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Abstract: This paper presents a data-driven model reduction by moment-matching approach to con-
struct control-oriented models for a point absorber device. The methodology chosen and developed
generates models which are input-to-state linear, with any nonlinear behaviour confined to the output
map. Such a map is the result of a data-driven approximation procedure, where the so-called moment
of the point absorber system is estimated via a least-squares procedure. The resulting control-oriented
model can inherently preserve steady-state properties of the target WEC system for a user-defined
class of input signals of interest, with the computation only dependent upon a suitably defined set of
input-output data.

Keywords: model reduction; moment-matching; wave energy converters; optimal control

1. Introduction

Wave energy converters (WECs) require control algorithms to enhance their efficiency:
It is well-established that suitable control system technology, tailored to maximise energy
absorption from ocean waves, has the potential to push WEC systems towards effective
commercialisation [1–3]. The vast majority of WEC controllers rely upon availability of
a suitable control-oriented model, capable of effectively trading accuracy with computa-
tional/analytical complexity. The latter can impact both well-posedness of control solutions
(i.e., existence of a globally optimal control law for a given operating condition), and real-
time capabilities of any specific WEC controller [4]. A pathway towards computation of
such parsimonious models is based on model reduction techniques, where a target model
is reduced into a ‘simpler’ (yet representative) structure, with a level of complexity suitable
for the specific control task.

The relevance behind incorporating nonlinear effects within the WEC control design
procedure, i.e., of using nonlinear control-oriented dynamical models, has been extensively
demonstrated and stressed in multiple studies, such as those reported in [5,6]. Wave
energy systems are, by design, likely to exhibit substantial nonlinear behaviour, given
that their principal objective, pursued by the corresponding optimal control law, is to
enhance the device motion in order to maximise energy absorption. This, naturally, chal-
lenges the assumptions under which linearisation about the WEC equilibrium position is
effectively representative (see, e.g., [5,6]). Though rather scarce, we note that attempts at
control-oriented model reduction for WEC systems have been presented in, e.g., [7–10],
though simplified models are often computed by selectively ‘ignoring’ specific nonlinear
components, based upon a pre-defined set of operating conditions.

Following the central role of systematic model reduction in producing nonliner control-
oriented models for WEC control design procedures, we present, in this manuscript, an ap-
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plication of moment-matching-based model reduction wave energy systems.
Moment-matching techniques [10–12] have the capability of producing reduced mod-
els which effectively matches the steady-state response of the target nonlinear system to
be reduced.

In particular, we propose a model reduction approach for a point absorber device
(whose geometry and corresponding dimensions are adopted from [13]), based upon
data-driven moment-matching [14,15]. This device is an offshore, single body, bottom
referenced, floating WEC, which extracts energy from the (translational) heave motion
(see Figure 1). The main objective pursued in this paper is that of producing accurate
and efficient moment-matching-based reduced models for such a WEC system, subject
to a variety of input (wave) conditions. Such objective is achieved by first providing a
formal proof on existence and uniqueness of the associated family of reduced order models,
and by subsequently employing a fully data-driven algorithm for the approximation of the
so-called nonlinear moment, based only on input-output data pairs, being this fundamental
towards the final computation of the approximating system. Moreover, the proposed
strategy is exhaustively illustrated via numerical analysis.

The reminder of this paper is organised as follows. Section 1.1 presents the notation
utilised throughout our study. Section 2 defines the dynamical (target) model of the point
absorber system. Section 3 provides a moment-based analysis of the WEC, and proposes
a family of reduced models achieving moment-matching from a data-driven perspective.
Finally, Section 4 offers a numerical appraisal of the performance of the proposed models,
while Section 5 encompasses the main conclusions of our study.

Figure 1. Schematic of the point absorber device under study. Dimensions are presented in metres.
Note that the acronym SWL denotes the still water level.

