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Abstract: In this paper, a calibration algorithm for forecasting the significant wave height (SWH) in
nearshore areas is proposed, based on artificial neural networks. The algorithm has two features: first,
it is based on SOM−BRFnn (self−organizing map–radial basis function neural network) to better
reflect the clustering characteristics of the input parameters regarding wind and wave. In addition,
the high-frequency variation part and the low-frequency variation part of SWH are separated by a
threshold of 24 h to better describe the diurnal variation of SWH under the influence of tidal current.
The algorithm is applied to the nearshore region of Nan-ao Island in the northeastern South China
Sea. The results show that the algorithm can effectively correct the modeling results of nearshore
SWH. Compared with the original outputs of the ERA5 model, the correlation coefficient is increased
from 0.472 to 0.774, the root mean square error is reduced from 0.252 m to 0.103 m, and the mean
relative error is reduced from 41% to 17.6%, respectively. Further analysis indicates that the frequency
division is crucial in realizing the correction of the high-frequency variation of SWH. The results have
reference significance for the application of wave numerical models in coastal areas.

Keywords: artificial neural network; RBF; SOM; significant wave height; nearshore area; wave model

1. Introduction

Wave parameters such as significant wave height (SWH) are of great significance
for navigation, fishing, leisure activities, and military activities [1,2]. Wave prediction
information can be usually obtained through numerical models such as WAVE WATCH
III or simulating waves nearshore. Due to the complex topography of the coastal area, the
prediction of waves needs a higher-resolution grid [2,3]. However, most of the existing
wave prediction models are aimed at the open seas, and the spatial resolution is relatively
low for the nearshore areas. Therefore, it is necessary to establish a correction algorithm for
nearshore areas based on the current wave models.

The artificial neural network has been broadly applied in the field of wave predic-
tions [4–9] for its capabilities to deal with complex nonlinear problems [10,11]. For example,
Deo et al. [4] constructed a feedforward neural network with three layers to predict SWH
and mean wave periods, using wind speed as input. Deshmukh et al. [5] used a wavelet
neural network to correct the modeling results and pointed out that the accuracy of the
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corrected prediction is better than the prediction trained directly with the observation data.
Chen et al. [7] proposed a wavelet graph neural network to predict SWH and demonstrated
that deep learning can cooperate well with wavelet decomposition. Wang et al. [8] con-
structed a gated recurrent unit network to successfully realize the high-precision SWH
forecasting in the leading 24 h based on the past wind speed and the real-time SWH. These
studies preliminarily verify the feasibility to construct a neural network to improve the
accuracy of wave modeling results.

Among various neural networks, the radial basis function neural network (RBFnn)
was proposed using radial basis functions as activation functions [12–14]. RBFnn has the
same function, a better approximation ability, and a simpler network structure, compared
to the traditional BP neural network. It shows a higher accuracy under a small training
set [13]. Based on these advantages, RBFnn is used in various fields such as multiple-fault
diagnosis [14] and subsurface evaporation rate prediction [13].

Center coordinates of hidden nodes in RBFnn can be assigned through an iterative
algorithm. Referring to the modular concept of the biological nervous system, the combina-
tion of different neural networks can make them have better performance. Some authors
have combined RBFnn with the self-organizing map neural network (SOMnn) [15,16].
SOMnn is an unsupervised neural network optimized by competitive learning [17], and
the neighborhood function is applied to modify the network’s topology. It has the charac-
teristics of simple and short clustering times [16]. Lv et al. [15] used the SOMnn to find the
hidden layer node coordinates and the radius of the RBFnn. They obtained an accuracy
rate close to 100% for gesture recognition and demonstrated that RBFnn combined with
SOMnn has a higher recognition accuracy than that combined with the Kmeans clustering
methods. Fu et al. [16] proposed a new dynamic prediction method by SOM−RBFnn to
forecast coal-gas emission quantity with high prediction accuracy. However, there is still
limited study on the combination of SOMnn and RBFnn to the SWH model correction,
especially for the nearshore waves.

To establish a wave calibration model for nearshore areas, the complex effects of
wave-flow interactions on the wave propagation process [18–21] should be considered.
For example, Yang et al. [22] studied the effect of the tides on wave height in the Yangtze
River estuary area and found that the wave height changed half a day under tide influence.
Wu et al. [23] studied the wave-flow coupling phenomenon and found that cyclical tide
currents also make the wavefield change periodically; the current in the same direction
raises the wave height, and in the opposite direction the current decreases. Therefore, the
part of SWH affected by tidal current should be separated and corrected independently.

