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Abstract: In order to accurately explore the relationship between the density of Engraulis japonicus
and environmental factors, five types of models, including Tweedie-Generalized Additive Model
(GAM), two-stage GAM, Ad hoc-GAM, and Generalized Additive Mixing Model (GAMM), were
compared based on the survey data in offshore waters of southern Zhejiang, China from 2015 to 2021
in this study. The results showed the best goodness of fit for two-stage GAM when processing the data
of E. japonicus resource density. The deviance explained of GAM1 and GAM2 were 19.9 and 53.8%,
respectively. According to this study, water temperature and salinity are important environmental
factors affecting the distribution of E. japonicus, which are also closely related to latitude. In general,
the resource density of E. japonicus decreases gradually with the increase in water temperature. When
the salinity was between 26 ppt and 34 ppt, the resource density was higher. Also, there were some
differences in the spatial distribution of E. japonicus in different seasons. The relationship between
the resource density of E. japonicus and environmental factors was analyzed through various models
to provide a scientific basis for the conservation management of E. japonicus in offshore waters of
southern Zhejiang, China.

Keywords: spatio-temporal distribution; Generalized Additive Model; zero values; cross-validation

1. Introduction

The relationship between fishery resources and the marine environment is very com-
plex, with non-linear and non-additive relationships [1]. Therefore, it is important to
select appropriate methods for quantitative analysis of the relationship between fishery
resources and the marine environment. Previous studies [2–4] indicated that changes
in the stock spatial structure might cause due to changes in environmental conditions.
Thus, understanding the relationship between species distribution and habitat can provide
necessary information for predicting the impact of climate change and formulating relevant
management strategies [5].

Species Distribution Models (SDMs) are effective tools to study the relationship be-
tween research objects and habitat environmental factors as well as to explore the spatio-
temporal distribution of fish [6]. SDMs can be divided into two types [7]: (1) “only presence”
models that ignore the missing values and zero values, such as ecological niche factor anal-
ysis (ENFA) [8] or maximum entropy model (MaxEnt) [9], which can find habitats similar
to species record sites based on the environmental conditions, and (2) “presence-absence”
models, which need to record resources and efforts in the survey, such as Generalized
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Additive Model (GAM), Generalized Linear Model (GLM), or Regression Trees Analyses.
Many scholars use the presence-absence models to explore the relationship between fishery
resource density and environmental factors [10–13]. As a kind of SDM, GAM can deal with
the non-linear relationship between response variables and explanatory variables, such
as spatial, temporal, and environmental variables [14], which comes with good stability
and more flexibility for exploring the relationship between fishery resource density and
environmental factors [15].

In the actual sampling process, due to sampling methods, selection of fishing gear,
and small stock size, there may be a large number of zero values in fishery resource
data causing certain difficulties in estimation of the model with log-normal distribution
error [16]. Bouska et al. [17] showed that model selection was the main uncertainty factor
in the establishment of SDMs. Therefore, selecting an appropriate SDM based on the
actual survey data can effectively improve the accuracy and reliability of the model. In
relevant modeling research in the fishery field, several methods are usually used to deal
with a large number of zero values, such as Ad hoc-GAM, Generalized Additive Mixed
Models (GAMM), two-stage GAM, and Tweedie-GAM. Ad hoc-GAM applies the model to
data with zero values by adding a constant (the link function is a natural logarithm) [18].
GAMMs are very suitable for processing time-series data and have good performance in
processing fishery data [4]. Two-stage GAM is a widely used data survey with a large
number of zero values that ensures good results [3,10,19]. To better process data with a large
number of zero values, Tweedie [20] also proposed a special distribution law called Tweedie
distribution, which is suitable for processing non-negative data with a large number of
zero values [16].