1.1. Notation and Conventions

R+ is the set of non-negative real numbers, C0 the set of pure-imaginary complex
numbers, and C<0 the set of complex numbers with negative real part. The notation
Nq indicates the set of all positive natural numbers up to q, i.e., Nq = {1, 2, . . . , q} ⊂ N.
The span of the set X = {xi}k

i=1 ⊂ Z , where Z is a vector space over a field F, is
denoted as span{X }. The symbol 0 stands for any zero element, dimensioned according
to the context. The spectrum of a matrix A ∈ Rn×n, i.e., the set of its eigenvalues, is
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denoted as λ(A). Given two functions, f : Y → Z and g : X → Y , the composition
( f ◦ g)(x) = f (g(x)), which maps all x ∈ X to f (g(x)) ∈ Z , is denoted with f ◦ g. Finally,
the Fourier transform of a function f (provided it exists), is denoted as F(ω), ω ∈ R.

2. Point Absorber Dynamics

The point absorber WEC device adopted in this study, schematically illustrated in
Figure 1, whose geometry and corresponding dimensions are adopted from [13]. The sys-
tem is essentially an offshore WEC (see [16]), where energy is extracted from the heave
(translational) mode of motion. The dimensions of such a (full-scale) device are recalled in
the schematic presented in Figure 1.

If we constrain the WEC to move in a single degree-of-freedom 1 (DoF), i.e., heave,
the equation of motion of such a device can be expressed as a dynamical system Σ, fully
characterised in terms of the the so-called nonlinear Cummins’ Equation (see, e.g., [19]),
given by 2

Σ :

{
z̈ =M( frad + fe + fv + fre − u),

y = ż,
(1)

where z : R+ → R denotes the displacement of the device (selected as the system output 3

y), frad : R+ → R the radiation force (which accounts for the fluid memory effects),
fv : R+ → R the viscous force, fre the restoring force, fe : R+ → R, the wave excitation
force (i.e., external uncontrollable input representing the force exerted by waves on the
surface of the device), u : R+ → R, the control input, andM ∈ R>0 is the inverse of the
generalised WEC mass.

The radiation force is modelled based on linear potential theory, and can be hence
characterised by a linear, continuous-time, strictly proper, passive 4, system Σr, which
directly depends upon the output of system (1). Without any loss of generality, such an
output feedback system can be expressed, in state-space representation, as

Σr :

{
Γ̇ = FΓ + Gy,

frad = HΓ,
(2)

with Γ(t) ∈ Rnr , with nr ∈ N≥1 sufficiently large, F ∈ Rnr×nr , and {G, Hᵀ} ⊂ Rnr .
The mapping fv, characterising viscous effects, is written in terms of a smooth approxima-
tion of the so-called Morison Equation [22], i.e.,

fv = −αvż
√

ż2 + ε, (3)

with ε ∈ R+ sufficiently small, and αv ∈ R+ directly depending on the physical dimensions
of the device. The restoring force fr is expressed in terms of a polynomial mapping in z
(see [19]), i.e.,

fre = −βr0 z + βr1 z2 + βr2 z3, (4)

where βr0 ∈ R+ is commonly referred to as hydrostatic stiffness, and {βr1 , βr2} ⊂ R.
With the specific definitions for the mappings offered above, system Σ in (1) can be

expressed in state-space form as

Σ :

{
ẋ = f (x, ζ) = Ax + Bζ + g(x),

y = h(x) = Cx,
(5)
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with ζ = fe − u the total input force, and where the associated state vector is defined as
x = [z ż Γᵀ]ᵀ, x(t) ∈ Rn, with n = 2 + nr. The triple of matrices (A, B, C), with A ∈ Rn×n,
{B, Cᵀ} ⊂ Rn, is given by

A =

[
A0 −B0H

GC0 F

]
,

B =

[
B0

0

]
,

C =
[
C0 0

]
,

(6)

together with

A0 =

[
0 1

−Mβr0 0

]
,

B0 =

[
0
M

]
,

C0 =
[
0 1

]
.

(7)

The mapping g : R2+nr → R2+nr , which is exclusively composed of terms characteris-
ing the nonlinear behaviour of system (1), can be written as

g(x) =
[

g0(x)
0

]
, (8)

with g0 defined as

g0(x) =

[
0

M
(
−αvx2

√
x2

2 + ε + βr1 x2
1 + βr2 x3

1

)]. (9)

We further note that the maps g and g0 are such that g(0) = 0 and g0(0) = 0 so that,
clearly, f (0, 0) = 0 and h(0) = 0.

