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Abstract: Yard handling is an important part of port logistics and affects the overall efficiency of
the container port. The yard crane scheduling is affected by various external factors. For example,
the dynamic cut-off time makes the release time of yard cranes variable, and the yard crane task
arrangement will change frequently, resulting in a lot of computational time. To increase the flexibility
of container yard handling, a twin yard cranes scheduling model is established considering the no-
crossing constraints and the dynamic cut-off time. A joint scheduling of PSO and local re-scheduling
strategy (LRPSO) is put forward to deal with the problem faster and more effectively. Small-scale and
large-scale experiments are simulated to verify the performance of the proposed method. Results
show that the scheduling method is more efficient.

Keywords: container ports; twin yard cranes scheduling; dynamic cut-off time; no-crossing
constraints; flexible

1. Introduction

In recent years, the growing demand of shipping has had higher requirements on port
handlings, and the ability of terminals to respond to emergencies needs to be improved.
The container terminal yard undertakes both landing and shipping transportation. The
yard crane is one of the important types of transportation equipment in the terminal yard,
and its work efficiency directly affects the overall carrying efficiency of the terminal. In
each container block, twin yard cranes are generally used for common rail or multi-track
cooperation. Usually, the twin yard cranes are identical and move on a common rail, and
collisions between them need to be avoided. This indicates that a certain safe distance
should be maintained between yard cranes. In addition to internal constraints, yard cranes
are often affected by other aspects, such as port congestion (Shanghai Port congestion in
2018, etc.) or sudden health conditions (2019 New Crown Epidemic, etc.) and delays in
arrival time of ships. Heuermann, A. et al. [1] proposed a concept about dynamic cut-off
time (cut-off time is the latest time a container may be delivered to a terminal for loading
to the scheduled container vessel) and also pointed out that it is an influencing factor of
yard crane handling that cannot be ignored. To improve the turnover rate of ships, the
terminal yard will arrange scheduling in advance, resulting in frequent changes in the
yard crane task schedule when the dynamic cut-off time occurs. If the dynamic changes
increase, it is often not cost-effective to continue global scheduling. Recalculation often
means a lot of time cost in a large-scale scheduling solution. In this paper, the twin yard
cranes scheduling considering the dynamic cut-off time and the non-crossing constraints of
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yard cranes is studied. A joint scheduling of PSO and local re-scheduling strategy (LRPSO),
which includes a particle swarm optimization (PSO) algorithm for initial scheduling and a
local optimization strategy for re-scheduling, is proposed to shorten the computing time
and improve the ability of port to respond to emergencies. Experiment results validate that
the proposed method can deal with more dynamic changes at the same time and improve
the flexibility of the container yard.

2. Literature Review

Improving the efficiency of container yard in port can effectively shorten the time
of ships in port and improve the efficiency of port. Kemme, N. [2] pointed out that, in
fact, shipping lines tend to make fewer but bigger calls with their larger vessels, i.e.,
increasing container volumes have to be transported in short periods of time, thus inducing
increasing peak requirements in storage and handling capacity. As an important transit
station for container transport at the port, the work arrangement of the container yard
at the terminal is generally determined by various factors, such as the cut-off time, port
resources arrangement, policy, and other factors. As an important part of the container
yard, yard crane scheduling will also be affected by multiple factors.

At present, many researchers have studied the yard crane scheduling. Some re-
searchers are concerned with the internal cross-constraint problem in multiple cranes’ co-
operation. Nils, B. et al. [3] provided a classification scheme for crane scheduling problems
with crane interference, and in their classification scheme, any crane scheduling problem is
described by three basic elements: the terminal layout (including the available cranes), the
characteristics of container moving, and an objective to be followed. Ehleiter, A. et al. [4]
introduced that by considering the number of cranes, the crane scheduling can be classified
as one crane, twin cranes, and triple cranes scheduling problems. Additionally, the crane
scheduling problems can also be classified by considering whether the cranes can crossover
each other or not. Based on the above classification ideas, this paper reviews some literature
about different types of yard crane scheduling.

