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Abstract: Conventional sediment classification methods based on Multibeam Echo System (MBES)
data have low accuracy since the correlation between features and sediment has not been fully
considered. Moreover, their poor resistance to the residual error of MBES backscatter strength
(BS) processing also degrades their performances. Toward these problems, we propose a seabed
sediment classification method using spatial statistical features extracted from angular response
curve (ARC), topography, and geomorphology. First, to reduce interference of noise and residual
error of beam pattern correction, we propose a robust method combining the Generic Seafloor
Acoustic Backscatter (GSAB) model and Huber loss function to estimate the parameters of ARC
which is strongly correlated with seabed sediments. Second, a feature set is constructed by AR
features composed of GSAB parameters, BS mosaic and its derivatives, and seabed topography
and its derivatives to characterize seabed sediments. After that, feature selection and probability
map acquisition are employed based on the random forest algorithm (RF). Finally, a denoising and
final sediment map generation method is proposed and applied to probability maps to obtain the
sediment map with reasonable sediment distribution and clear boundaries between classes. We
implement experiments and achieve the classification accuracy of 93.3%, which verifies the validity
of our method.

Keywords: acoustic sediment classification; angular response; probability map filter; random forest

1. Introduction

The increase in human activities has had a significant impact on the global water
system and underwater benthic environments, and the study and protection of these
are essential for the sustainable development of mankind [1,2]. As an important part of
the underwater environments, the seabed sediment map is the fundamental geographic
information of the marine environment, utilization of marine resources, marine fisheries,
and marine science. However, the interpretation of types and distribution of seabed
sediments was mainly implemented by grab sampling [3], which is time-consuming,
laborious, and difficult to obtain accurate boundaries of various sediments because of the
low spatial resolution. MBES has the capability of measuring seafloor topography with
high precision, high resolution, and full coverage, and the BS of acoustic signal of MBES
can characterize different sediments. Therefore, the method using MBES data to map the
seabed sediments will greatly make up for the shortcomings of conventional sampling
methods [4].

Researchers have conducted a lot of works on the seabed sediment classification based
on BS mosaics. Preston J. [5] and Brown C. J. et al. [6] divided the BS mosaic into fixed-size
rectangular units and extracted 132 features such as gray-scale statistics, texture, power
spectrum, and fractal dimension to classify seabed sediments. Koop L. et al. [7] classified
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sediments based on bathymetry and its derivatives to prove the validity of terrain features
in sediments mapping by comparing with the classification results based on BS mosaic.
Classification methods considering topographic or geomorphologic geometric features
are hard to achieve high accuracy performance since acoustic response characteristics of
sediments are not taken into account. Thus, Xiaodong Shang et al. [8] used an object-based
image analysis method to extract the terrain features and BS mosaic features for sediment
classification. Xue Ji et al. [9] extracted a total of 40-dimensional features, including BS
mosaic texture features and terrain features, and finally selected the 18-dimensional features
to classify sediments.

These methods that utilize geometric features, which are related to spatial distribution
characteristics of topography and geomorphology, such as slope, etc., do not take into
account physical features, which are related to sediment acoustic properties, such as BS,
ARC, etc., and the extracted features may have weak correlations with sediments. Thus,
these methods may have the inadequate capability to distinguish some types of sediment
which have similarities in terms of terrain and BS mosaic.

The angular response expresses the law that BS changes with the incident angle of
the acoustic signal at the seafloor. AR is the characteristic of sediment scattered acoustic
signal. Clarke et al. [10] used the differential method to extract the relevant parameters
from ARC to characterize sediments. The differential method having poor robustness is
unable to obtain the parameters of ARC efficiently and is not suitable for the automatic
calculation of large datasets. Shaohua Jin et al. [11] comprehensively analyzed AR and
probability distribution of BS, portrayed a 3D histogram, and proposed a method of seafloor
classification based on the 3D histogram of BS. Fanlin Yang et al. [12] proposed a seafloor
classification method based on a convolutional neural network (CNN). The feature vectors,
including BS features and terrain features, are converted into waveform maps, and then
input to the CNN for training and classification. Rozaimi Che Hasan [13] extracted the four
attributes of angular response data such as mean, slope, skewness, and kurtosis from 30◦

to 50◦ incident angles as AR features. However, these parameters are susceptible to noise
interference, and only reflect the AR characteristics of the partial angles, leading to weak
sediment correlation and loss of classification accuracy.