In this study, a calibration algorithm for near-shore SWH based on the SOM−RBFnn
is proposed. A typical case for a nearshore area of the northeastern South China Sea is
proposed as an example to test the performance of the algorithm.

2. Data and Methodology
2.1. Data Used for Case Study

A case in the coastal area of the northeastern South China Sea is taken as an example
to test the calibration algorithm proposed in this study. Nan-ao Island is a small island
located in Shantou City, Guangdong Province, China. The location of the island and the
observation site are shown in Figure 1. The field observation data used in this study came
from the hydrological observation station deployed in the southern coastal waters. The
station is about 300 m offshore and about 10 m deep. The wave, current, and tide levels
were measured synchronically with the AWAC profiler manufactured by Nortek, Norway.
Similar hydrological observation stations have been deployed in several inshore regions of
the South China Sea [6,24]. The data from 11 October 2020 to 5 April 2021 are employed for
the case study, and the observed SWH is defined as SWH_Real.
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Figure 1. Location of the observation station for the case study. (a) shows the relative location of
Nao-ao Island in the northern South China Sea, and (b) shows the specific location of the station to
the south of Nan-ao Island.

In this study, reanalysis data from the Fifth Generation Global Climate Reanalysis Dataset
(ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as
numerical model output data for analysis. These data are generated by numerical prediction
of climate elements using the WW3 model and assimilation with global sea area data. The
data have been widely used in climate research, especially in wave prediction [25,26]. The
ERA5 data in the same period and at the same location as the observation are employed.
Variables including SWH, mean wave direction (MWD), and mean wave period (MWP) are
obtained. To distinguish it from SWH_Real, the modeled SWH is defined as SWH_ERA5,
and the calibrated SWH is defined as SWH_Ca.

2.2. Calibration Algorithm for the Nearshore SWH

The algorithm constructed in this paper is used to realize the calibration for the model
results, i.e., after inputting the modeled data at a certain time and place, the algorithm can derive
the SWH_Ca, as close to the observation as possible. The calibration algorithm is constructed
based on the SOM−RBFnn. The procedure of the algorithm is illustrated in Figure 2.
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2.2.1. The Frequency Division

In the coastal waters, the currents forced by the tide have a direct effect on the wave [18–23].
When the wave encounters currents in the same direction, the wavelength increases, and
the wave height decreases; when the wave encounters a reverse current, the wavelength
decreases, and the wave height rises [21]. To consider this influence of the tidal current
on the SWH, the high-frequency component of the SWH is separated and it is calibrated
by the tidal factors. The fast Fourier transform (FFT) is performed to obtain the energy
spectrum of the tidal and wave variables including SWH. For a variable X(k) with a data
size of N, apply the discrete Fourier transform (DFT) and the formula is:

X(k) =
N−1

∑
n=0

x(n)Wkn
N , k = 0, 1, 2, . . . , N − 1 (1)

Due to the periodicity and symmetry of Wn, the FFT algorithm can decompose the
N-point DFT transformation into the DFT at the N/2 point.

X(k) = X1(k) + Wk
N X2(k), k = 0, 1, 2, . . . ,

N
2
− 1 (2)

X(k +
N
2
) = X1(k)−Wk

N X2(k), k = 0, 1, 2, . . . ,
N
2
− 1 (3)

The upper formula is called the butterfly computation. According to this algorithm,
the operation speed is increased by constant decomposition to two points, thus reducing
the number of operations. In our algorithm, the purpose of using the Fourier transform is
to separate the high-frequency variation of SWH affected by tide-driven current. Although
in similar studies, the wavelet analysis method can also effectively separate the high-
frequency variation [5,7], it focuses on the frequency at the local time domain, and the
separation frequency will vary at different periods. However, because the frequency of tide
is relatively fixed and does not change with time, it is more reasonable to use the Fourier
transform to analyze SWH in the full-time domain.