In the research about yard crane scheduling algorithms, some researchers proposed
scheduling solution methods for different yard crane specifications. Amelie, E. et al. [5]
proposed a polynomial-time algorithm to solve the twin crane scheduling problem with
no-crossing constraints. Zey, L. et al. [6] solved the yard crane scheduling problem by
using branch and bound algorithm for triple-crossover-cranes. Zheng, F. et al. [7] consid-
ered that the task processing time would change dynamically due to the arrangement of
task retrieval and storage in the twin yard cranes scheduling problem with an inter-crane
interference constraint. They used heuristics, genetic algorithms, and other methods to
solve the problem. Chen, T.C. et al. [8] were concerned with the location problem of the
signal transmitting station and the allocation and scheduling. They used modern net-
work communication technology, and proposed a hybrid evolutionary algorithm IAPSO
combining immune algorithm and particle swarm algorithm, which could simultaneously
determine the number of signal transmission stations and the category of each station.
Guo, P. et al. [9] considered the twin cranes scheduling in an automated railway container
yard with a handover area, and proposed four FCFS dispatching rules to shorten the
overall transportation distance of the yard crane, thereby saving the energy consump-
tion. Lei, D. et al. [10] studied the container dispatch problem in railway container yards,
proposed the concept of “dig box coefficient”, and used a multi-stage genetic algorithm
considering yard crane storing containers, container sequence of the target position and the
working process. Yu, M. et al. [11] proposed a variety of types of iterative-related learning
particle swarm optimization (IVLPSO) to solve the quay crane scheduling and avoid the
local excessively fast convergence problem of PSO.

Some researchers have also researched different perspectives. Briskorn, D [12] pro-
vided a polynomial programming framework for twin cranes scheduling to facilitate
subsequent research, and proved that the problem is NP-hard. Zey, L. et al. [13] considered
the priority constraints caused by stacking containers in the handover area and provided



J. Mar. Sci. Eng. 2022, 10, 675 3 of 14

insights about the placement of the handover area. Ehleiter, A. et al. [4] aimed at improving
the efficiency of yard crane scheduling at seaside peak times (when a container ship is
berthing), and proposed a heuristic algorithm for two crossover cranes scheduling. Without
considering the release time and the deadline of the crane task, the algorithm minimized
the completion time of a set of containers storage and retrieval request at seaside peak
times. Guvenc, D. et al. [14] proposed a scheduling method for a container yard crane using
tabu search algorithm. Gharehgozli, A. et al. [15] studied the crane scheduling problem
under a new entry and exit mode of multi-containers, and proposed a three-stage solution
method and a heuristic algorithm to solve the problem. Kizilay, D. et al. [16] comprehen-
sively integrated the port container terminal problem, considering the joint optimization of
quay crane allocation and scheduling, yard crane allocation and scheduling, yard location
allocation, and yard truck allocation and scheduling. Zhou, C.H. et al. [17] considered the
cooperation problem between the yard crane and other terminal carrying equipment, and
established a mixed scheduling problem model.

In a word, it is found that PSO and other heuristic algorithms have been widely
used to solve the yard crane scheduling problem, but these methods have low flexibility.
When the release times of crane tasks are randomly changed by liner cut-off time or other
factors, they cannot meet the flexibility requirements of today’s port. Some researchers
may have discussed this issue, such as Zheng, F. et al. [7], who considered the change in
the processing time of the yard crane task, but the release time of the task was regarded
as static. It is necessary to take the task release time as a dynamic variable to improve
the flexibility of twin yard cranes scheduling with no-crossing constraints. This paper
takes the dynamic release time into consideration and builds a mathematical model for
it. Then, a joint scheduling method consisting of PSO and local re-scheduling algorithm
is designed, and its effectiveness and efficiency are validated by experiments. A global
strategy algorithm and PSO are used for comparison experiments. Conclusions are made
in the end.

3. Twin Yard Cranes Scheduling Model with Dynamic Cut-Off Time
3.1. Problem Statement

Usually, there are two identical yard cranes per block, called twin cranes. For these
twin cranes, no-crossing constraints should be taken into consideration. The cranes can
never occupy the same bay and therefore cannot cross each other. In addition, a safety
distance constraint should be satisfied. The two cranes are called crane 0 and crane 1.

