infections in
disease [12], the confusion between pathogens and saprophytes [1], etc. Moreover, some
physical or chemical measures used for controlling macroalgal diseases, especially for the
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economically important macroalgal species, are neither sufficiently effective nor environ-
mentally friendly [13]. In contrast, epiphytic bacterial strains exert promising protective
effects on macroalgae against pathogens and/or dysbiosis [14,15]. Therefore, understand-
ing the relationship between epiphytic microbiomes and macroalgal diseases is a current
ambitious challenge in microbial ecology with applied consequences for the worldwide
production of economically important macroalgal species [16].

Disease occurrence is often accompanied by changes in the microbial community, such
as altered microbial abundance, composition, and function [12,17–20]. Bacterial community
shifts, arising before physical signs of macroalgal diseases, can also be characterized by the
enrichment of pathogenic bacteria and/or virulence-related functional genes [12]. Such
bacterial virulence traits are typically composed of several aspects, including toxins, exoen-
zymes, adhesins, and secretion systems [21]. Moreover, the virulence factors might also
include enzymes responsible for resistance to reactive oxygen species (ROS) [11]. The de-
tection of functional genes related to bacterial pathogenicity in the microbiome of bleached
red alga D. pulchra confirms the above-mentioned observations and the distribution of
these genes in multiple bacterial species also suggests polymicrobial infections [12].

The kelp Saccharina japonica (Areschoug) C. E. Lane, C. Mayes, Druehl and G. W.
Saunders 2006, is a commercially important Laminariales alga in the sea farming cultivation
industry. China is the largest producer of S. japonica, contributing almost 90% of the world’s
commercial volume (approximately more than 10 million tons) (FAO, 2021). The culture
process of S. japonica is divided into two stages: indoor cultivation of seedlings and outdoor
cultivation of mature sporophytes. The indoor seedling production usually takes about
2 months, including zoospore collection and development, gametophyte development and
reproduction, and young sporophytes (juvenile sporeling) growth [22]. In recent years, the
cultivated seedlings have been frequently affected by diseases owing to the continuous
expansion of aquaculture and deterioration of the marine ecological environment, with
green rot disease (GRD) being one of the major infections [18,23]. The symptoms of GRD
are characterized by the loss of brown pigmentation at the tip of the seedling and gradual
rotting of the whole frond, which quickly spreads to other seedlings causing massive losses
or a complete failure of seedling production [18]. At present, GRD is considered to be
caused by both environmental factors (i.e., insufficient sunlight) and bacteria. Although
alginic acid decomposing bacteria are usually regarded as opportunistic pathogens during
GRD infection owing to their ability to decompose alginate [23–25], specific information on
GRD pathogenesis is still limited because of the detection of diverse bacterial genera with
the ability to degrade alginate and induce similar symptoms to field observation [23,26].
Therefore, there is still a lack of in-depth research on the microbiome of GRD, especially
analysis using in situ diseased samples.

In the present study, the bacterial communities associated with GRD-infected seedlings
with varying disease severity from two distinct sites were investigated. Based on bacterial
16S rRNA gene amplicon sequencing, a series of analyses were implemented to (i) deter-
mine the composition and predicted functional profiles of the bacterial communities and
(ii) explain the interactions between the bacterial communities and GRD.

2. Materials and Methods
2.1. Sample Collection

Samples were collected during a GRD outbreak from a seedling hatchery in Weihai City
(WH), Shandong Province, China, in late September 2018, and from a seedling hatchery in
Yantai City (YT), Shandong Province, China, in the middle of September 2020. The general
information about the hatcheries is provided in Table S1.

The GRD occurrence in WH hatchery lasted approximately 15–20 days and caused
seedlings to rot. Samples were approved to be collected on the 10th day when the seedlings
had rotted to varying degrees in all the 200 tanks. Disease severity was evaluated based on
the overall greenish degree of each tank, and five tanks with relatively lesser greenish level
were grouped and identified as L, and five tanks with relatively more greenish level were
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grouped and identified as H. From each tank, approximately 3 L of seawater were collected
(WH_Lw and WH_Hw for L and H tanks, respectively), after which several segments of
palm ropes were cut from seedling collectors using sterilized dissecting scissors to obtain
the seedling samples (WH_Lc and WH_Hc for L and H tanks, respectively).