3. Moment-Based Analysis of the WEC

We present, in this section, the definition of moments for the point absorber device
under study, together with an appropriate structure to achieve model reduction by moment-
matching. The concepts recalled in this section are based upon the system-theoretic ap-
proach originally proposed in [11], later extended to a large class of systems (and inputs)
in, e.g., [14,23,24].

From now on, and for aiming to simplify our exposition, we assume the WEC device
is subject to regular input excitation fe with a given fundamental frequency ω0 ∈ R+.
Nonetheless, we do note that extension of the following results to irregular sea states can
be conducted analogously to [10] (see also the discussion provided in Remark 2).

Remark 1. The corresponding optimal control input u, which maximises energy absorption (under
state-and-input unconstrained conditions) for such an fe, is a mapping with the same fundamental
frequency ω0 (see [19,25]).
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3.1. Definition of Moment

In view of Remark 1, let the mapping, corresponding to the total external input
ζ = fe − u, be expressed in implicit form, i.e., in terms of a signal generator (often referred
to as an exogenous system), described by the set of equations

G :


ξ̇ = Sξ,

ζ = Lξ,

S =

[
0 ω0

−ω0 0

]
,

(10)

for t ∈ R+, with {ξ(t), Lᵀ} ⊂ Rν, and hence S ∈ Rν×ν, with ν = 2. From now on, and
without any loss of generality, let the output vector of G be defined as L = [1 1].

Remark 2. As discussed previously in this section, and for simplicity of exposition, the signal
generator in (10) considers that the corresponding system input is composed of a single fundamental
frequency component ω0, i.e., the device is subject to regular (monochromatic) waves. Extension
of this strategy for irregular sea states can be performed analogously to the model-based reduction
framework in [10], by defining a corresponding signal generator with a sufficiently large set of
harmonic multiples of ω0, i.e., with a dynamic matrix Se given by

Se =
d⊕

p=1

[
0 hpω0

−hpω0 0

]
(11)

with the set of harmonic frequencies F = {hpω0}d
p=1 ⊂ R+, where H = {hp} ⊂ N≥1,

and adapting the upcoming results accordingly.

We now introduce the following standing assumption, adopted from [23,23].

Assumption 1. The pair of matrices (S, ξ(0)) is excitable.

Remark 3. For linear systems, excitability is equivalent to reachability, with x(0) playing the role
of the input matrix 5.

Remark 4. If (S, ξ(0)) is excitable, i.e., under Assumption 1, one can easily check that
span{ξ1, ξ2} = span{cos(ω0t), sin(ω0t)}, and hence the input mapping ζ is T0-periodic, where
T0 = 2π/ω0 ∈ R+ the fundamental period of ζ.

Aiming to provide a formal definition of moment for the point absorber device de-
scribed in Equation (5), we further introduce an assumption regarding the stability of Σ.
Note that, due to the nature of the nonlinear map g, defined in Equation (8), one can check
that (x, ζ) = (0, 0) is an equilibrium (invariant) point of the system defined in Equation (5)
straightforwardly, i.e., ∂g/∂x|(x,ζ)=(0,0) = 0.

Assumption 2. The zero equilibrium of the point absorber system ẋ = f (x, 0) is locally exponen-
tially stable.

Note that Assumption 2 is without any loss of generality since, for any set of phys-
ically meaningful parameters, system (5) is such that λ(A) ⊂ C<0, and hence the zero-
equilibrium of ẋ = f (x, 0) is locally exponentially stable (see [13,19]). We are now ready to
introduce our first proposition, based upon fundamental results presented in [11].