There are some assumptions: (1) Yard cranes move along the bay dimension with a
constant speed. (2) Containers enter or leave the container block through the handover
points (HP) of the block, and there is one HP at each end of the yard block. (3) Crane 0
moves along bay 0 ~ baymax − 1 and crane 1 moves along bay 1 ~ baymax when there is
no-crossing constraint, where baymax denotes the bay with the maximum number. (4) Set
bay 0 and baymax are the initial locations of cranes 0 and 1.

The crane spreader which moves along the row dimension loads and unloads contain-
ers along the tiers dimension. No interference is deemed to occur between the two yard
cranes spreaders.

The crane task is divided into three stages: sliding, waiting, and handling, as shown
in Figure 1. During sliding, the crane moves from the current position to the target position;
during waiting, the crane waits and starts to handle until the task is released; during
handling, the crane loads or unloads the container. The crane finishes one task after the
above three stages. Each job of a yard crane consists of two tasks, one task for loading and
the other for unloading.

Each yard crane has an initial task list, and an example is shown in Table 1. Referring
to Amelie, E. et al. [5], a dummy start and a dummy end task are set at the beginning and
end of the crane task list, respectively. The dummy tasks’ target locations are set as the
initial locations of the yard crane. The “Release Time” represents the task release time of
the yard crane; the current task can only be executed after the task release time. In Table 1,
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“Task” represents the crane task number; “Bay” and “Row” represent the target location of
the crane and its spreader, respectively; “Time” represents the handling time consumed by
crane, and “Release time” represents the release time of the task.
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Table 1. An example of initial task.

Task
Handling

Release Time
Bay Row Time

0 0 0 0 0
1 3 0 3 4
2 1 4 4 0
3 2 3 2 6
4 0 3 2 0
5 0 0 0 0

Crane movements (e.g., detours) that are not part of direct handling are listed in the
information row of the task list. Next, the information row will be sorted by the task
starting time. This is different from other research on yard crane scheduling, whose results
generally consist of the initial crane task list and the detour scheduling of the crane [5–7].
The advantages of the information row in this paper are not only that the final result can
be fully reflected in the task list after continuous updating, but also that the presentation
of the task list is more convenient for future optimization and algorithm expansion. The
presentation of the results in this paper will be described in detail in Section 5.

3.2. Mathematical Formulation
3.2.1. Basic Notations

Decision variables and input Parameters are described in Tables 2 and 3, respectively.

Table 2. Descriptions of decision variables.

Decision Variables Description

F Completion time
i Task sequence number, i ∈ [1, N]
τk

i Time consumed by crane k to process task i
τk

i : p Sliding time of crane k when processing task i
bk

t Bay location of crane k at time t
jki Task i handled by crane k
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Table 2. Cont.

Decision Variables Description

jke Dummy end task of crane k
jki : ST Start time of crane k to process task i
jki : Wait Waiting time of crane k when processing task i

Table 3. Descriptions of input parameters.

Input Parameters Description

J Total number of crane tasks
N Total number of tasks, N ≥ 2J
k Crane number, k ∈ {0, 1}
jki : Bay Target bay location of crane k to handle task i
jki : Row Target row location of crane k to handle task i
jki : Rd Release time of crane k to process task i
jki : T Working time of crane k to process task i

3.2.2. Mathematical Model

The objective function is to minimize the maximum completion time of the yard crane
tasks, as shown in Equations (1) and (2).

minF (1)

F = max

(
N

∑
1

τ0
i ,

N

∑
1

τ1
i

)
(2)

The constraint module includes three parts: the task completion time constraint, the
task constraint, and the no-crossing and safety distance constraint. They are detailed
as follows:

τk
i : p = max

(
(|ji : Bay− ji−1 : Bay|),
(ρ|ji : Row− ji−1 : Row|)

)
(3)

jk
i : wait =


jk
i+1 : Rd− jk

i : ST − τk
i : p− jki : T, jk

i+1 : Rd
≥ jk

i : ST + τk
i : p + jki : T

0, others
(4)

τk
i = τk

i : p + jk
i : wait + jk

i : T (5)

jki : ST = jki−1 : ST + τk
i−1 (6)

F = max
(

j0e : ST, j1e : ST
)

(7)

jk
i : ST ≥ jk

i : Rd (8)

bk
t =


jk
i−1 : Bay + sgn(ji : Bay− ji−1 : Bay)×

|t− ji−1 : ST|, t ∈
(

jki : ST, jk
i : ST + τk

i : p
]

jk
i : Bay, t ∈

[
jki : ST + τk

i : p, jk
i+1 : ST

) (9)

b0
t ≤ b1

t − 1 (10)