Unlike WH hatchery, GRD in YT hatchery had caused seedlings to rot on several
seedling collectors in only 1 of 60 tanks during the period of sample collection. Hence,
only seedling samples were considered appropriate for sampling of biological replicates
and epiphytic bacterial community analysis. Three types of segments of vinylon ropes
were cut from seedling collectors to obtain the seedling samples. Segments without visible
signs of rotten seedlings were identified as YT_Lc, those rotted to hold fewer seedlings
were identified as YT_Mc, and those rotted to hold much fewer seedlings on vinylon ropes
were identified as YT_Hc. A total of four YT_Lc, three YT_Mc, and three YT_Hc segments
were collected for epibacterial community analysis. Seawater samples were collected from
triplicate tanks, including the diseased tank, for parameter analysis.

All the samples were stored at low temperature (about 4 ◦C) and transported to the
laboratory within 3 h, during which the seedlings were submerged in in situ seawater.
The seedlings were washed thrice with sterilized seawater and stored at −80 ◦C for DNA
extraction after histopathological observation. With regard to seawater from WH hatchery,
2 L from each tank were filtered through a 0.2 µm polycarbonate membrane (Isopore, Merck
Millipore Ltd., Tullagreen, Ireland) and stored at −80 ◦C for epiphytic bacterial community
DNA extraction.

2.2. Physicochemical Analysis

Seawater temperature, pH, and salinity were recorded at middle depth with appro-
priate sensors using a water quality sampling and monitoring meter (YSI Life Sciences,
Yellow Springs, OH, United States). The concentrations of NO3

−-N, PO4
3−-P, NO2

−-N,
and NH4

+-N in each tank were determined with 1 L of seawater in three technical replicates
using standard methods (GB/T 12763.4-2007) with colorimetric assays on a spectropho-
tometer (Mapada Ltd., Shanghai, China).

2.3. DNA Extraction and Amplification

DNA was extracted from seawater samples as described previously [19]. For epiphytic
bacteria, DNA was selectively isolated from seedlings on the segments of the ropes (ap-
proximately 5–6 cm in length), according to a previously reported method [27]. The DNA
quality and integrity were assessed by gel electrophoresis, and the DNA samples were
stored at −20 ◦C prior to amplification.

The primers 515F and 926R were used to amplify the V4–V5 hypervariable regions of
the 16S rRNA gene [28]. The amplicon libraries were constructed using the TruSeq Nano
DNA LT Library Prep Kit (Illumina, San Diego, CA, United States), following the manu-
facturer’s recommendations, and index codes were added. Subsequently, the amplicon
libraries were sequenced on a MiSeq PE300 sequencer (Illumina, San Diego, CA, United
States), and 300-bp paired-end reads were generated.

2.4. Raw Sequence Processing

The resulting paired sequence reads were merged, truncated, filtered, and clustered
into operational taxonomic units (OTUs) using USEARCH version 10.0.240 [29]. Sequences
with similarity ≥97% were assigned to the same OTU by the UPARSE-OTU algorithm in
USEARCH using the “cluster_otus” command. Chimeras and singletons were removed in
USEARCH for further analysis. Taxonomy assignment for representative OTU sequence
was performed in QIIME version 1.9.0 [30] using the Ribosomal Database Project (RDP)
classifier [31] against the SILVA_132 database (bootstrap confidence 0.8). Sequences of
plastids and mitochondria, as well as those not classified in the domain bacteria, were
discarded. A rarefied OTU table at the same depth was used to calculate α- and β-diversities
in QIIME. Bacterial α-diversity was evaluated using Good’s coverage, Observed species
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(richness), and Pielou index (evenness), while β-diversity was measured using Bray-Curtis
dissimilarity metrics.