To better describe the characteristics of BS data using ARC, Hellequin [14] constructed
an AR model for the entire range of incident angles based on the different acoustic scattering
characteristics at different incident angles, namely the GSAB model. The GSAB model can
not only fit the BS well but also resist the interference of random errors of measurement.
Shaohua Jin et al. [15] used the least squares method to fit GSAB to extract model parameters
as AR features and conducted unsupervised classification to map the sediments. However,
due to the complexity of the beam pattern and the incomplete correction, the beam pattern
residuals are often contained in BS [16], resulting in deviations in the GSAB parameters.
Thus, it is the key to effectively utilizing GSAB parameters as AR features and improving
classification accuracy to study the robust estimation method of GSAB parameters to
improve the reliability of the model parameters.

In addition to the calculation of features, the classification unit is also a key issue.
Object-oriented classification methods are complex and time-consuming, while pixel-
oriented classification methods are simple and time-saving, but are severely affected by
noise [17]. Therefore, we need to find suitable denoising algorithms for pixel-oriented
classification methods.

Aiming to solve the problem of low classification accuracy caused by the weak cor-
relation between features and sediments, as well as the weak robustness to the residual
error of BS processing using GSAB parameters as AR features, we propose a robust esti-
mation method for AR feature extraction and integrate AR features, terrain features, and
BS mosaic features as a feature set. After the RF feature optimization and probability
map acquisition using the feature set, a denoising and final sediment map generation
method is proposed and the sediment map with reasonable sediments distribution and
clear boundaries between classes can be obtained.
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2. Methods

Before the classification, MBES backscatter data are processed through raw data decod-
ing [18], georeferencing [19], Radiometric corrections [20], angle dependence removal [21],
and mosaicking [18]. The flowchart of MBES backscatter data processing is shown in
Figure 1. Then, the proposed acoustic sediment classification method is applied to obtain
the sediment map. The flowchart is shown in Figure 2.
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2.1. Robust Estimation of ARC with the GSAB Model and Huber Regression

The ARC, the variation of the BS with incident angle, is strongly correlated with
the sediment [22]. The BS contains noise, beam pattern residuals, etc., which deduce the
accuracy of AR features. Therefore, a robust estimation method of AR features combined
with the GSAB model and Huber regression is proposed to resist the interference of outliers
and noise.

The BS achieves its maximum at the vertical incident angle of the beam and decreases
with increasing incident angle. The GSAB model uses Lambert’s Law to describe the
variation of the BS at obliquely incident angles and uses a Gaussian function to fit the
variation of the BS near the vertical incident angles [22] (as shown in Figure 3). The GSAB
model is as follows:

BS(θ) = 10 log
[

A exp
(
−θ2/2B2

)
+ C cosD θ

]
(1)

where A quantifies the maximum amplitude of the specular reflection region. A is related
to the coherent reflection coefficient of the water-seabed interface, therefore, A is high in
smooth seabed surface and water-seabed interface with high impedance contrast [23,24]. B
quantifies the angular range of the specular reflection area and indicates half of the actual
reflection range. In the tangent plane model, B represents the difference in the slope of the
tiny tangent surface of the seafloor, so B is related to the roughness of the water-seabed
interface. C quantifies the average level of BS for grazing angles, and its value increases
with increasing acoustic frequency, seafloor roughness, and sediment acoustic impedance.
D quantifies the decay rate of the BS with the increasing grazing angle. D is high in soft
sediment and smooth seafloor.
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Figure 3. The GSAB model.

The angular response curves obtained by the least squares method are biased due to
the effects of beam pattern residuals and noise. Therefore, we use the Huber regression to
weaken the side effects of outliers on model parameters.
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GSAB is a nonlinear model and needs to be linearized to facilitate parameter calcula-
tion. According to the Taylor formula, the first-order expansion is as follows:

BS(θ) = BS0(θ)− qA A0 − qBB0 − qCC0 − qDD0
+qA A + qBB + qCC + qDD + r

BS0(θ) = 10 log10

(
A0 exp

(
−θ2

2B0
2

)
+ C0 cosD0 θ

)
qA = q0 exp

(
−θ2

2B0
2

)
qB = q0 A0 exp

(
−θ2

2B0
2

)
· θ2

B0
3

qC = q0 cosD0 θ

qD = q0C0 cosD0 θ· ln(cos θ)
q0 = 10(

A0 exp
(
−θ2
2B0

2

)
+C0 cosD0 θ

)
ln 10

(2)

where, A0, B0, C0, and D0 are the initial values of A, B, C, and D, respectively.
Thus the following linear model is constituted:

Y = βTX

Y = BS(θ)− BS0(θ) + [A0 B0 C0 D0]


qA
qB
qC
qD


β = [A B C D ]T

X = [qA qB qC qD]
T

(3)