J. Mar. Sci. Eng. 2022, 10, 656 6 of 16

Proposition 1. Consider the point absorber system (5) with an input mapping ζ described in terms
of the signal generator (10). Let L = [1 1]. If Assumptions 1 and 2 hold, there exists a map π,
locally defined in a neighbourhood Ξ of ξ = 0, with π(0) = 0, which solves:

∂π(ξ)

∂ξ
Sξ = f (π(ξ), Lξ), (12)

for all ξ ∈ Ξ, and the steady-state response of the interconnected system (5)–(10) is xss(t) =
π(ξ(t)), for any x(0) and ξ(0) sufficiently small.

Proof. See Appendix A for a proof of this statement.

Definition 1 ([11]). The mapping h ◦ π is the moment of the point absorber system (5) at the
signal generator (10), i.e., at G.

Remark 5. The notion of moment in Definition 1, together with the result offered in Proposition 1,
imply that the moment of the point absorber WEC system defined in Equation (5) at the signal
generator G, computed along a particular trajectory ξ(t), coincides with the (well-defined) steady-
state response of the output of the interconnected system (5)–(10), i.e., yss(t) = h(π(ξ(t))).

3.2. Model Reduction by Moment-Matching

As briefly discussed throughout Section 1, the theoretical grounds underlying model
reduction by moment-matching are rooted in the strong existing connection between
moments, as mathematical objects (see Definition 1), and the steady-state output response
of the composite system (5)–(10) (see, e.g., [11]). Aiming to keep this paper reasonably
self-contained, we recall the definition of a moment-based reduced order model for the
nonlinear point absorber WEC system (5), driven by the class of inputs generated by (10).

Definition 2 ([11]). Consider the point absorber system Σ in (5) and the autonomous system
defined in (10). The dynamical system

Σ̃ :

{
Ω̇ = $(Ω, ζ),

ỹ = σ(Ω),
(13)

with $ : Rν ×R→ Rν, σ : Rν → R, Ω(t) ∈ Rν, and ỹ(t) ∈ R, is called a model of system (5)
at the signal generator G, if system (13) has the same moments at G as system (5). Furthermore,
if ν < n, we call system (13) a reduced order model of system (5) at G.

Though Definition 2 formally introduces the concept of a model reduced by moment-
matching, its actual computation is still implicit. Following the result presented in [12],
a particularly simple family of reduced models, achieving moment-matching at G, of order
(dimension) ν = 2, for the point absorber device defined in equation (5), can be explicitly
written in terms of the mapping h ◦ π, with π the solution of (12), as

Σ̃ :

{
Ω̇ = (S− ∆L)Ω + ∆ζ,

ỹ = h(π(Ω)),
(14)

with ∆ ∈ R2 a free (design) parameter.

Remark 6. Equation (14) defines a family of reduced order models achieving moment-matching
described by an input-to-state linear differential equation with a nonlinear output map. Note that
this is highly appealing from a computational perspective: the main ‘cost’ behind solving (14) for a
given input signal is merely the cost of solving a linear operator. This is further demonstrated in
Section 4 by means of numerical analysis.
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Remark 7. Note that, if λ(S− ∆L) ⊂ C<0, the family of models (14) has the exact same steady-
state output response of the nonlinear target point absorber WEC system Σ at the signal generator G.
Furthermore, given the observability condition on the pair (S, L), the complex-valued set λ(S−∆L)
can be freely assigned. This, naturally, allows for preservation of particular properties of the target
system to be reduced in the computed simplified structure.

Remark 8. The success of the family of systems (14) in practical scenarios depends entirely upon
the availability of the mapping h ◦ π, i.e., the corresponding moment, which solves the partial
differential equation (12). Given that, in practice, this is far from trivial (even when in possession of
exact knowledge of the system dynamics defined by f and h in (5)), a data-driven formulation is
adopted in Section 3.3, to approximate the corresponding moment based upon input-output data.

We now introduce the following result, which is analogous to (Lemma 4, [15]). In par-
ticular, we show that the moment for the point absorber device, computed along a specific
trajectory of (10), is T0-periodic, with T0 = 2π/ω0. This result is instrumental to the
data-driven approach presented in Section 3.3.

Proposition 2. Let L = [1 1] and suppose Assumptions 1 and 2 hold. Then, the mapping h ◦π ◦ ξ
is T0-periodic.