2.5. Statistical Analyses

General statistical analyses were performed in R version 4.0.3 [32]. An unpaired t-test
was used to examine the significant difference in the physicochemical parameters between
the tanks. Principle coordinate analysis (PCoA) was performed to determine the differences
in the bacterial community structures based on Bray-Curtis distances, and permutational
multivariate analysis of variance (PERMANOVA) was conducted to quantitatively evaluate
the effects of disease severity on the variations in the bacterial communities. One-way anal-
ysis of variance (ANOVA) was applied to evaluate the significant differences in the bacterial
α-diversity indices between the communities. Redundancy analysis (RDA) was performed
to investigate the relationships between the bacterial communities and environmental
factors. Environmental variables with a variance inflation factor (VIF) > 10 were eliminated
to avoid collinearity among the factors, and/or a forward selection was conducted using
the “ordiR2step” function in the “vegan” package (version 2.5-7) [33] to select explanatory
variables with significant explaining factors (p < 0.05) for further analyses.

Linear discriminant analysis effect size (LEfSe) [34], a method for biomarker detection,
was used to determine the bacterial taxa that best characterized each study group. In the
present study, taxa with linear discriminant analysis (LDA) score > 3 and p < 0.05 were
considered to be significant.

The OTU table was normalized by dividing the abundance of each OTU by its pre-
dicted 16S rRNA gene copy number to produce the KEGG orthology (KO) functional
categories by using PICRUSt2 [35]. STAMP version 2.1.3 was used to compare differently
abundant functions between groups, and a Welch’s t-test was employed to test difference
significance (p < 0.01) [36]. Functional pathways were manually checked, and unrelated
categories were excluded from statistical analysis.

3. Results
3.1. Histopathological Observation

In the WH_Lc group, the majority of the seedlings on the palm ropes were brown
and appeared normal (Figure 1A). In contrast, In the WH_Hc group, the greenish color
spread to most of the seedlings and even to their lower parts (Figures 1A and S1A). In the
YT_Lc group, the majority of the seedlings exhibited no visible rotted signs, similar to those
in the WH_Lc group (Figure 1B). However, in the YT_Mc group, a number of seedlings
were notably greenish at their apical parts (Figures 1B and S1B). In the YT_Hc group, the
greenish color spread to most parts of the seedlings, similar to that noted in the WH_Hc
group (Figures 1B and S1C). All the observed symptoms were highly consistent with those
of GRD.
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3.2. Physicochemical Characteristics of Seawater

The common physicochemical characteristics of seawater frequently determined in
seedling hatcheries are summarized in Table 1. With regard to seawater sampled from
WH hatchery, four of the detected parameters were significantly different between the
L and H tanks, including water temperature (7.82 ◦C ± 0.26 ◦C vs. 8.28 ◦C ± 0.19 ◦C),
salinity (35.20 ± 0.45‰ vs. 34.00 ± 0.00‰), PO4

3−-P concentration (2.173 ± 0.088 mg/L vs.
2.202 ± 0.024 mg/L), and NO2

−-N concentration (0.434± 0.001 mg/L vs. 0.432 ± 0.002 mg/L).
However, the concentrations of NO3

−-N and PO4
3−-P in all the tanks were almost eight and

five times higher than those usually employed for seedling production (N: 3.5–4.5 mg/L,
P: 0.35–0.45 mg/L; Standard protocol DB37/T 1190—2009), respectively. With respect to
seawater sampled from the YT hatchery, the PO4

3−-P concentration (1.288 ± 0.037 mg/L)
was also significantly higher than the standard requirements, whereas NO3

−-N concen-
tration (0.720 ± 0.126 mg/L) was significantly lower than the standard protocol. Thus, in
both of the studied hatcheries, an inaccurate supply of nutrients was determined.

Table 1. Physicochemical characteristics of seawater from Weihai (WH) and Yantai (YT).