Huber regression classifies data into two categories based on error and threshold:
outliers which are the data with the error values greater than the threshold, and inliers
which are the data with error values less than the threshold. The Huber regression method
constructs a loss function by calculating the quadratic loss of inliers and the linear loss of
outliers to reduce the weight of outliers. The gradient descent method is then employed to
optimize the regression model [25]. The loss function to be minimized by Huber regression
is formulated as follows:

min
β,σ

n

∑
i=1

Hε

(
yi − xi

T β

σ

)
Hε(z) =

{
z2, if |z| < ε

2ε|z| − ε2, otherwise
(4)

where i = 1, 2, . . . , n is the sample data. ε is the threshold for classifying outliers. σ is the
standard deviation of the residual, to ensure that yi − xT

i β is scaled according to a certain
ratio so that rescaling ε is not required to achieve the same robustness.

2.2. Extraction of Geometric Features

There is a correlation between topographic and geomorphic features and seabed
sediments [26]. We extract depth, slope, aspect, and curvature as topographic features, as
shown in Table 1 [27]. The corrected BS indicates the scattering properties of the sediment to
the acoustic signal and can be used for sediment classification. We mosaic the BS after angle
dependence removal and extract features from it, and select six typical features of gray-
level co-occurrence matrix (GLCM), including contrast (Con), energy (Asm), entropy(Ent),
correlation(Cor), homogeneity(Hom) and dissimilarity (Dis), as texture features, as shown
in Table 1 [28,29].

2.3. Feature Optimization

RF uses the bootstrap resampling technique to extract multiple sample subsets from
the sample dataset, train to generate decision trees by each sample subset, and then use
the prediction results of all decision trees to obtain the final category labels by voting [30].
Therefore, RF is less prone to overfitting than Decision Tree and other algorithms. Moreover,
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RF outputs the importance of features that are useful for feature dimension reduction. To
this end, we introduce the RF algorithm and give a method of feature selection and sediment
classification (in Figure 4).

Table 1. Topographic and geomorphic features.

Types Definition Variable Formula Notes

Topography

Bathymetry z f (x, y) x, y are geographical coordinates
Slope slope arctan

√
p2 + q2 p = ∂z/∂x, q = ∂z/∂y

Aspect aspect 180◦ − arctan p
q + 90◦ p

|p|
Surface curvature curvature − 1+q2r−2pqs+(1+p2)t

2(1+p2+q2)
3
2

r = ∂2z/∂2x, s = ∂2z/∂x∂y,t = ∂2z/∂2y

GLCM

Contrast Con ∑
i

∑
j
(i− j)2P(i, j|d, θ)

P(i, j|d, θ) is the probability that the two
pixels at the distance d and the angle θ
have grayscale i, j, respectively.

Energy Asm ∑
i

∑
j

P(i, j|d, θ)2

Entropy Ent −∑
i

∑
j

P(i, j|d, θ) log P(i, j|d, θ)

Correlation Cor ∑
i

∑
j

i·j·P(i,j|d,θ)−µ1−µ2
σ1·σ2

Homogeneity Hom ∑
i

∑
j

P(i,j|d,θ)
1+(i−j)2

Dissimilarity Dis ∑
i

∑
j
|i− j|·P(i, j|d, θ)
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The sediment classification model generating process is as follows:

1. For a decision tree, randomly sample N times from the sample dataset of size N with
put-back, as the training subset of the tree.

2. Randomly select m (m =
√

M) features from a total of M features as the set of features
used for the nodes division of this tree.

3. Using the CART (Classification and Regression Tree) algorithm to grow the tree
completely without pruning.

4. Repeat the above steps until all trees have been generated.

RF uses the bootstrap resampling technique in the process of tree generation, i.e.,
sampling with put-back. The probability that each sample in the sample set D is not
sampled during the train subset generation of each decision tree is (1− 1/N)N , and N is
the number of samples in D. When N is large enough then [31].

lim
N→∞

(1− 1/N)N = 1/e ≈ 0.368 (5)
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Thus for each tree, about 36.8% of samples in the sample dataset are not used in the
generation of that tree, and these samples are called Out-Of-Bag (OOB) data for the tree, and
the performance of the model can be estimated using the OOB data, i.e., OOB estimation.

The calculation of feature importance based on OOB estimation is implemented by
comparing the classification accuracy of features before and after adding interference [32].
For sample subset i (i = 1, 2, . . . , Ntree), the importance score Dj of feature Xj (j = 1, 2, . . . , M)
is calculated according to the following steps.

1. Set the decision tree Ti and the OOB data Loob
i to correspond to i.

2. Use Ti to classify Loob
i and count the number of correctly classified Roob

i .
3. Perturb the value of Xj in Loob

i , and mark the dataset after the perturbation as Loob
ij .