The offshore waters of southern Zhejiang are located in the East China Sea. Under the
influence of water mass, such as coastal waters of Fujian and Zhejiang as well as Taiwan
Warm Current, there are adequate nutrients and bait organisms supporting abundant fish
resources [21]. However, after the 1990s, due to overfishing and water pollution, the main
economic fish in the offshore waters rapidly declined, and fish species, such as Engraulis
japonicus, gradually became the fishing target [21,22]. E. japonicus is a pelagic migratory fish
with a strong clustering pattern. It is widely distributed in the East China Sea and Yellow
Sea of China, and is the prey of many higher trophic level species [23], thus playing an
important role in the ecosystem. In recent years, under the influence of water pollution and
overfishing, the sampling zero value of E. japonicus frequently appeared in the resource
survey and monitoring stations. Therefore, how to select an appropriate model method
to explore the distribution mechanism of E. japonicus resources in this area has become an
urgent scientific problem to be solved. Based on the independent survey data of offshore
fisheries in southern Zhejiang from 2015 to 2021, this study explored the goodness of
fit and prediction performance of Tweedie-GAM, two-stage GAM, Ad-hoc GAM, and
GAMM in processing large amounts of zero value data and analyzed the relationship
between E. japonicus and environmental factors. This gave a further understanding of
the distribution pattern and the latest dynamics of E. japonicus resources that enhanced
our understanding of the ecological mechanism of species distribution, which acted as
the research reference for the conservation management and sustainable utilization of
fishery resources.

2. Materials and Methods
2.1. Data Sources

From November 2015 to February 2021, a seasonal survey of fishery resources was
conducted in the offshore waters of southern Zhejiang. Since no E. japonicus was found
in the survey in summer (August) every year, we only used survey data in spring (May),
autumn (November), and winter (February). The survey area ranged from 120.93◦ E to
122.95◦ E, 27.21◦ N to 28.97◦ N (Figure 1). The field survey was conducted during the day.
E. japonicus mainly lives in the middle and lower to bottom waters during the day [24]. So,
we used the bottom trawl for fishing. The total length of gear was 95 m. The fishing gear
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was 40 m wide and 7.5 m high. The length of the bottom and floating substrates was 80 m.
The mesh of the net capsule was 2 cm, and the towing speed was 2–4 kn. The operation time
of each survey station was about 1 h. At each survey station, the water quality analyzer
WTW-Multi 3430 was used to collect environmental data, such as water temperature and
salinity. The collection, determination, and analysis of water quality samples were carried
out in accordance with the Specifications for Oceanographic Survey (GB/T 12763) [25]
and Specification for Marine Monitoring (GB 17378) [26]. According to the total catch and
proportion of each station, the catch data were standardized according to trawl time (1 h)
and trawl speed (3 kn).

Figure 1. Distribution of sampling stations in offshore waters of southern Zhejiang.

2.2. Selection of Model Explanatory Variables

Given the obvious seasonal migration of E. japonicus during spawning, feeding, and
winter migration [27], longitude, latitude, and offshore distance were selected as the
influencing factors of the spatial distribution of E. japonicus. The offshore distance was
the shortest distance from the survey station to the shore, which was calculated in the Sp
package in R [28]. Water temperature, salinity, and water depth are closely related to the
resource distribution of E. Japonicus, as it is a pelagic fish species [27,29]. A total of 7 factors
(surface water temperature, surface salinity, water depth, month, longitude, latitude, and
offshore distance) were selected to explore the relationship between E. japonicus resource
distribution and environmental influencing factors. Before modeling, variance inflation
factor (VIF) was used to test the multicollinearity of variables while excluding highly
correlated explanatory variables with a VIF value greater than 5 [3,4].

2.3. Model Theory

In this study, five types of models (two-stage GAM, Tweedie-GAM, GAMM, and Ad
hoc-GAM) were used to explore the relationship between the presence probability, resource
density of E. japonicus, and environmental factors. In addition, the goodness of fit of the
model to the data was measured by deviance explained (the proportion of the null deviance
explained by the model).

GAM can fit the non-linear relationship between response variables and explanatory
variables, and the expression is as follows:

Y = α + ∑P
j=1 f j

(
Xj
)
+ ε (1)



J. Mar. Sci. Eng. 2022, 10, 657 4 of 16

where Y denotes the resource density of E. japonicus (g/h); α denotes the intercept of the
fitting model; refers to the smoothing function; a spline smoothing function was used in
this study; is an independent variable; residual ε = σ2 and E(ε) = 0.