Considering that the tide periods are mostly shorter than one day, we set 24 h as the
frequency threshold to divide SWH_Real into the high-frequency part (Fh_Real) and the
low-frequency part (Fl_Real):

SWH_Real = Fl_Real + Fh_Real (4)

In the training stage, Fh_Real was used to train the SOM−RBFnn1, and the Fl_Real
was used to train the SOM−RBFnn2 (Figure 2). In the validation stage, the outputs of
SOM−RBFnn1 (Fh) and SOM−RBFnn2 (Fl) are added to form SWH:

SWH_Ca = Fl + Fh (5)

We name this particular method as frequency division. In the algorithm, Fl is calibrated
by SWH_ERA5, MWD, and MWP; Fh is calibrated by the variability of tide level (VT). This
is because the tidal current in coastal areas is closely related to the change of tidal level (TL),
and TL can be obtained by harmonic analysis, while the measurement of oceanic current is
more complex.

2.2.2. The SOM−RBFnn

The basic structure of the neural network and the connection between SOMnn and
RBFnn is shown in Figure 3. RBFnn is a kind of forward neural network, which contains
three layers: input layer, hidden layer, and output layer. The dimension of the center
coordinates in the hidden layer neurons is consistent with the input space. During the
training process, the RBFnn will first calculate the Euclidean distance between the sample
and each center of the hidden layer, and input the distance into the radial basis function
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whose output is weighted and summed to form the RBFnn output. Weights connecting
hidden neurons to output neurons can be determined by pseudo-inverse. The entire space
should be covered by the receptive field of neurons in the hidden layer. Therefore, SOMnn
is applied to cluster and determine center coordinates.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Schematic diagram of the SOM−RBFnn in the (a) training and (b) validation stages. 
SWH_ERA5, SWH_Real, and SWH_Ca represent the SWH originally output from the ERA5 model, 
the observed SWH, and the calibrated SWH, respectively. VT, MWD, and MWP are the variability 
of tide level, mean wave direction, and mean wave period, respectively. 

In our research, the SOM−RBFnn training process is performed in the following steps 
(see also Figure 4): 

 
Figure 4. Flowchart of the training process of SOM−RBFnn. 

1. The node structure and scale of the SOMnn competition layer are specified. The rec-
tangular competition layer structure is selected, and the number of nodes in the com-
petition layer is determined to be 200 according to the data scale. 

2. Competitive layer node weight initialization via principal component analysis. 
3. Select xi as a sample, calculate the Euclidean distance between the sample and all 

nodes, and locate the node with the smallest distance from it, 

arg min( ( ) )j t j id w d x= −  (6)

where wt(dj) = wj,t representing the weight of node dj at the t-th iteration. 
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Figure 3. Schematic diagram of the SOM−RBFnn in the (a) training and (b) validation stages.
SWH_ERA5, SWH_Real, and SWH_Ca represent the SWH originally output from the ERA5 model,
the observed SWH, and the calibrated SWH, respectively. VT, MWD, and MWP are the variability of
tide level, mean wave direction, and mean wave period, respectively.

The SOMnn can cluster data by identifying the similarity between them without prior
knowledge, through a competitive learning algorithm. First, the SOMnn is initialized
by assigning node weight representing the center of the corresponding neuron, and its
dimension is consistent with the input space. In one iteration, a sample randomly input
to the SOMnn is compared with all the weights in the hidden layer (usually comparing
the Euclidean distance between the sample and the weights), and the most similar node is
selected as the best matching unit, which will drive itself and the nodes within a certain
range closer to the sample. This entire process is reiterated until the specified number of
iterations is achieved. After training, a node that becomes BMU at least once is recognized
as an active node. Otherwise, it calls for an inactive node. The active nodes are used to
optimize the RBFnn.

In our research, the SOM−RBFnn training process is performed in the following steps
(see also Figure 4):
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Figure 4. Flowchart of the training process of SOM−RBFnn.

1. The node structure and scale of the SOMnn competition layer are specified. The
rectangular competition layer structure is selected, and the number of nodes in the
competition layer is determined to be 200 according to the data scale.

2. Competitive layer node weight initialization via principal component analysis.
3. Select xi as a sample, calculate the Euclidean distance between the sample and all

nodes, and locate the node with the smallest distance from it,

dj = argmin(
∥∥∥wt(dj)− xi

∥∥∥) (6)

where wt(dj) = wj,t representing the weight of node dj at the t-th iteration.
4. Update node weights by:

wi,t+1 = wi,t + η(dj, di)× (xi − di) (7)

where η(dj, di) is a neighborhood function, the size of which depends on the distance
between node di and node dj, and it is used to characterize the influence of the BMU
on its neighbors.