Use Ti to classify Loob
ij and count the number of correctly classified Roob

ij .

4. For i = 2, 3, . . . , Ntree, repeat steps 1~3.
5. The importance score Dj of the feature Xj is calculated by the following formula:

Dj =
1

Ntree

Ntree

∑
i=1

(
Roob

i − Roob
ij

)
(6)

The steps of feature selection based on importance score are as follows [13]:

1. Scale the importance score of each feature to the range of 0~1, and sort from largest
to smallest.

2. Generate an RF model using features with a score of 1.
3. Generate other RF models based on the following two rules by adding the less

important features in turn:

(1) Add no more than three features each time.
(2) The maximum difference between the importance scores of the features added

each time should be less than 0.2.

The performance of the models is evaluated by calculating the classification accuracy
and Kappa coefficient. The model with the performance is similar to the model trained
with all features and the least features is the model generated by the best-preferred features.

2.4. Probability Map Denoising and Sediment Mapping

The classification model can obtain the probability of each input feature vector belong-
ing to each category by the voting method. We can get Nclass (Nclass is the total number of
sediment types) probability maps by the following steps:

1. Input the feature vector to be classified into the trained RF model, and calculate the
probability pi (i = 1, 2, . . . , Nclass) belonging to each type of sediment.

2. Encode pi to generate a probability map Pi according to the geographic location of the
feature vector.

The MBES data are degraded by various types of noise and reverberation, and the
obtained terrain and BS contain many outliers, which will cause a lot of isolated points in
sediment maps with pixel-oriented classification. The computational effort of the methods
of filtering the features increases as the number of features increases and the final result
cannot be predicted. Although the image filtering methods can eliminate the isolated noise
in the sediment map, the category values in the sediment map are discrete, so it is difficult
to obtain a good filtering performance. Therefore, we use a denoising method for sediment
maps with probability maps.

Gaussian filtering is chosen because it uses a weighted average to denoise, which ac-
cords with the neighborhood correlation of sediment distribution. We filter Pi to obtain the
filtered probability map PG

i with a two-dimensional Gaussian filter. Finally, we synthesize
all PG

i to generate the sediment map (the sediment type corresponding to the maximum
probability pimax of each pixel is the sediment type to which the pixel belongs).
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3. Experimental Section
3.1. Data

The study area is located in the central Yellow Sea, south coast of Jiaodong Peninsula,
and the entrance of Jiaozhou Bay, China. Jiaozhou Bay is a semi-enclosed bay in the
shape of a trumpet. The various underwater geomorphic types and rich seabed sediment
types in Jiaozhou Bay include chalky clay, clayey silt, muddy sand, sandy mud, silt,
coarse sand, gravel, mudstone, and bedrock, which is conducive to the study of sediment
classification [33,34]. We use 16 lines measured by Kongsberg Simrad EM3002 multibeam
system in Jiaozhou Bay in 2002, with a total length of 66 km and a coverage area of
6.6 km2. The operating frequency of EM3002 is 300 kHz, the beam angle is 1.5◦ × 1.5◦,
the equipment adopts equal angle mode, the sector opening angle is about 140◦, and
there are about 116 single beam points per ping. The location of the survey area is shown
in Figure 5a. The topography of the survey area is shown in Figure 5b, and the depth
ranges from 11 to 55 m. Within the survey area, there are 18 sediment samples obtained
with the box sampler during the same period, and the sampling locations are shown in
Figure 5c, which are uniformly distributed along the main direction of the survey area, and
the sediment samples include 3 muddy sand samples, 2 sandy mud samples, 4 fine sand
samples, 1 coarse sand sample, 4 gravel samples, and 4 bedrock samples. Since there is only
one coarse sand sample, we treat it as sand together with fine sand. In order to make the
sample size meet the requirements of the algorithm, we select pixels near sediment samples
and divide them into the training samples and the test samples. About 500 pixels of each
sediment type constitute the training set, and about 200 pixels constitute the test set.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 5. (a) The location of the survey area; (b) seafloor topography; (c) BS mosaic and sampling 
information. 

3.2. Sediment Classification 
The raw data is processed according to the MBES data processing method to obtain 

the seafloor topography (Figure 5b), BS, and BS mosaic (Figure 5c). We construct a sample 
dataset, extract features, build the classification model, and denoise the sediment map 
with these three types of MBES data and sampling information. 

3.2.1. Feature Extraction 
A total of 15-dimensional features such as AR features, terrain features, and texture 

features are extracted using the method in Sections 2.1 and 2.2 using AR data, terrain data, 
and BS mosaic, and the mosaics generated by each type of feature are shown in Figure 6. 