2.3.1. Two-Stage GAM

The model has two stages: the first stage of the GAM estimates the presence prob-
ability (P) of E. japonicus with a binomial error distribution, and the second stage of the
GAM estimates the log transformation abundance of the species a with a Gaussian error
distribution [30]. The formula is given as follows:

Logit(P) = month + s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) (2)

The second stage GAM (GAM2), estimates the log-transformed E. japonicus resource
density using the identity link function [3,10]. The two-stage GAM model formula is
as follows:

GAM1:Logit(P) = month + s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) + ε (3)

GAM2: ln(density) = month + s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) + ε (4)

Combined with the results of GAM1 and GAM2, the final log-transformed E. japonicus
density was estimated [19].

ln(y) = ln(P) + ln(density) (5)

where month denotes the month; Lat denotes latitude; Lon denotes longitude; T denotes
water temperature; S denotes salinity; depth denotes water depth; Dis denotes offshore
distance; density denotes E. japonicus resource density; P denotes the occurrence probability
of E. japonicus; ε denotes a random error.

2.3.2. Tweedie GAM

Tweedie distribution was first proposed by a British statistician in 1984 [20], which
is a special probability distribution in exponential dispersion distribution. It is usually
expressed as Twp(θ, ϕ) and is determined by variance function V(µ) = µP, where θ is
a standard parameter; ϕ is a dispersion parameter; p ∈ (−∞, 0) ∪ [1,+∞). Tweedie
distribution includes several common important distributions. When p = 0, 1, 2, 3, it
corresponds to a normal distribution, Poisson distribution, Gamma distribution, and
inverse Gaussian distribution. When 1 < p < 2, corresponding Twp(θ, ϕ) is a composite
distribution between Poisson distribution and Gamma distribution [20]. The probability
density equation is as follows [16]:

f (y : θ, ϕ, p) = a(y : ϕ, p) exp
{
− 1

2σ2 d(y : θ, p)
}

(6)

where θ is the location parameter; ϕ is the diffusion parameter; p is the energy parameter;
and d(y : θ, p) is the unit deviation.

The Tweedie distribution was used to establish the relationship between E. japonicus
and environmental factors. The Tweedie-GAM expression is as follows:

density = month + s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) (7)

where month denotes month; Lat denotes latitude; Lon denotes longitude; T denotes water
temperature; S denotes salinity; depth denotes water depth; Dis denotes offshore distance;
density denotes the E. japonicus resource density; ε denotes a random error.
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2.3.3. GAMM

GAMM is an extension of GAM, including fixed and random effects, which is very
suitable for processing time series and autocorrelation data [31]. In the southern sea area
of Zhejiang, the distribution of E. japonicus changes with season [27]. In this study, season
(month) was used as a random error term of GAMM. GAMM expression is as follows:

GAMM:density = s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) + ε (8)

random = month (9)

where month denotes month; Lat denotes latitude; Lon denotes longitude; T denotes water
temperature; S denotes salinity; depth denotes water depth; Dis denotes offshore distance;
density denotes the E. japonicus resource density; ε denotes a random error.

2.3.4. Ad Hoc-GAM

Ad hoc-GAM refers to the addition of a constant c to the resource density so that the
model can process data containing zero values. According to Tian et al. [18], constant c is
usually 1, but some relevant studies [32] have stated that a constant selection of 10% of the
average resource density can reduce the error. Therefore, 1 and 10% of the average resource
density were selected as the constant c to compare which effect was better (named as Ad
+ 1 GAM and Ad hoc-mean GAM). After the addition of the constant, we carried out a
logarithmicization process for the dependent variable, and the expression is as follows:

ln(density + C) = month + s(Lat) + s(Lon) + s(depth) + s(Dis) + s(T) + s(S) + ε (10)

where month denotes month; Lat denotes latitude; Lon denotes longitude; T denotes water
temperature; S denotes salinity; depth denotes water depth; Dis denotes offshore distance;
density denotes the E. japonicus resource density; ε denotes a random error.

2.4. Model Selection

Akaike Information Criterion (AIC) can be used to measure the goodness of fit of
multiple models [33]. The smaller the AIC value, the better the fitting degree of the model.
In this study, the GAM between environmental factors and resource density was established
by permutation and a combination of variable factors after screening. The model with the
smallest AIC value in each method was considered the optimal model.

The calculation method of AIC is as follows:

AIC = 2k− 2 ln L (11)

where k is the number of parameters, and L is the likelihood function.