0 ≤ b0
t ≤ baymax − 1 (11)

1 ≤ b1
t ≤ baymax (12)

Equations (3) and (4) give the calculation method of sliding time and waiting time of
crane k when processing task i, respectively. It is assumed that the speed of the crane in bay
is ρ times that of the crane spreader in row. In Equation (5), the task timeline of the yard
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crane is composed of three parts: the sliding time, the waiting time, and the handling time
of the task. It is easy to deduce Equation (6) from Equations (2)–(4), and Equation (6) shows
that the current task completion time is the start time of the next task. Thus, the makespan
of the whole crane tasks is equal to the start time of the crane dummy end task, as shown
in Equation (7).

Equation (8) indicates that the start time of the task is later than the release time of
the task. Equation (9) indicates that the completion time of the task will be later than
the deadline, where sgn(x) is the sign function. Equation (10) defines the safety distance
between the yard cranes to be at least one bay; Equations (11) and (12) define the moving
range of crane 0 and 1 to be bay 0 to baymax − 1 and bay 1 to baymax, respectively.

4. Joint Scheduling of PSO and Local Re-Scheduling
4.1. Joint Scheduling Idea

From Section 2, heuristic algorithms such as PSO have been applied many times to
yard crane scheduling problems; however, these studies have not considered the dynamic
variables. When the cut-off time changes, the yard crane tasks’ release times will change
accordingly. The initial scheduling no longer meets the demand. If the global algorithm is
used to re-schedule the current yard crane tasks, it will cost a lot of time. When the yard
crane tasks changes frequently, especially, the time cost will increase greatly. Therefore,
it is not efficient to use a global scheduling method to solve the yard crane scheduling
problem considering dynamic cut-off time. A local re-scheduling method joint with PSO
initial scheduling called LRPSO in the paper is used to solve the problem. The PSO initial
scheduling ensures that the initial solution is optimal or close to optimal. Then, the local
re-scheduling strategy is used to deal with the frequently changing yard crane tasks, so as
to reduce the overall solution time on the basis of ensuring that the solution is optimal or
close to optimal.

4.2. PSO for Initial Scheduling

Some researchers use the PSO characteristics of rapid convergence to solve the schedul-
ing problem, and have confirmed the advantages of PSO method for many scheduling
problems [18–20]. PSO is used in this paper to solve the initial scheduling as a whole, so as
to ensure that the final results are optimal or nearly optimal. The velocity and position are
normally updated by the following:

vi+1 = wvi + c1r1(pbesti − pi) + c2r2(gbest− pi) (13)

pi+1 = pi + vi+1 (14)

where
vi: Velocity of particle at i-th iteration,
w: Inertia weight,
c1: Cognitive coefficient,
c2: Social coefficient,
r1, r2: Random numbers in (0, 1), regenerated in each iteration
pbesti: Local best position of particle
gbest: Global best position of swarm
pi: Position of particle
In PSO solving, there are no changes in the release time of yard crane tasks. The

algorithm steps are described in Algorithm 1.
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Algorithm 1: The Algorithm Steps

Step 1. Initialize the task parameters.
Step 2. Assign tasks to the yard cranes according to the task information, randomly generate task
scheduling sequences after allocation, then generate initial scheduling particles based on
continuous integer task sequence.
Step 3. According to the set initial number of particle swarms, generate the corresponding
number of scheduled particles and initial swarm parameters: particle position, local optimal
position, global optimal position, global optimal value, and particle velocity.
Step 4. Perform particle swarm iteration.
Step 5. Stop the iteration when the set number of iterations is met, otherwise turn to Step 4.
Step 6. End.

4.3. Local Re-Scheduling for Dynamic Cut-Off Time

Although an optimal or nearly optimal result has already been scheduled for the initial
static crane task list, re-scheduling is still needed according to the constraints of the crane
scheduling model when some task release times change. It will be time-consuming if the
global solution method is directly used, and it is obviously not cost-effective. Therefore,
based on the static initial optimal scheduling, a sort of local re-scheduling is proposed to
solve this problem, so that the solving range is local.