MBES often operates with transmitting or receiving gain to improve the signal-noise 
ratio, enhancing the robustness of topographic measurement, yet adding complex beam 
patterns to the BS. The data in the survey area also contains a beam pattern, as shown by 
the bulge in the ARC near 20° and abnormally high values beyond 55° in Figure 7. We use 
a sliding window of size 30 pings, and the port and starboard are fitted to the GSAB model 
using the method in Section 2.1 to obtain ARCs and extract AR features. 

Figure 7 shows the comparison of the ARC fitting results between the least squares 
method and the Huber regression method for the regions with high, medium, and low-
level BS. Regions 1, 2, and 3 on the left are the regions with high, medium, and low-level 
BS, respectively, and the fitting results of ARCs for each region correspond to plots 1, 2, 
and 3 on the right. It can be found that the fitting results of the two methods within 30° 
do not differ significantly, but the fitting results of the least squares method in the decay 
rate at the edge beams are significantly lower than the Huber regression method due to 
the influence of beam pattern at the edge beams. Judging from the trend of BS variation 
in the range of 30° to 55° without the influence of beam pattern, the fitting results of the 
Huber regression method are more similar to the trend of the true ARCs, and therefore, 
the Huber regression method is considered to be more robust in fitting the ARC with the 
influence of beam pattern. 

Figure 5. (a) The location of the survey area; (b) seafloor topography; (c) BS mosaic and sampling information.

3.2. Sediment Classification

The raw data is processed according to the MBES data processing method to obtain
the seafloor topography (Figure 5b), BS, and BS mosaic (Figure 5c). We construct a sample
dataset, extract features, build the classification model, and denoise the sediment map with
these three types of MBES data and sampling information.

3.2.1. Feature Extraction

A total of 15-dimensional features such as AR features, terrain features, and texture
features are extracted using the method in Sections 2.1 and 2.2 using AR data, terrain data,
and BS mosaic, and the mosaics generated by each type of feature are shown in Figure 6.
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MBES often operates with transmitting or receiving gain to improve the signal-noise
ratio, enhancing the robustness of topographic measurement, yet adding complex beam
patterns to the BS. The data in the survey area also contains a beam pattern, as shown by
the bulge in the ARC near 20◦ and abnormally high values beyond 55◦ in Figure 7. We use
a sliding window of size 30 pings, and the port and starboard are fitted to the GSAB model
using the method in Section 2.1 to obtain ARCs and extract AR features.

Figure 7 shows the comparison of the ARC fitting results between the least squares
method and the Huber regression method for the regions with high, medium, and low-level
BS. Regions 1, 2, and 3 on the left are the regions with high, medium, and low-level BS,
respectively, and the fitting results of ARCs for each region correspond to plots 1, 2, and
3 on the right. It can be found that the fitting results of the two methods within 30◦ do
not differ significantly, but the fitting results of the least squares method in the decay rate
at the edge beams are significantly lower than the Huber regression method due to the
influence of beam pattern at the edge beams. Judging from the trend of BS variation in the
range of 30◦ to 55◦ without the influence of beam pattern, the fitting results of the Huber
regression method are more similar to the trend of the true ARCs, and therefore, the Huber
regression method is considered to be more robust in fitting the ARC with the influence of
beam pattern.

3.2.2. Feature Selection and Sediment Classification

Xue Ji et al. [9] analyzed how the parameters of RF were selected in MBES sediment
classification. Oshiro T.M. et al. [35] discussed the effect of the number of trees on the
performance of RF. The larger the number of decision trees Ntree, the higher the accuracy
of the model, but the higher the computational cost and the risk of overfitting. Increasing
the number of random features m used to construct the decision tree can improve the
accuracy of the model, but it reduces the diversity of decision trees and increases the risk of
overfitting [32]. Taking into account factors such as model accuracy and computational cost,
setting Ntree = 200 (to minimize errors rates), m =

√
M (M is the total number of features)

is suitable for establishing a random forest model for sediment classification [13]. Input
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the training dataset to train the model, and use OOB estimation to obtain the classification
accuracy and the feature importance.
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Table 2 shows the classification performance of different feature sets in the feature
selection process. Model 1 is the classification performance that integrates AR features,
terrain features, and BS mosaic features. The importance score of features based on Model
1 is shown in Figure 8. Train the model with the highest-scoring feature depth to get Model
2, then other features are gradually added to build the classification models according to
the feature selection method in Section 2.3 to obtain Model 3~Model 5, and compare the
performance of models to determine the best feature set.

As shown in Table 2, the overall classification accuracy of Model 4 is 93.3%, and
the Kappa coefficient is 0.92, which is close to the performance of Model 1, and Model 4
uses fewer features than Model 5. Therefore, the features of Model 4 are considered the
best-preferred features, i.e., the parameters A, B, and C of GSAB, depth, slope of terrain
features, and BS as features to construct the classification model.