2.5. Cross-Validation

In this study, 80% of the data were randomly selected as the training set and the
remaining 20% as the test set. The above process was run 1000 times to verify the predic-
tion performance of different models. During each cross-validation, a linear relationship
between the model predicted value and the actual observed value was built, and the root
mean square error (RMSE) and mean absolute error (MAE) between the predicted and
observed values were calculated. Closer the value to zero, the better the model goodness
of fit [34,35]. The linear relationship between the predicted and observed values can be
expressed as follows:

lnY = a + b ∗ lny (12)

where y denotes the predicted value of the model; Y denotes the actual observed value
of the model. When a = 0 and b = 1, it means that the predicted resource density and the
actual observed resource density (i.e., test data) have a similar spatial pattern. The model
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has a good prediction performance [19]. R2 was used to express the prediction effect of the
model. When R2 is closer to 1, the prediction effect of the model becomes better [3].

The calculation equation of RMSE is as follows [34]:

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(13)

The calculation equation of MAE is as follows [35]:

MAE =
1
n ∑n

i=1|(Pi −Oi| (14)

where n denotes the observation frequency; Oi denotes the ith observed value; Pi denotes
the ith predicted value.

2.6. Comparison of Models

Based on the results of cross-validation, the prediction effects of the 5 models were
compared to select the optimal model for processing zero value data.

All statistical analyses were carried out in R (V3.6.0), and the model was implemented
through the “mgcv” package. The distribution of E. japonicus resource density and stations
were drawn in Arcmap 10.8.

3. Results
3.1. Zero Value Ratio of E. japonicus

From 2015 to 2021, the sampling zero-value of E. japonicus accounted for the largest
proportion (90.5%) in autumn and the smallest proportion (46.1%) in spring. In spring,
the zero value ratio of E. japonicus was mainly concentrated in 40–60%, with an average of
44.6± 23.7%. In autumn, the zero value ratio of E. japonicus was mainly concentrated within
75–100%, with an average of 90.6 ± 12.7%. In winter, the zero value ratio of E. japonicus
was mainly concentrated within 60–80%, with an average of 74.6 ± 17.7%. The sampling
zero value ratio in three seasons was ranked from highest to lowest as follows: autumn >
winter > spring (Figure 2).

Figure 2. Zero value ratio of E. japonicus in offshore waters of southern Zhejiang in spring, autumn,
and winter from 2015 to 2021: (a) Spring; (b) Autumn; and (c) Winter.

3.2. Spatial and Temporal Distribution of E. japonicus Resource Density

The distribution of E. japonicus resources in offshore southern Zhejiang showed ob-
vious spatial differences in different seasons (Figure 3). The distribution characteristics
of resource density were opposite to the zero value ratio of E. japonicus (spring > winter
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> autumn). In spring, the E. japonicus in offshore waters was higher than that of the open
waters, while it was the opposite in autumn, presenting a distribution pattern of higher
resource density in open waters than in offshore waters. In winter, there was a significant
north-south difference in the study waters, and E. japonicus mainly concentrated in the
northern waters of 28◦ N.

Figure 3. Distribution of E. japonicus in offshore waters of southern Zhejiang in spring, autumn, and
winter from 2015 to 2021: (a) Spring; (b) Autumn; and (c) Winter.

3.3. Results of Different Models

VIF test results showed that VIFs of water temperature, water depth, salinity, and
offshore distance were all less than 5. The VIFs of longitude and latitude were greater than
5, and the VIF of longitude was the largest. After removing the longitude, the collinearity
test was conducted again for the influencing factors, and VIFs were less than 5 (Table 1).
Therefore, six influencing factors, including month, water temperature, salinity, water
depth, offshore distance, and latitude, were adopted to establish the model.

Table 1. Collinearity test for predictor variables.

Factor T S Depth Dis Lat Lon

VIF
1.08 1.56 3.76 4.14 31.8 38.8
1.08 1.56 2.78 2.18 1.17 -

Note: the “-” denotes removing this factor.

In terms of two-stage GAM, GAM1 consisting of month, latitude, water temperature,
salinity, and water depth was the optimal model at this stage, with a deviance explained of
19.9%. Latitude and water temperature were significantly correlated with the occurrence
probability of E. japonicus (p < 0.05, Table 2). GAM2 consisting of month, latitude, water
temperature, salinity, and water depth, was the optimal model at this stage, with a deviance
explained of 53.8%. Water temperature was significantly correlated with the occurrence
probability of E. japonicus (p < 0.05, Table 2).