The task types and its corresponding task number are set in Table 4. Local re-
scheduling of crane 0 is used to ensure that no new cross problem will appear in local
adjustments. Local re-scheduling of crane 1 represents a detour task to avoid new interfer-
ences between yard cranes.

Table 4. Task type and its number.

Task Type Task Number

The actual task j
Originally planned task j*
Detour task of crane 0 −2
Detour task of crane 1 −1

Local re-scheduling of crane 0 −3
Local re-scheduling of crane 1 −4

Assume that the task release time of task I of yard crane 0 changes, as shown in
Figure 2, which is a time-domain diagram of local re-scheduling strategy. In Figure 2,
“W0” and “W1” represent the initial scheduling timelines of cranes 0 and 1, respectively.
Labels 1 to 5 are the specific time periods on the timeline “W0” and “W1” that need to be
partially rescheduled. The gray part on the timeline represents the time occupancy of the
corresponding task.
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Label 1 corresponds to the original handling period of task i, and t0
i represents the

original j0i : ST on the timeline. Label 2 corresponds to the new handling period of task i
after rescheduling, which meets the constraint of release time. Label t0

i0 indicates the time
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when task i needs to be re-inserted. After the insertion, the new number for task i is i0.
Then, the time period 1 would become a no-handling period of crane 0 to avoid increasing
interference (crane 0 waits after reaching the destination position while the spreader does
not move).

The time period of label 3 ensures that yard crane 0 returns to the target location of
task j0i0−1 when the newly inserted task is handled. During t0

x ~ t0
x+1, yard crane 0 will

move to the target location of task j0i0−1.
After the local re-scheduling of labels 1 to 3 is completed, add detour task to yard

crane 0 if there is interference at label 3. Additionally, there will be a local re-scheduling task
at label 4, in which the yard crane 0 gives way to yard crane 1 until yard crane 1 completes
the current task. In this way, there are no other changes for yard crane 0 except that the
locations of labels 2, 3, and 4 are changed. It makes the non-crossing constraints between
the yard cranes satisfied in the time period at the time period marked 1© in Figure 2.

Label 5 corresponds to the detour task of yard crane 1. Finally, yard crane 1 will
return to the initial location, that is, the starting location of task j1y0. The detour task time is
determined by the extension time of yard crane 0. It keeps yard crane free of interference at
the time periods of labels 2© and 3©. By means of above steps, a new scheduling is obtained
based on the original optimal scheduling.

As mentioned above, the algorithm starts from a static initial optimal scheduling. It is
assumed that the release time of crane 0 task i is delayed, j0i : Rd→ j0i : Rd∗ . The steps of
the algorithm are described in Algorithm 2:

Algorithm 2: The Algorithm Steps

Step 1. Find the insertion point i0. Take the minimum value of i0,
i0 ∈ {i0 = e− 1} ∪min

{
j0i0 : Rd > 0∩ j0i : Rd∗ ≥ j0i0 : ST

}
. If i0 ≤ i, turn to step 5; otherwise, turn

to the next step.
Step 2. Insert task i (i ∈

{
j0i : Job = j

}
) into position of task i0 in the task list. Revalue

j0e−1 : Rd = j0i : Rd∗, j0i : Job =−3. If i0 = e− 1, turn to step 4; otherwise, turn to the next step.
Step 3. As label “j0x−1” and label “j0i0−1” are shown in Figure 2, if j0x−1 : Bay 6= j0i0−1 : Bay, insert a
task j0x into task x in the task list, set j0x : Bay = j0i0−1 : Bay, j0x : Row = j0i0−1 : Row, j0x : Job = −4,
and set the remaining parameters to zero. If j0x−1 : Bay = j0i0−1 : Bay, turn to the next step.
Step 4. As label “y0” shown is in Figure 2, get the value of y0,

y0 ∈ {y0 = e− 1} ∪min
{

j1y0 : ST ≥ j0i0
}

. When there is interference between crane 0′s whole

tasks and crane 1′s tasks 0 to j1y0−1, crane 0 makes way. Crane 1 gives way to the bay 9 of the yard,

and returns to the initial position j1y0−1 : Bay at the end of the detour. The time it takes for crane 1
to give way is equal to the delay of crane 0. Then, insert the detour task for crane 1 into task y0 in
the task list of crane 1.
Step 5. Update the release time of task i, j0i : Rd = j0i : Rd∗.
Step 6. End.