3.2.3. Denoising

The probability maps of various sediments are obtained based on the above model
for sediment classification, and a Gaussian convolution kernel is constructed to filter the
probability maps, and the probability maps and sediment maps before and after filtering
are shown in Figures 9 and 10. Gaussian filtering utilizes the neighborhood information and
can effectively filter out isolated abnormal probability pixels without seriously affecting the
regional sediments of the probability maps. As shown in Figure 10, the regional sediments
are preserved as shown in the detailed comparison of area 1. Burrs on the contours of the
bedrock in Area 1 are effectively eliminated. The detailed comparison of Area 2 shows that
the isolated sediment areas consisting of a single pixel, or several pixels are filtered, such
as the scatters of sandy mud, gravel, and bedrock. Area 3 shows that the outlines at the
sediment boundary are well preserved without serious distortion. The originally chaotic
outlines of gravel in the bottom-left corner in Area 3 are more clear after processing.
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Table 2. Feature sets of different models and classification performance.

Model 1 Model 2 Model 3 Model 4 Model 5

A
√ √ √

B
√ √ √

C
√ √ √ √

D
√ √

depth
√ √ √ √ √

slope
√ √ √ √

aspect
√ √

curvature
√

BS
√ √ √

Con
√

Asm
√

Ent
√ √

Cor
√

Hom
√

Dis
√

sandy mud 0.96 0.86 0.96 0.97 0.96
muddy sand 0.98 0.56 0.98 0.99 0.99

sand 0.84 0.41 0.79 0.86 0.84
gravel 0.93 0.51 0.86 0.87 0.89

bedrock 0.98 0.8 0.95 0.97 0.98

Overall
accuracy 93.7% 63.2% 91.2% 93.3% 93.4%

Kappa 0.92 0.54 0.89 0.92 0.92
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3.3. Validity of AR Features Extracted by the GSAB Model

The method in this paper (Method 4) is compared with the following three methods:
Method 1: Gaussian mixture model [36];
Method 2: the sediment classification method with terrain features and BS mosaic features;
Method 3: the sediment classification method with AR features (mean, slope, kurtosis,

skewness), terrain features, and BS mosaic features.
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The performance of the four methods is shown in Table 3 and the sediment maps are
shown in Figure 11. It can be seen that:

1. Classification based on the statistical property of BS (Method 1), due to the single
feature and the sensitivity of statistical property to factors of abnormal echoes and
beam pattern residual, the classification model has a serious inadequacy of ability to
distinguish sediments with small differences in BS, such as sandy mud, sand, and
gravel, and the classification accuracy is low. For instance, the sandy mud in area 1 in
Figure 11 is misclassified as gravel.

2. Classification based on topographic and geomorphic features (Method 2) improved
the ability to classify different sediments. It is shown that topographic and geomorphic
features are necessary for sediment classification. However, the classification accuracy
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of sand is still not high, mainly due to the limitations of the classification capability.
Furthermore, in confounding areas of multiple sediments, such as in area 2, the
boundaries of the sediment in the sediment map of Method 2 are very messy.

3. Classification with the addition of AR features (Method 3) has improved the results
relative to Method 2, indicating that the AR features reflect the sediment properties
better relative to other features, but are still influenced by the less robustness of the AR
features extraction method. For instance, in area 3, a portion of sand is misclassified
as gravel, resulting in a large area of sand scattered with some gravel in the sediment
map of Method 3.

4. Classification using the GSAB model parameters as AR features (Method 4) has the
highest accuracy, indicating that the AR features extracted from the GSAB model
can better describe the sediment properties and proves the validity of the method in
this paper. In the sediment map of Method 4, the areas 4, 5, and 6 correspond to the
areas 1, 2, and 3 of other methods, respectively, and have a more correct sediment
distribution, more reasonable boundaries, and fewer sediment impurities.

Table 3. Classification accuracy of four methods.

Method 1 Method 2 Method 3 Method 4

sandy mud 0.36 0.92 0.96 0.96
muddy sand 0.99 0.97 0.98 0.98

sand 0.55 0.75 0.77 0.84
gravel 0.39 0.85 0.86 0.93

bedrock 0.99 0.97 0.99 0.98

overall accuracy 62.2% 89.6% 91.3% 93.3%
kappa 0.52 0.87 0.89 0.92
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Convert the parameter units using Formula (7) and calculate the average value of the
GSAB model parameters of various sediments classified by Method 4, and draw various
sediment ARCs, as shown in Figure 12 and Table 4. It can be found that these parameters
can effectively distinguish different sediment types.