The optimal variable combination of Tweedie-GAM was month, water temperature,
and salinity, and the model deviance explained was 46.7%, among which salinity was
found to be a significant influencing factor (p < 0.001, Table 2).

All explanatory variables were included in the optimal GAMM, and the deviance
explained of the model was 73.2%. All five influencing factors were significantly correlated
with the resource density of E. japonicus (p < 0.001, Table 2).
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Table 2. Model selection results of the five optimal models.

Model Optimal
Model

Degrees of
Freedom p AIC Deviance

Explained

Two-stage GAM

GAM 1

latitude 1.001 0.014 *

375.90 19.9%
temperature 2.076 0.009 **

salinity 1.108 0.141
depth 2.749 0.074
month - -

GAM 2

latitude 1.000 0.185

445.35 53.8%
temperature 7.890 0.037 *

salinity 6.282 0.136
distance 5.646 0.229
month - -

Tweedie-GAM
temperature 1.480 0.112

19,870.02 46.7%salinity 7.903 <0.001 ***
month - -

GAMM

latitude 7.997 <0.001 ***

202,817.3 73.2%

temperature 8.978 <0.001 ***
salinity 8.998 <0.001 ***
distance 8.997 <0.001 ***

depth 8.997 <0.001 ***
month - -

Ad hoc-GAM

Ad + 1 GAM

latitude 1.000 0.009 **

1641.45 30%
temperature 2.098 0.030 *

salinity 7.293 0.104
month - -

Ad hoc-mean GAM

temperature 3.621 0.045 *

1120.89 29.6%
salinity 7.452 0.057
latitude 1.000 0.033 *
depth 1.000 0.092
month - -

Note: * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

The variable combination of optimal Ad + 1 GAM included all factors except water
depth and offshore distance, and the deviance explained of the model was 30.0%. Latitude
and water temperature were significantly correlated with the resource density of E. japonicus
(p < 0.01 and p < 0.05, respectively; Table 2). For Ad hoc-mean GAM, the optimal variable
combination was month, water temperature, salinity, latitude, and water depth, with a
deviance explained of 29.6%. Water temperature and latitude were significantly correlated
with the resource density of E. japonicus (p < 0.05, Table 2).

3.4. Relationship between E. japonicus Resource Density and Environmental Factors

There was a non-linear relationship between water temperature and resource density
as well as occurrence probability (Figures 4a, 5a, 6a, 7a and 8a). In GAM1 (Figure 4a), Ad
+ 1 GAM (Figure 7a) and Ad hoc-mean GAM (Figure 8a) showed a negative correlation
between water temperature and occurrence probability as well as resource density of
E. japonicus. In GAM2, the relationship between water temperature and resource density
was non-linear, with multiple peaks, showing an overall negative correlation (Figure 5a).
Compared to other models, the relationship between water temperature and E. japonicus
resource density was significantly different in GAMM. The resource density of E. japonicus
was the lowest at 16.5 ◦C and the highest at 25 ◦C (Figure 6a).
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Figure 4. Response curves for variables of GAM 1 in two-stage GAM: (a) effect of temperature;
(b) effect of latitude; (c) effect of salinity; and (d) effect of depth. Dashed lines show 95% confidence
intervals. The dots represent the residuals.

When the salinity ranged from 24 ppt to 34.5 ppt, the resource density of E. japonicus
increased significantly with the increase in salinity (Figures 6b and 9b). When salinity
reached 26 ppt, it showed a multi-wave non-linear relationship, which was at a high level.

According to GAM1 (Figure 4b), Ad + 1 GAM (Figure 7b), and Ad hoc-mean GAM
(Figure 8b), there was a positive linear correlation between latitude and resource density
as well as the occurrence probability of E. japonicus. However, in GAMM (Figure 6d), the
relationship between latitude and E. japonicus became very complicated.
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Figure 5. Response curves for variables of GAM 2 in two-stage GAM: (a) effect of temperature;
(b) effect of latitude; (c) effect of salinity; and (d) effect of distance. Dashed lines show 95% confidence
intervals. The dots represent the residuals.