WH_L Tanks WH_H Tanks YT tanks WH_L vs. WH_H p-Values

Temperature (◦C) 7.82 ± 0.26 a 8.28 ± 0.19 7.75 ± 0.05 0.006
pH 8.06 ± 0.02 8.03 ± 0.02 7.69 ± 0.05 0.055

Salinity (‰) 35.20 ± 0.45 34.00 ± 0.00 34.10 ± 0.10 <0.001
NO3

−-N (mg/L) 34.306 ± 2.616 34.698 ± 2.736 0.720 ± 0.126 0.411
PO4

3−-P (mg/L) 2.173 ± 0.088 2.202 ± 0.024 1.288 ± 0.037 0.034
NH4

+-N (mg/L) 0.503 ± 0.006 0.534 ± 0.058 0.004 ± 0.001 0.150
NO2

−-N (mg/L) 0.434 ± 0.001 0.432 ± 0.002 0.031 ± 0.047 0.013
a Data represent the mean ± standard deviation, n = 5 (for WH) or 3 (for YT). Bolded p-values indicate significant
differences between L and H tanks calculated using an unpaired t-test.

3.3. Bacterial Diversities and Community Compositions

A total of 549,669 high-quality sequences were obtained for the samples from the WH
hatchery. After the removal of archaea, chloroplasts, mitochondria, and unassigned se-
quences, 470,701 sequences were classified as bacteria, which were clustered into 1482 OTUs.
The number of clean reads in each sample ranged from 15,200 to 34,050 (mean ± standard
deviation = 47,070 ± 4626 sequences/sample) (Table S2), and 15,200 sequences were ran-
domly selected to standardize the sequencing depth. With regard to samples from the YT
hatchery, a total of 274,409 high-quality sequences were acquired, with 72,691 bacterial
sequences (7296 ± 3115 sequences/sample) obtained after the removal of archaea, plastids,
and unassigned sequences. Moreover, samples with sequences <3000 were also removed
for further analysis, which led to 475 binned OTUs and a rarefaction depth of 3788 se-
quences for the remaining nine samples (i.e., three YT_Lc, three YT_Mc, and three YT_Hc)
(Table S2).

The α-diversity was measured using Good’s coverage, Observed species, and Pielou
index. Good’s coverage for all the samples was >98% (98.69% ± 0.28%), indicating that all
the sequencing depths were reasonable and could reliably reflect the characteristics of the
bacterial communities. When considering GRD severity, epibacterial richness showed a
slightly decreasing trend, although no significant difference could be observed between
the sample groups. In particular, WH_Lc seedlings exhibited higher richness than WH_Hc
seedlings (Figure 2A), similar to that noted between YT_Lc seedlings and YT_Mc and
YT_Hc seedlings (Figure 2B). With respect to bacterial evenness, a decreasing trend was
observed among YT_Lc, YT_Mc, and YT_Hc seedlings (Figure 2B), whereas no obvious
trend was noted between WH_Lc and WH_Hc seedlings (Figure 2A). With regard to
bacterial communities in WH seawater, both bacterial richness and evenness were lower
than those of epibacterial communities, and an increasing trend was observed in parallel
with GRD severity (Figure 2A).
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Figure 2. Bacterial α- and β-diversities associated with seedling and seawater samples. (A,C), α-
Diversity and Principal coordinate analysis for WH samples, respectively; (B,D), α-Diversity and
Principal coordinate analysis for YT samples, respectively. Letters on the error bars indicate significant
difference between sample groups determined by ANOVA with a Tukey’s HSD test (p < 0.05).

The β-diversity was analyzed using Bray-Curtis distance. A clear difference was
observed between epiphytic and planktonic bacterial communities in the WH samples, and
the PCo1 axis explained 84.79% of the variations (Figure 2C). Moreover, both epiphytic and
planktonic bacterial communities in the L tanks were clearly separated from those in the H
tanks (Figure 2C), which was also confirmed by the pairwise comparison results (Table S3).
Similarly, in the YT samples, the epiphytic bacterial communities were clearly clustered
in accordance with disease severity (PERMANOVA, R = 0.542 and p = 0.042 < 0.05), and
the PCo1 axis explained 52.64% of the variations (Figure 2D), which was also confirmed by
pairwise comparisons (Table S3).