5. Computational Experiments
5.1. Parameter Setting

The size of each yard is set to bay ∈ [0, 9], row ∈ [0, 5] (the yard data refer to the
parameters of Qingdao Xinqianwan automated terminal). Yard crane ∈ {0,1}. The particle
swarm size is set to 10, the weight is 0.729, the cognitive coefficient and the social coefficient
are 1.494, and the number of iterations is 50.

It adopts MacBook Pro 13 (from Apple, Cupertino, CA, USA) with 2.3 GHz quad-core
Intel Core i5 processor, 8 GB 2133 MHz LPDDR3 memory, and the programming language
is Python 3.8 (from Python Software Foundation, Wilmington, DE, USA).

5.2. The Effectiveness Experiments

Randomly generate a task group with 20 tasks, as shown in Table 5. In the table, the
representations of “Task”, “Bay”, “Row”, “Time”, and “Release Time” are the same as
those in Section 3.1. The particle swarm algorithm is used to find the initial global solution.
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Firstly, the algorithm generates scheduling particles according to the task information
provided in Table 5. The scheduling particles include the task allocation of yard cranes 0
and 1, the scheduling sequence, and the priority of each yard crane task. Then, the particle
swarm algorithm is used to obtain an optimal or near-optimal solution. The best result
obtained by PSO is shown in Figure 3. Figure 3 gives a spatiotemporal diagram of yard
cranes 0 (red line) and 1 (blue line). The horizontal axis represents the time, and the vertical
axis represents the bay location of the yard crane. All tasks’ numbers are displayed in the
figure according to their handling time and bay locations. The red/blue number indicates
that the task was handled by crane 0/1. It can be seen that there is no collision between
yard cranes 0 and 1; that is, the algorithm can obtain a solution that meets the constraints.

Table 5. Initial tasks.

Task Bay Row Time Release Time

1 1 2 4 0
2 5 3 4 0
3 6 1 4 0
4 1 3 4 0
5 4 4 2 0
6 5 2 4 0
7 2 1 4 0
8 7 2 1 0
9 8 3 4 0
10 7 4 3 0
11 8 1 6 0
12 1 2 4 0
13 6 3 4 0
14 2 3 3 0
15 6 4 2 0
16 4 3 4 0
17 5 2 4 0
18 7 1 4 0
19 2 4 1 0
20 8 4 2 0
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figure. From Figure 4, it can be seen that all tasks are handled after their release time, and
the overall completion time becomes longer after the task release time changes. The yard
cranes complete all tasks without collisions, so LRPSO meets the constraints.

Table 6. Tasks’ release time renewal.

Number Bay Row Time Release Time

1 1 2 4 27
2 5 3 4 17
3 6 1 4 35
4 1 3 4 11
5 4 4 2 48
6 5 2 4 20
7 2 1 4 55
8 7 2 1 14
9 8 3 4 28
10 7 4 3 14
11 8 1 6 30
12 1 2 4 43
13 6 3 4 10
14 2 3 3 23
15 6 4 2 19
16 4 3 4 61
17 5 2 4 48
18 7 1 4 19
19 2 4 1 13
20 8 4 2 32
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It can be seen that the joint scheduling method including PSO and local re-scheduling
is effective.

5.3. Simulation Comparison

Simulation experiments are carried out for different task scales and different task
release time ranges (variation ranges). The compared algorithms are global strategy al-
gorithm and PSO algorithm. After the release time of tasks changed, the global strategy
algorithm always re-solves the fitness value (completion time) according to the original
optimal plan. The PSO algorithm re-solves iteratively according to the new tasks.
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In each set of simulation experiments, the PSO algorithm is first used to generate
an initial optimal planning solution. Then, the release time of some tasks in the original
task group are randomly changed according to the variation range, and three algorithms
are used to solve the dynamic task group. Finally, the performance of the algorithms is
compared in terms of calculation time and fitness value results.

Comparison results are given in Table 7, where “N” represents the total number of
tasks; “variation range” refers to the variation range of the overall tasks’ release time,
“0” means that there is no change, and “100%” means that all the tasks’ release time are
changed. “CPU Time” represents the calculation time of algorithms in seconds, and the
recorded results are kept to one decimal place.