Figure 6. Cont.
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Figure 6. Response curves for variables of GAMM: (a) effect of temperature; (b) effect of salinity;
(c) effect of distance; (d) effect of depth; and (e) effect of latitude. Dashed lines show 95% confidence
intervals. The dots represent the residuals.

Figure 7. Response curves for variables of Ad + 1 GAM: (a) effect of temperature; (b) effect of
latitude and (c) effect of salinity. Dashed lines show 95% confidence intervals. The dots represent
the residuals.

Figure 8. Cont.
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Figure 8. Response curves for variables of Ad hoc-mean GAM: (a) effect of temperature; (b) effect of
latitude; (c) effect of salinity; and (d) effect of depth. Dashed lines show 95% confidence intervals.
The dots represent the residuals.

Figure 9. Response curves for variables of Tweedie-GAM: (a) effect of temperature; and (b) effect of
salinity. Dashed lines show 95% confidence intervals. The dots represent the residuals.

3.5. Prediction Performance of the Model

The results of 1000 cross-validation showed that the R2 of Ad + 1 GAM fitting curve
was the largest, and that of GAMM was the smallest among the five models. Two-stage
GAM had the smallest RMSE and MAE and a relatively large R2 of 0.18 (Table 3). Therefore,
comprehensively considering MAE, RMSE, and R2, two-stage GAM should be selected as
the optimal model to predict the resource density of E. japonicus.
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Table 3. 1000 cross validation results of different models.

Model RMSE MAE R2

Two-stage GAM 1324 274 0.18
Tweedie-GAM 1725 389 0.14

GAMM 1697 361 0.10
Ad + 1 GAM 1709 381 0.24

Ad hoc-mean GAM 1816 467 0.17

4. Discussion
4.1. Comparison between Different Models

Due to the decline in fishery resources, the patch aggregation of fish, and the selection
of fishing gear for survey [36], it is impossible to effectively capture the target species in
the fishery resource survey, thus resulting in many zero values in the survey data. In this
study, zero value data accounted for 70% of the total data, which did not follow the general
data distribution pattern (positively skewed distribution). Five models commonly used
to deal with zero value data were used to establish the relationship between the resource
density data of E. japonicus and environmental factors. It was found that two-stage GAM
had more advantages in processing the data of E. japonicus resources. There is a certain
difference in deviance explained of GAM1 and GAM2. The deviance explained of GAM1
was 19.2%, which was relatively lower, while that of GAM2 was 53.4%, and the model
goodness of fit was good. However, there might be other important factors affecting the
presence of E. japonicus. E. japonicus has obvious clustering characteristics, and waters with
higher resource density represent the suitable living environment for this species to some
extent, which makes the deviance explained of GAM2 relatively higher. In future studies, if
biological factors (e.g., bait organisms) [37] and species interactions (e.g., predation and
prey) [38] can be included in the model as explanatory variables, it will be conducive to
model goodness of fit. The results of 1000 cross-validation showed that R2 of the fitting
curve of Ad + 1 GAM predicted and measured which values were the largest. While
two-stage GAM had the smallest RMSE and MAE, the R2 was relatively large, indicating
that it had a better effect on the processing data of E. japonicus resource data in the waters
of southern Zhejiang. Although two-stage GAM is considered more suitable for processing
the density data of E. japonicus resources as compared to other models, its prediction
effect is not particularly good, which may be due to fewer influencing factors discussed
in this study and the formation of fishing ground associated with the spatio-temporal
distribution structure of environmental factors. It is difficult to dynamically parameterize
such spatio-temporal correlations [39]. Therefore, the survey frequency of E. japonicus
migration during flood season and the collection of marine environmental data can be
increased in future studies to better match the data collection with the living habitats of
E. japonicus and improve the prediction ability of the model.

4.2. Relationship between E. japonicus Resource Density and Environmental Factors

The current study analyzed the relationship between different environmental factors
and E. japonicus resources using different models. Although the goodness of fits and
prediction performance of each model was different in comparative analysis, except for the
Tweedie-GAM excluding the latitude, water temperature, salinity, and latitude, all existed
in these models. Therefore, water temperature, salinity, and latitude may play an important
role in the distribution of E. japonicus in southern Zhejiang.