A total of 28 phyla were detected in the WH samples, with 25 phyla detected in both
seedlings and seawater. A total of 17 phyla were detected in the YT seedlings. In all the
samples, the dominant bacterial taxa were affiliated with classes Gammaproteobacteria
(50.23% ± 13.32%), Alphaproteobacteria (25.45% ± 8.92%), and phylum Bacteroidetes
(17.85% ± 9.26%) (Figure 3). More importantly, the relative abundances of the most
prevalent taxa varied with different disease status of the seedlings, indicating changes in
the bacterial community with disease severity (Figure 3).
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3.4. Significant Differences between Bacterial Communities

To further determine the differences in the bacterial taxonomic abundance, the
LefSe method was used to compare the bacterial communities in the two study sites
(Figures 4, S2 and S3).
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Among the WH seedlings samples, the relative abundances of 55 bacterial taxa sig-
nificantly varied between WH_Lc and WH_Hc groups (Figure S2). Disease severity led
to an enrichment in the proportion of sequences belonging to Proteobacteria (WH_Lc:
79.54% ± 2.76%; WH_Hc: 84.84% ± 3.81%), and a reduction in the proportion of sequences
belonging to Bacteroidetes (WH_Lc: 11.12% ± 1.09%; WH_Hc: 8.06% ± 2.05%) and Plancto-
mycetes (WH_Lc: 4.23% ± 1.07%; WH_Hc: 1.79% ± 0.61%) (Figure 4A). At the genus level,
22 genera were found to be significantly different between WH_Lc and WH_Hc seedlings,
among which nine and 13 genera were enriched in WH_Hc and WH_Lc seedlings, re-
spectively (Figure 4A). Within these genera, Reinekea, Marinomonas, and Lewinella were
more enriched in WH_Lc seedlings, and Colwellia, Loktanella, and Lentilitoribacter were
more enriched in WH_Hc seedlings, although all of them were relatively abundant (mean
relative abundance > 1%) in all of the seedlings samples (Figure 4A and Table S4). Among
the WH seawater samples, the relative abundances of 35 taxa were significantly different
between WH_Lw and WH_Hw (Figure 4B). The relative abundances of planktonic Verru-
comicrobia (WH_Lw: 1.50% ± 0.19%, WH_Hw: 1.84% ± 0.20%) and Gammaproteobacteria
(WH_Lw: 47.09% ± 0.98%; WH_Hw: 49.34% ± 0.89%) significantly increased with the dis-
ease severity, whereas the opposite trend was noted with regard to the relative abundance
of Bacteroidetes (WH_Lw: 27.45% ± 0.77%; WH_Hw: 25.42% ± 1.08%) (Figure 4B). The rel-
ative abundances of 13 genera were significantly different between WH_Lw and WH_Hw
(Figure 4B), while the relative abundances of Glaciecola, Lentilitoribacter, Reinekea, Mari-
nomonas, and Colwellia were significantly different between WH_Lc and WH_Hc seedlings
(Figure 4).

Among the YT seedlings, the relative abundances of 87 bacterial taxa were significantly
different between YT_Lc and YT_Mc seedlings, whereas those of 92 bacterial taxa were
significantly different between YT_Lc and YT_Hc seedlings (Figure S3). Disease severity led
to an increase in the relative abundance of Proteobacteria, notably, Gammaproteobacteria
(YT_Lc: 23.65% ± 0.70%; YT_Mc: 51.62% ± 19.71%; YT_Hc: 55.06% ± 20.03%), and a
decrease in the relative abundances of Bacterodetes (YT_Lc: 29.79%; YT_Mc: 11.81%; YT_Hc:
10.87%) and Actinobacteria (YT_Lc: 3.47%; YT_Mc: 0.75%; YT_Hc: 0.72%) (Figure 4C,D).
At the genus level, the relative abundances of 37 and 41 genera were significantly different
between YT_Lc and YT_Mc seedlings (Figure 4C) and between YT_Lc and YT_Hc seedlings
(Figure 4D), respectively. Although the predominant genera such as Marinomonas, Algicola,
Sneathiella, Terasakiella, Oleiphilus, and Colwellia, were significantly enriched in both YT_Mc
and YT_Hc seedlings (Figure 4 and Table S5), their proportions varied to a certain extent
between the two groups. For example, Spongiispira, Fuerstia, Hoeflea, etc., were significantly
enriched in YT_Mc seedlings (Figure 4C), whereas Pseudomonas, Olespira, and Marinobacter
were significantly enriched in YT_Hc seedlings (Figure 4D).