A0 = 10 log A (dB)
B0 = B×180

π (◦)
C0 = 10 log C (dB)

D0 = D

(7)
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Table 4. The GSAB model parameters of various sediments.

A0 (dB) B0 (◦) C0 (dB) D0

sandy mud −9.60 2.849 −20.99 0.73
muddy sand −13.65 2.941 −26.65 1.09

sand −13.42 3.868 −19.14 0.67
gravel −12.99 7.012 −20.53 0.71

bedrock −13.92 8.404 −16.62 0.54

A0 is the BS corresponding to the incident angle of 0◦, that is, the peak value of the
ARC. The A0 of sandy mud is significantly higher than the other four types of sediments,
so A0 can distinguish sandy mud from other sediments.

B0 represents the angular range of the specular reflection area. The B0 of gravel and
bedrock is significantly higher than other sediments, so B0 can distinguish gravel and
bedrock from other sediments.

C0 indicates the average level of BS in the grazing angles. The C0 of muddy sand is
significantly lower than that of other sediments, and that of bedrock is higher than that of
other sediments, so C0 can distinguish muddy sand, bedrock, and other sediments.

D0 represents the decay rate of the BS in the grazing angles. D0 is larger for muddy sand
and smaller for bedrock, so D0 can distinguish muddy sand, bedrock, and other sediments.

The GSAB model parameters distinguish sediments very accurately. The method
in this paper also takes into account the topographic and geomorphic features, which
significantly improves the ability to describe the sediment properties. In particular, the
classification accuracy of sediments with small differences in BS, such as sand and gravel,
is improved, and the overall classification accuracy is improved.

4. Discussion
4.1. Comparison of Results from Different Classifiers

Researchers have applied many classification algorithms to sediment classification,
including unsupervised methods (SOM [37], ISOdata [38], HCA [39,40], etc.) and super-
vised methods (SVM [41], RF [8,13], BPNN [42], CNN [12], etc.). To prove the validity of
our proposed method, we compare its classification results with those of other classifiers.
An unsupervised image segmentation method with Convolutional Neural Networks based
on Differentiable Feature Clustering [43] is used for sediment classification (hereinafter
referred to as DFC). We also use Back-Propagation Neural Network (BPNN), Support
Vector Machine (SVM) for classification as comparative experiments.

The sediment maps obtained by different classifiers are shown in Figure 13, and the
classification accuracy is shown in Table 5. On a larger scale, the prediction results given
by four classification methods are generally consistent. However, there are still large
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differences in the local details. Based on the sample information, the categories clustered
by DFC are correlated to the sediment types. Without training, DFC can not effectively
take the advantage of differences in sediments, and grouped sandy mud and gravel into
the same category, as area 5. In area 1, a large area of bedrock is misclassified as sand. In
areas 2, 3, 6, and 7, the types and distribution of the sediment are generally consistent, but
several small-scale sediments scatter in other sediments, such as several localized gravel
areas in area 2 and sandy mud areas in area 3 scattered over the bedrock area. It is believed
that these local sediments have been misclassified. In general, the classification result of the
proposed method shows a more reasonable distribution of sediments, and the classification
accuracy is the highest, reaching 93.3% in total.
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Table 5. Classification accuracy of different classifiers.

Methods Categories User’s
Accuracy (%)

Producer’s
Accuracy (%)

Average
Accuracy (%) Overall (%) Kappa

DFC

muddy sand 94.6 100 97.3

81.9 0.75
sand 54.6 60.9 57.8

gravel & sandy mud 83.6 87.7 85.7
bedrock 100 73.3 86.7

BPNN

sandy mud 95 83.2 89.1

84.2 0.8
muddy sand 78.1 99 88.6

sand 78.5 69.6 74.1
gravel 78.7 77.4 78.1

bedrock 92.9 92 92.5

SVM

sandy mud 86 96.3 91.2

86.3 0.83
muddy sand 98 97.3 97.7

sand 69.5 79.7 74.6
gravel 83.6 66.3 75.0

bedrock 97.2 92 94.6

Our Method

sandy mud 95.8 97 96.4

93.3 0.92
muddy sand 98.6 97.4 98.0

sand 84.5 84 84.3
gravel 89.6 96.3 93.0

bedrock 96.7 98.9 97.8

We performed the same comparison using MBES data from another surveying area,
namely Area-II. The terrain and BS mosaic obtained from the MBES data are shown in
Figure 14. The sediment maps obtained from different classification methods are also
shown in Figure 14, and the classification accuracy is shown in Table 6. The unsupervised
DFC classifies this area into three categories, corresponding to rock and sand, silty sand,
silty clay, respectively, and other methods obtain four types of sediment. Two areas in
each sediment map are zoomed in for detailed comparison, as shown in Figure 14. The
method we proposed shows good performance in noise reduction and the reliability of
sediment boundaries because of the highest classification accuracy, the homogeneity inside
the sediment, and clear boundaries of different categories.