Relevant studies have shown that water temperature can dominate the growth, de-
velopment, and reproduction of fish [21] and affect the entire food web structure of fish
by participating in the regulation of primary viability [40]. In this study, the relationship
between water temperature and E. japonicus resources was similar, but there were slight
differences. After careful consideration, 10–11 ◦C is considered the optimum water temper-
ature range for E. japonicus. The range for optimum water temperature of E. japonicus is
different from other relevant studies [27,41], where 8–11 ◦C is the optimum temperature
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range for E. japonicus. Niu et al. [42] have reported that the optimum temperature is dif-
ferent due to the different temperature ranges of fish in their different life stages, and the
stock size, age structure, and fishing situation also affect the distribution of E. japonicus.

Salinity is one of the important environmental factors for fish development and
distribution. It can change the fish stock by changing the osmotic pressure of fish eggs and
affecting the development of embryos [14,43,44]. However, few studies have focused on
how salinity affects the presence and distribution of E. japonicus. In this study, the effect
of salinity on the resource distribution of E. japonicus showed a multi-wave non-linear
relationship (Figure 5c). Previous studies have shown that the salinity of offshore waters
of southern Zhejiang was due to the influence of the coastal current with cold water and
low salinity, and Taiwan warm current with warm water that shows higher distribution
characteristics in the east and lower distribution characteristics in the west [45,46]. As a
kind of migratory fish [27], there is a big difference in the spatial distribution characteristics
of E. japonicus in different seasons, which even showed a contrary distribution pattern in
this study. Therefore, the relationship between salinity and E. japonicus is complex and
variable, which may explain the multi-wave non-linear relationship between the resource
density of E. japonicus and salinity.

Latitude, as a spatial factor, plays an important role in the resource density of E. japoni-
cus in the offshore waters of southern Zhejiang. It has an indirect effect on the distribution of
E. japonicus, by changing other environmental factors, such as temperature and salinity [47].
In this study, GAM1 (Figure 4b) showed a positive linear correlation, while GAM2 showed
a negative linear relationship (Figure 5b). Every spring, with the gradual increase in water
temperature, the wintering stock located at lower latitudes gradually leaves the wintering
grounds for waters at higher latitudes for breeding migration under the effect of gonad
maturation. In autumn, influenced by the decreasing water temperature, E. japonicus began
to migrate to the southern waters with higher water temperature [45], which migrates
between high and low latitudes. Latitude represents water temperature to a certain extent.
Thus, it can affect the resource density of E. japonicus stock.

4.3. Importance of Sampling

The relationship between fishery resource density and environmental factors and
the spatio-temporal distribution of target species are affected by time, space, and fishing
methods. E. japonicus is a small pelagic fish [37]. However, bottom trawl nets were used
to investigate the depth of the water layer, which was not fully matched with the habitat
water layer of E. japonicus, leading to the occurrence of a large number of zero values. In
addition, spawning migration and wintering migration of E. japonicus are found in different
seasons [42]. In this study, samples were taken in quarters with a longer time scale, thus
weakening the importance of the E. japonicus migration process. In recent years, under the
influence of overfishing, the number of resources was found to be at its lowest value [21].
Thus, E. japonicus was not captured in many stations, leading to zero value data.

The distribution of E. japonicus is closely related to spatio-temporal and hydrologic
environmental factors [27,42], and the prediction of its resource distribution using fewer
environmental factors may lead to some deviation. In this study, due to the selection of
fixed stations with equal spacing for sampling, there is a high correlation between longitude
and latitude. So, longitude was excluded in modeling, which might limit the prediction
effect of the model to some extent. Li et al. [19] showed that random station sampling was
superior to fixed station sampling, and the fixed station sampling might underestimate
the true value of resource density. Therefore, in the follow-up studies, it is necessary to
optimize the sampling scheme to obtain more accurate data and improve the fitting ability
of the model.

Several models commonly used to deal with zero value data were compared to select
a more suitable model to explore the relationship between the E. japonicus resource density
data and environmental factors in the present study. At the same time, researchers thought
of selecting suitable SDMs for other fish species. However, the influence of biological
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factors should be properly considered in future research to have a more comprehensive
understanding of the habitat change mechanism and resource density in this sea area.
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