3.5. Predicted Bacterial Functions

In the epiphytic bacteria datasets for the WH samples, 10 significantly enriched KO
functional categories, including metabolism, biosynthesis, signaling, and invasion path-
ways, were detected in H and L tanks, respectively (Figure 5A). In particular, bacterial
adhesion (adherens junction) was significantly enriched in WH_Lc seedlings, while the
glutathione (GSH) metabolism pathway was significantly increased in WH_Hc seedlings.
Moreover, pathways related to the biosynthesis of secondary metabolites, such as phenazine,
stilbenoid, diarylheptanoid, gingerol, and flavonoid, were also enriched in WH_Lc seedlings
(Figure 5A). In the planktonic bacteria datasets for the WH samples, 32 KO functional
categories were determined to be significantly different between L and H tanks, with
15 categories detected in the WH_Hw group (Figure 5B). Most of the first 10 functional
components, such as signal transduction (two-component system), cell mobility (flagellar
assembly and bacterial chemotaxis), and biofilm formation (related to Escherichia coli, Pseu-
domonas aeruginosa, and V. cholerae), etc. were significantly enriched in the H tanks (8 of
10 functional components).
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In the epiphytic bacteria datasets for the YT samples, only two functional categories,
including GSH metabolism and staurosporine biosynthesis, were significantly enriched
in YT_Mc seedlings when compared with those in YT_Lc seedlings (Figure 5C). A total of
seven predicted categories, mainly involving signaling pathways and cellular processes
(i.e., necroptosis and endocytosis), were significantly enriched in YT_Lc seedlings when
compared with those in YT_Mc seedlings (Figure 5C). Furthermore, a total of 14 categories
were significantly different between YT_Lc and YT_Hc seedlings (Figure 5D). In particular,
functional categories related to quorum sensing (QS) were significantly increased in YT_Lc
seedlings, while those associated with lipopolysaccharide (LPS) biosynthesis and GSH
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metabolism were significantly enriched in YT_Hc seedlings (Figure 5D). Moreover, the
pathway of biosynthesis of flavonoids (flavone and flavonol) was significantly enriched in
YT_Lc seedlings when compared with that in YT_Hc and YT_Mc seedlings (Figure 5C,D).

3.6. Correlation between Bacterial Community Structure and Environmental Factors

By using both canonical correspondence analysis (CCA)-based VIF and forward selec-
tion, variables important to community structure distributions in the WH samples were
identified. For the epibacterial communities, the variations were significantly correlated
with salinity (p = 0.001) and temperature (p = 0.049). In particular, the bacterial commu-
nities in WH_Lc samples were positively correlated with salinity, while those in WH_Hc
samples were positively correlated with temperature (Figure 6A). With regard to planktonic
bacterial communities, temperature (p = 0.020) was the only environmental factor that was
significantly associated with bacterial community variations. The RDA biplot showed that
the bacterial communities in WH_Hw samples were positively correlated with temperature
(Figure 6B).
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4. Discussion

In the present study, two distinct seedling hatcheries that had reported GRD outbreaks
were examined, and the association between bacterial communities and GRD severity was
investigated and compared.