5. If the number of iterations t does not reach the set number of times tend, repeat steps 3
and 4; otherwise, define an active node-set A, which includes all active nodes when
the iteration is completed, and proceed to the step.

6. Use the number and weight of SOMnn active nodes to initialize the hidden layer
center ck = dk, dk ∈ A of the RBFnn, and the total number of hidden layer nodes N =
crad(A).

7. The RBF hidden layer outputs hij = φ (||xi − cj||) correspond to the sample xi input.
In this study, the radial basis function is selected as the Gaussian function:

φ(
∥∥∥xi − cj

∥∥∥) = exp(−

∥∥∥xi − cj

∥∥∥2

2σ2 ) (8)

8. Define the hidden layer output matrix H = [hij], and the weight matrix between the
hidden layer to the output layer is WRBF = [w1

RBF, w2
RBF, . . . , wN

RBF]T. The output of
the RBFnn is Y = HWRBF. In the training phase, the output matrix Y is clamped, and
the hidden layer output matrix H has been calculated through the above steps. Use
the pseudo-inverse method to solve the weight matrix: WRBF = H−1Y.

2.3. Performance Indicators

During the training process, the test set samples are input into the SOM−RBFnn, and
the evaluation function is used to calculate the accuracy of the neural network. The root
mean square error (RMSE), the mean absolute percent error (MAPE), and the scatter index
(SI) are used to estimate the accuracy. They are calculated by:

RMSE =

√
1
n

n

∑
i=1

(Ypredicti −Yi)
2 (9)
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MAPE =
100
n

n

∑
i=1

∣∣∣∣Yi −Ypredicti
Yi

∣∣∣∣ (10)

SI =

√
n
∑

i=1
(Yi −Ypredicti)

2

nYi
(11)

where Ypredicti is the modeled data, Yi is the observation data, and n is the number of
samples. The closer the indexes are to 0, the better the algorithm is.

The in situ data and ERA5 model data were input into the calibration algorithm to
test its performance in correcting SWH_ERA5. To further analyze the advantages of the
algorithm, calibration experiments are carried out by comparing the SOM−RBFnn with
the original RBFnn and Kmeans_RBFnn, and comparing the SOM−RBFnn with or without
the frequency division.

3. Results
3.1. The Applicability of This Algorithm to the Study Case

To verify the frequency characteristics of the parameters (SWH_Real, SWH_ERA5,
MWP, MWD, TL, and VT) relevant to the algorithm, a power spectrum analysis was
performed (Figure 5). As shown in the figure, there occur two peak values in the spectrum
of the SWH_Real corresponding to the low-frequency band and high-frequency band of
1.37 × 10−7 Hz and 2.24 × 10−5 Hz, respectively. The peak value of the high frequency is
0.005 m2/Hz and the corresponding period is 12.4 h, which is consistent with the period of
the VT. In addition, SWH_ERA5, MWP, and MWD are all concentrated in the low-frequency
band and the variation of high-frequency factors such as the nearshore tide is not taken
into account. Thus, it is difficult to realize the effective simulation or prediction of wave
parameters without tidal information.
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Figure 5. Diagrams of the power spectrums of (a) observational significant wave height (SWH_Real),
(b) ERA5 significant wave height (SWH_ERA5), (c) ERA5 mean wave period (MWP), (d) ERA5 mean
wave direction (MWD), (e) tidal level (TL), and (f) tidal variability (VT).
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The energy density of TL and VT are consistent with tidal characteristics, concen-
trated in multiple high-frequency bands with corresponding cycles of 24h, 12h, and 6h,
respectively. Among them, the energy in the 12 h frequency band is the highest, which
is consistent with the high-frequency energy peak value of SWH. Considering that tidal
variation is mainly diurnal, 24 h frequency is taken as the threshold and then Fh_Real can
be separated from Fl_Real.

Correlation analysis and significance tests were conducted on the above parameters.
Pearson’s correlation coefficients (R) are shown in Table 1. Based on the analysis results,
Fl_Real is significantly relative to SWH_ERA5, MWP, MWD, TL, and VT, with much higher
R values versus SWH_ERA5, MWP, and MWD. On the other side, Fh_Real is significantly
relative to MWP, TL, and VT, with much higher R values versus VT. These results further
confirm the applicability of the frequency division method of our algorithm that Fl is
calibrated by SWH_ERA5, MWD, and MWP, while Fh is by VT (see Section 2.2).