Table 7. Simulation comparison data.

N Variation Range
CPU Time (s) Completion Time

LRPSO Global Strategy PSO LRPSO Global Strategy PSO

500

5% 0.5 2.1 626.3 5058 5983 5021
15% 0.2 2.5 646.2 5682 6389 5613
25% 0.8 2.3 651.3 5467 6526 5481
50% 1.1 2.6 677.5 7907 6596 6234
75% 1.4 2.3 689.3 6533 6549 6399

1000

5% 1.1 4.4 1292.4 8795 13,318 11,731
15% 1.5 4.7 1260.3 9895 13,052 12,249
25% 1.6 4.9 830.9 10,770 12,972 12,373
50% 2.1 4.3 840.9 13,843 13,299 12,602
75% 2.9 4.2 858.3 16,050 13,170 12,869

1500

5% 1.6 6.4 1366.4 8651 13,120 11,413
15% 1.8 6.5 1163.5 9288 11,482 11,230
25% 2.1 6.5 1345.7 10,105 11,515 11,586
50% 2.8 6.6 1325.5 12,133 12,113 11,820
75% 3.7 6.5 1344.1 14,194 12,149 11,884

2000

5% 2.2 8.7 1833.5 11,339 14,962 14,164
15% 2.8 9.1 1766.6 12,167 15,253 14,954
25% 3.4 8.8 1759.5 15,841 22,105 21,564
50% 5.4 9.0 1736.3 18,800 18,217 18,243
75% 8 9.0 1985.5 23,309 18,537 18,303

Figure 5 summarizes the CPU time and the solution results of LRPSO, global strategy
algorithm, and PSO algorithm under different task scales based on the data in Table 7. The
histogram shows the CPU time, and the line graph shows the fitness values. Since the CPU
time of PSO far exceeds that of the other two algorithms, it is not shown. On the whole,
as the task scale increases, the solution time of each algorithm increases. The CPU time of
the LRPSO is much shorter than other two algorithms. When the release time variation
range is less than 50%, the solutions of the LRPSO are better than other algorithms. Under
the same task scale, the solution time of the LRPSO increases with the increase of the task
variation range. As the task scale increases, the trend of time spent and solution results
shows obvious regularity: when the release time variation range exceeds 50%, the increase
rate of the solution time and fitness value solution results is accelerated, and the slope
becomes steeper. It can be seen that the performance of the LRPSO is better than other
algorithms within the release time variation range of 50%. When the release time variation
range exceeds 50%, the performance of the LRPSO is greatly reduced compared with other
algorithms and is no longer applicable.
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From the comparison results, it can be seen that the LRPSO can be applied to large-scale
dynamic yard crane scheduling with a release time variation range less than 50%.



J. Mar. Sci. Eng. 2022, 10, 675 13 of 14

6. Conclusions

Aiming at improving the flexibility of the terminal yard, this paper studies the twin
yard cranes scheduling problem, considering the dynamic cut-off time and no-crossing
constraint. The dynamic cut-off time makes the release time of the yard crane variable, and
the yard crane task arrangement will change frequently, resulting in a lot of computing
time. To decrease the computing time and improve the terminal yard efficiency, a joint
scheduling strategy of PSO and local re-scheduling is proposed. This solution method is
proved to be effective and practical, and it is easier to be optimized and extended. The
contributions of this paper are as follows: (1) a twin yard cranes scheduling model is built
considering environment variables, which is closer to reality; (2) a local re-scheduling
strategy joint with PSO is proposed, which can improve the adaptability of yard crane
scheduling to environmental variables and other influencing factors. The experiment results
show that LRPSO has better performance compared with the global strategy and PSO in
the large-scale scheduling with the release time variable variation range less than 50%.

We will use more scheduling methods for comparison in future research, such as
polynomial-time, heuristics, genetic algorithms, and so on. Another further study is to set
both task release time and task processing time as dynamic variables. Furthermore, we
will also concentrate on optimizing the schedule of the initial retrieval and storage of yard
cranes, taking container storage scheduling of the yard into consideration, and optimizing
the cooperation of automated guided vehicles and yard cranes.
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