Algal diseases are the consequence of the complex interplay between environments,
algae, and microorganisms, and the external environments tend to play significant roles in
disease onset [37,38]. In S. japonica seedlings, insufficient sunlight irradiation combined
with alginate-decomposing bacteria has been proposed as the cause of GRD onset [18,23].
However, it has been proved that incorrect nutrient supply, possibly owing to non-standard
operation, is one of the primary causes of GRD [39]. The abnormal nutrient levels observed
in the present study possibly expanded the spectrum of environmental stressors that lead
to GRD occurrence, with multiple environmental changes being considered as stressors
favoring the onset of ice-ice disease [40]. Moreover, significant differences were noted in the
detected parameters, such as temperature, salinity, PO4

3−-P, and NO2
3−-N, between the L

and H tanks in the WH hatchery, indicating to a certain extent, the non-standard manage-
ment of the hatchery and the correlation between different degrees of community dysbiosis
and disease severity (Figures 2 and 6). Furthermore, the isolated alginate-decomposing
bacteria did lead to higher disease severity in the seedlings, demonstrating the vital role
of such bacteria in GRD [25,39]. However, alginate-decomposing bacteria might not be
the true causative agents of GRD because the ability to decompose algal tissues is only
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one of the aspects associated with the virulence of macroalgal pathogens [37], and these
bacteria isolated from diseased samples might possibly be saprophytes. Therefore, to
identify seaweed pathogens, research must focus on the relationship between virulence
factors and pathogenicity rather than on the decomposing activity alone.

A higher bacterial richness was observed in the WH_Lc and YT_Lc seedlings, which
decreased with disease severity. A similar trend had also been reported for the epibacterial
communities in the red algae Pyropia yezoensis infected with oomycetes pathogen [19] as
well as the soil microbiome of infected potato [41]. Higher bacterial community diversity
is often associated with greater resistance to microbial invasions [42]. It is believed that
macroalgal hosts might possibly recruit bacteria to resist pathogen invasion. Exposure to
stressful environments (such as inappropriate nutrient supply) can compromise the host
defense, allowing many more chances of pathogen infections. In such a context, the algal
host may require more protective strength from the associated bacteria, which is one of the
constitutive defense capabilities of macroalgae [37]. A significant proportion of planktonic
bacteria colonize and actively interact with macroalgae and secrete antimicrobial com-
pounds or QS inhibitors, which can assist the algal host in resisting microbial invasion [2,8].
Consequently, the algal host might recruit more of these bacteria to achieve resistance to
pathogen invasions. This postulation is, to a certain extent, supported by the findings of the
present study, which revealed enrichment of pathways related to secondary metabolites
in WH_Lc and YT_Lc seedlings. Secondary metabolites such as flavonoids (particularly
flavones and flavonols) are promising antibiotics that are more effective than standard
antibiotics because they can protect the host through various strategies, including inhibi-
tion of bacterial adhesion and invasion, biofilm formation, multidrug resistance pumps,
etc. [43]; diarylheptanoids have both antibacterial and antifungal activities [44]; gingerol
and stilbenoid are capable of reducing biofilm formation and/or virulence via inhibiting
QS activity of bacterial pathogens [45,46].

Multiple lines of evidence have demonstrated that macroalgal diseases result from the
proliferation of opportunistic pathogens when there is dysbiosis in the host microbiome
owing to environmental pressures [47,48]. In certain cases, dysbiosis is characterized by
the rise of pathogenic bacteria [18,20,49] and/or enrichment of virulence factors [12,17]. In
the present study, comparisons of the bacterial community dysbiosis in the two hatcheries
were performed. Within the differently abundant genera in WH seedlings, data on their
roles as macroalgal pathogens are limited. Nevertheless, most of these bacterial genera,
such as Reinekea [50], Marinomonas [51], Lewinella [52], Colwellia [51], and Loktanella [53], are
well-known degraders of organic compounds (e.g., algal-polysaccharides), and alterations
in their relative abundance from WH_Lc to WH_Hc seedlings indicated that different
profiles of degraders might be involved in different stages of GRD. With regard to bacterial
communities in the YT samples, structural comparisons revealed two potentially pathogenic
bacterial genera, namely, Hoeflea and Pseudomonas, with Hoeflea being associated with coral
disease [54,55] and Pseudomonas being the causative agent of seaweed disease in S. japonica
and P. yezoensis [56]. However, it must be noted that the pathogenicity of these two bacteria
is mostly based on compositional differences or degradation abilities. Therefore, it is still
unclear whether these bacteria are only saprophytes or the real causative agents of algal
diseases because their degradation abilities have been documented in the CAZY database
(http://www.cazy.org) (accessed on 14 February 2022), suggesting that disease severity on
algal seedlings contributed to the involvement of different profiles of degraders.