Table 1. Correlation analysis results.

SWH_ERA5 MWP MWD TL VT

Fl_Real 0.566 * 0.700 * −0.337 * 0.223 * 0.0731 *

Fh_Real 0.0299 0.0529 * −0.0127 0.287 * 0.598 *

SWH_Real 0.523 * 0.653 * −0.310 * 0.298 * 0.267 *
* means p < 0.001.

3.2. Calibration Results of the Case Study

The algorithm proposed in the study is used to calibrate the SWH_ERA5 in the case of
the coastal area of Nan-ao Island (Figure 1). The calibration results in time series and Taylor
diagrams are presented in Figures 6 and 7, respectively. The results mainly demonstrate
that the accuracy of the SWH_Ca is greatly improved. For example, RMSE reduces from
0.252 m to 0.103 m, MAPE reduces from 41% to 17.6%, and R increases from 0.472 to 0.774.
In Figure 6, although the general variation of SWH_Real can be modeled, the deviation of
the SWH_ERA5 is prominent, and it is more evident for some extreme values. After the
calibration by the algorithm, both the general variation and the high-frequency changes of
SWH_Ca are closer to the observation values than SWH_ERA5. Taylor diagrams further
confirm the effect of the calibration algorithm (Figure 7). In the figure, the statistical
indicators of the calibrated results (Point C) are closer to the reference point (Point A). The
above results illustrate the good performance of the calibration algorithm.
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Figure 7. Taylor diagrams of the SWH_Real (point A), SWH_ERA5 (point B), and SWH_Ca (point C)
in the (a) training dataset and (b) validation stages.

4. Discussion
4.1. Advantages of SOM−RBFnn

The calibration algorithm proposed in this study is based on the SOM−RBFnn. To
examine its relative advantages compared to similar artificial neural networks, e.g., the
original RBFnn that randomly determines initial node coordinates in the hidden layer
and the RBFnn optimized based on the Kmeans algorithm (Kmeans_RBFnn), a control
experiment was performed. In the experiment, the results of SOM−RBFnn in the above sec-
tions are regarded as a reference. By comparison, the original RBFnn and Kmeans_RBFnn,
respectively, are used to replace the SOM−RBFnn in our algorithm, and the calibration for
the case study is repeated with all other settings remaining.

The results of the control experiment show that all three neural networks can improve
the model results to match the observation data in the general trend, but there are specific
differences in some important details (Figure 8). The results with SOM−RBFnn appear to
better improve the errors of modeled SWH, compared to the other two neural networks.
For example, during the simulation period, the SOM−RBFnn error diagram is more con-
centrated near zero than the other two neural networks (Figure 8b). Moreover, from the
perspective of statistical indicators, compared with the other two neural networks, the
calculation results of SOM−RBFnn are impressively lower in MAPE, RMSE, and SI, and
higher in the R-value (Figure 9).

The reason for SOM−RBFnn having the best performance is because SOMnn, com-
pared with the other two clustering methods, can better perform unsupervised clustering,
find the center point of the sample, and more effectively specify the coordinates of neurons
in the middle layer of RBFnn [15–17]. Therefore, the trained SOMnn will perform unsuper-
vised clustering on the input and assign the number and coordinates of the RBFnn hidden
layer nodes, which can optimize the hidden layer neurons of RBF, reduce training time,
and improve the model performance.

In the studies of intelligent prediction or calibration of SWH, different types of arti-
ficial neural networks were constructed according to their specific requirements. For the
model of predicting SWH based on past and current information, neural networks with
memory functions, such as gated recurrent unit networks [8] and long short-term memory
networks [9], were usually used. For models that focus on high-frequency variation of
SWH, wavelet analysis is usually combined with their neural networks [5,7]. Similarly, in
this study, SOM−RBFnn is used to better reflect the clustering characteristics among SWH
and relevant variables such as MWP, MWD, and VT. As a result, the constructed algorithm
can well correct the SWH output from the ERA5 model (Figures 8 and 9).
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series and (b) error histogram.
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4.2. Efficacy of Frequency Division Method

To examine the efficacy of the frequency division method in our calibration algorithm,
another control experiment was performed. In the experiment, SWH_Ca was no longer
processed by Equation (5); instead, it was directly calibrated by the input parameters of
SWH_ERA5, MWP, and MWD (i. e., SWH_Ca = F), and the calibration for the case study
was repeated with all other settings remaining.