Table 6. Classification accuracy of different classifiers in Area-II.

Methods Categories User’s Accuracy
(%)

Producer’s
Accuracy (%)

Average
Accuracy (%) Overall (%) Kappa

DFC
rock & sand 89.8 73.3 81.55

82.1 0.72silty sand 62 81.7 71.85
silty clay 95.2 100 97.6

BPNN

rock 95.2 100 97.6

83.7 0.78
sand 85.4 69.5 77.45

silty sand 97.6 68.3 82.95
silty clay 67.4 96.7 82.05

SVM

rock 80 100 90

84.6 0.79
sand 81.8 75 78.4

silty sand 78.9 75 76.95
silty clay 100 88.3 94.15

Our Method

rock 100 100 100

92.9 0.9
sand 83.1 90 86.55

silty sand 90.7 81.7 86.2
silty clay 98.4 100 99.2
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4.2. Limitations
4.2.1. The Influence of Different Operation Modes on AR Feature Extraction

To ensure the quality of the sounding data and achieve high-precision, full-coverage
measurement, the MBES will adopt the multi-sector transmission mode. For example,
Kongsberg EM302 MBES has five operation modes: Shallow, Medium, Deep, Very Deep,
and Extra Deep, and the operation mode can be automatically switched or manually set
according to the water depth. A group of data may be obtained using different operation
modes, i.e., different beam patterns contained in the backscatter data. The Huber regression
method used in this paper to fit the GSAB model to extract AR features cannot eliminate
the beam pattern. Therefore, there may be differences in AR features of the same sediment
under different operation modes, which will affect the classification results. To solve this
problem, the beam pattern elimination method proposed in reference [44] can be used
first. This method combines the backscatter data of homogeneous sediment region and the
GSAB model to iteratively extract the beam pattern residuals and apply the correction to
other data in the same beam pattern to eliminate the beam pattern residuals.

4.2.2. The Influence of Mixed Sediments in Ping

BS of multiple types of sediment may exist in one ping in areas with complex sediments
or at the boundary of different sediments. In this case, one set of ARC parameters cannot
correspond to the characteristic of one sediment, which leads to an inaccurate description
of the sediment by the AR features, which affects the classification accuracy. Especially
when there is a type of sediment with strong scattering ability at the edge beam, the BS
of the edge beam in this region is higher, but the process of extracting AR features in this
paper suppresses the beam pattern while also biasing the AR feature values for this case.
Topographic features and BS mosaic features can make up for the shortage of AR features,
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and the method in this paper is still valid for mixed sediments within one ping which can
be effectively classified by topographic features or BS mosaic features. If the topographic
features or BS mosaic features are weak in classifying mixed sediments within one ping, it
is necessary to consider an iterative method to conduct feature extraction and classification.
Each time, AR features are extracted using all AR data of the same type of sediment based
on the last classification result to realize the classification from coarse to fine.

4.2.3. The Influence of Abnormal Data on Feature Extraction

The bottom detection algorithm of MBES sometimes has errors, not only in single
beam point data but also in regional data, especially in the deep sea, which may lead to
several beams or even ping data exceptions, resulting in regional exceptions in DEM and BS
mosaic. For errors caused by a single beam point, the Huber regression and probability map
filtering used in this paper can effectively eliminate them. For errors caused by local beam
points, the extracted feature values are biased, resulting in incorrect classification results,
and cannot be removed effectively by the filtering method because they are not pixel-level
errors. To solve this problem, abnormal regions can be deleted in data preprocessing,
and the sediment of these regions can be interpolated according to the distribution of
surrounding sediments after classification.

5. Conclusions

Conventional sediment classification methods based on MBES data have low accuracy
since the correlation between features and sediment has not been fully considered, thus, this
paper developed a new seabed sediment classification method. By combining the GSAB
model and Huber regression to fit ARC, the AR features obtained are less influenced by
noise, and accurately reflect the differences in sediment types. Probability maps are filtered
by a Gaussian filter to solve tiny isolated blocks in sediment maps. 6-D features are selected
for classification using the RF algorithm, and high classification accuracy is obtained.
Experiments in Jiaozhou Bay and Area-II have achieved an overall accuracy of 93.3% and
92.9%, respectively, which demonstrates the validity of this seabed sediment classification
method. Comparison experiments demonstrated the superiority of the proposed method,
and sediment maps obtained perform well in noise suppression and outline retention.
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