In order to obtain more information on GRD pathogenesis, function prediction was
performed in the present study using PICRUSt2 based on the current 16S rRNA data. How-
ever, one of the main limitations of PICRUSt2 is that certain environment-related functions
are less likely to be identified based on the existing reference genomes [35]. Provided
the limited genomic data on seaweed and seagrass-associated microbiome [57–59], the
predictions in the present study might possibly be biased to a certain extent. Nevertheless,
the predictions provided some information regarding potential virulence by comparing
samples with varying disease severity. For example, the enriched adherens junction in
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WH_Lc and YT_Lc seedlings might suggest potential bacterial invasions when there is
dysbiosis in the epibacterial communities under stressful environments. In addition, a
significant enrichment of pathway involving GSH metabolism in more severely diseased
seedlings from both the study sites might also possibly indicate bacterial invasions. GSH
is often considered the most potent natural antioxidant, which can be metabolized by a
series of enzymes in the GSH system [60]. For instance, the enzymes of the GSH system
have been found to detoxify ROS produced by the host during bacterial invasion [37,60],
such as the macroalgal pathogen Nautella sp. R11 [11]. Moreover, an increase in LPS
biosynthesis in more severely diseased seedlings (i.e., YT_Hc seedlings) might also sig-
nify bacterial invasions. LPS, also known as glycolipid, is a pathogenicity determinant
in bacteria because of its remarkable endotoxicity to host cells, which can induce host
defense responses [61]. These findings indicate that disease occurrence is correlated with
bacterial invasions in addition to the altered assembly of epibacterial communities owing
to environmental stressors.

Furthermore, the present study also found changes in the planktonic bacterial commu-
nities with GRD occurrence. In addition to differently abundant bacterial taxa coinciding
with epibacterial members, a certain number of predicted functional categories that were
more enriched in the WH_Hw samples were also found to be involved in bacterial virulence.
For example, the flagellum is capable of helping the bacteria to reach the optimal host site,
colonize or invade, remain at the infection site, and achieve post-infection dispersal [62];
chemotaxis aids in the initial stages of infection (e.g., host tissue penetration) by various
types of human, animal, and plant pathogens [63]; two-component signal transduction
systems in bacteria regulate the expression of metabolic and virulence genes in response
to changing environments [64]; and biofilm formation elicits bacterial resistance to an-
tibiotic treatment, thus ensuring their pathogenicity [65]. Based on these observations, it
can be hypothesized that a certain proportion of planktonic bacteria might be involved
in the progress of GRD. Nevertheless, further studies are still required to verify the ex-
tent to which planktonic bacterial communities are involved in GRD and their roles in
disease progression.

5. Conclusions

This study explored the bacterial communities associated with S. japonica seedlings
infected in situ with GRD at varying severity. By using 16S rRNA gene amplicon sequenc-
ing, epibacterial communities were determined to be markedly clustered in parallel with
disease severity. The significant structural changes were also evidenced by variations in the
abundance of bacterial taxa in seedlings exhibiting different disease severity. The predicted
pathways related to bacterial adhesion and biosynthesis of antimicrobial compounds were
significantly enriched in less severely diseased seedlings, whereas pathways indicating bac-
terial invasions, such as GSH metabolism and LPS biosynthesis, were significantly enriched
in more severely diseased seedlings. The potential virulence-associated categories, such as
two-component system, flagellar assembly, bacterial chemotaxis, and biofilm formation,
were also significantly enriched in the bacterioplankton in more severely infected tanks.
These findings broaden the understanding of the relationships between GRD occurrence
and bacterial communities and provide novel insights into GRD occurrence. However, as
the present study performed comparisons only based on predictions with 16S rRNA gene
sequences, further comprehensive metagenomic analysis is necessary to reveal the under-
lying microbial ecological mechanisms related to GRD. Moreover, an in-depth functional
analysis is also required to determine pathogen(s) and invasion stages of GRD because
symptom observation is insufficient for such investigations.
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