The numerical experimental results show that the calibration effect with the frequency
division method is much better (Figure 10). In Figure 10a, the results applying SWH_Ca = Fl
+ Fh are closer to the observational data, while the results with SWH_Ca = F cannot reflect
the extreme values of the real wave height. In addition, the error distribution illustrated in
Figure 10b shows that the errors calibrated by SWH_Ca = Fl + Fh tend more to concentrate
around zero, which indicates the results have more centralized error distributions.
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Figure 10. Comparison between the calculation results of whether to apply the frequency division
method in (a) time series and (b) error histogram.

Because wave height is mainly impacted by the tidal current in the nearshore areas [18–21], the
frequency division method should be applied to calibrate the high-frequency component
of SWH separately. The importance of the frequency division method can be further
illustrated by the power spectrum of the two calibration results in Figure 11. The spectrum
of SWH_Real has a high-frequency peak corresponding to a period of approximately 12 h
(Figure 11a), which is decided by the factor of tidal currents. For example, when the
daily changing current direction and the wave direction are opposite (or the same), the
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wave height will increase (or decrease) [21]. However, SWH_ERA5 does not have this
high-frequency peak (Figure 11b). Thus, if the factor of tidal currents is not taken into
account, the calibration results would not be able to characterize the high-frequency features
(Figure 11c). In our algorithm, by dividing the data into low-frequency and high-frequency
components, and choosing relevant variables to respectively calibrate them, the results will
perform a better simulation of the coastal SWH with a reasonable high-frequency variation
characteristic (Figure 11d).
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Figure 11. The power spectrum of (a) SWH_Real, (b) SWH_ERA5, and the calibration results where
(c) SWH_Ca is treated as a whole variable (SWH_Ca = F) and (d) SWH_Ca is divided into high− and
low−frequency parts (SWH_Ca = Fl + Fh).

Previous studies on SWH prediction have also added the special treatment of high-
frequency variation of SWH to their models. In the models, the high-frequency parts are
mainly separated by wavelet analysis [5,7]. In contrast, the biggest difference in our al-
gorithm is that the high-frequency variation part is separated by the Fourier transform
(i. e., Equations (1)–(5)). This treatment is undertaken because the high-frequency variation of
nearshore waves concerned in this study is mainly determined by tidal-driven currents [18–21].
The frequency of tides is relatively fixed and does not change with time. Thus, it is more
reasonable to use the Fourier transform to analyze the whole scale of SWH than the wavelet
decomposition that integrates the local changes of time and frequency. The results of the
experiment also verify the effectiveness of this treatment (Figures 10 and 11).

5. Conclusions

It is difficult for common wave numerical models to effectively depict the complex
coastline boundary and relative dynamic processes in nearshore areas, probably because
of the limitations of spatial resolutions and parametric schemes. This can easily lead
to an apparent deviation in the simulation and prediction of wave parameters, such as
significant wave height (SWH). To solve this problem, we propose an intelligent algorithm
for the calibration of the modeled SWH in nearshore areas. The core of the algorithm is



J. Mar. Sci. Eng. 2022, 10, 706 13 of 14

based on the self-organizing map–radial basis function neural network (SOM−RBFnn). In
addition, the algorithm uses a frequency division method, which separates the relatively
high-frequency variation within 24 h of SWH and calibrates it independently. Based on the
in situ observations and the corresponding model data output by ERA5 at a typical coastal
site in the northeastern South China Sea, the feasibility of the algorithm is verified by the
increase in the correlation coefficient from 0.472 to 0.774, as well as the decreases in the root
mean square error from 0.252 m to 0.103 m and the mean relative error from 41% to 17.6%.
Control experiments are performed to prove the advantages of SOM−RBFnn compared
to other similar artificial neural networks. Moreover, the experiment further confirms
that the frequency division method can better simulate the high-frequency variations
of the coastal waves. Therefore, the combination of SOM−RBFnn and the frequency
division method appears to have a good performance in calibrating SWH in our algorithm.
This algorithm can be useful to correct the model-predicted SWH for marine hydrological
information support applications and produce high-quality hydrodynamics data for further
oceanography studies.
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