Proof. See Appendix B for a proof of this statement.

3.3. Approximation of h ◦ π

Motivated by the discussion provided in Remark 8, we follow a data-driven approach
to compute an approximation of the corresponding moment. Such a framework was origi-
nally introduced in [14], and extended to a specific class of WEC systems in [15]. To achieve
a consistent approximation for h ◦ π, we begin by introducing the following assumption.

Assumption 3. The mapping h ◦ π belongs to the space generated by a family of continuous
real-valued functions {χj}∞

j=1, with χi : R2 → R, i.e., there exists a set of constants υj such that
(h ◦ π)(ξ) = ∑∞

j=1 υjχj(ξ), for every ξ ∈ Ξ.

Assumption 3 facilitates an almost natural definition for an approximation of h ◦ π,
as detailed in the following.

Definition 3. We call the mapping (̃h ◦ π)(ξ) = ∑N
j=1 υjχj(ξ), with N finite, the approximated

moment of the point absorber system (5) at the signal generator G.

Remark 9. When choosing the set of functions {χj}, the user can proceed in a ‘trial and error’
procedure, depending on the specific nature of the WEC dynamics. In this paper, we show that a
polynomial expansion can be effectively used to approximate the associated moment for the point
absorber studied (see Section 4).

Based upon Definition 3, the data-driven approach adopted in our study aims to com-
pute the set of coefficients {υj}N

j=1 for the point absorber WEC case, by using information
on the steady-state output response of (5). Let us define:

Υ =
[
υ1 υ2 . . . υN

]
,

X(ξ) =
[
χ1(ξ) χ2(ξ) . . . χN(ξ)

]ᵀ,
(15)

where {Υᵀ, X(ξ)} ⊂ RN , and hence the approximated moment can be expressed as

(̃h ◦ π)(ξ) = ΥX(ξ). (16)
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Let {ξ i(t)}P
i=1 ⊂ R2 be a set of trajectories for the signal generator G in (10), computed

via a set of corresponding initial conditions {ξ(0)i}P
i=1 ⊂ R2, such that each element in the

set {(S, ξ(0)i)}P
i=1 is excitable, i.e., Assumption 1 holds. Let {yi

ss(t)}P
i=1 ⊂ R denote the set

of steady-state outputs (computed after a sufficiently large time Tss) of the point absorber
system (5), driven by each generated input ζ i(t) = [1 1]ξ i(t).

Based upon the sets defined immediately above, and since the (well-defined) steady-
state output response of Σ in (5) coincides with the associated moment h ◦π evaluated at the
corresponding trajectory of the signal generator (10) (see Proposition 1), the approximation
h̃ ◦ π can be computed as follows. Let T = {tq}R

q=1 ⊂ [Tss, Tss + T0], where each tq

represents a time instant, with R > P. Define {Mi}P
i=1 ⊂ RN×R and {Oᵀ

i }
P
i=1 ⊂ RR

such that

Mi =
[
X(ξ i(t1)) X(ξ i(t2)) . . . X(ξ i(tR))

]
,

Oi =
[
yi

ss(t1) yi
ss(t2) . . . yi

ss(tR)
]
,

(17)

and hence

M =
[
M1 M2 . . . MP

]
,

O =
[
O1 O2 . . . OP

]
.

(18)

Before proceeding with the actual computation of h̃ ◦ π, we introduce one last stand-
ing assumption.

Assumption 4. The set of time-instants T is chosen such that M in (18) is full row rank.

Remark 10. Given the signal generator (10), and the excitability condition guaranteed by
Assumption 1, Assumption 4 is without any loss of generality, since the set T can always be
chosen such as M in (18) has rank N (see [14,26]).

Finally, note that the coefficient matrix Υ, characterising the approximated moment
h̃ ◦ π (see Equation (16)), can be uniquely computed in terms of the least-squares solution
of ΥM = O , i.e.,

Υ = OM ᵀ(MM ᵀ)−1, (19)

where the condition 0 /∈ λ(MM ᵀ) is always guaranteed by Assumption 4.

Remark 11. The least-squares solution proposed in (19) is effectively exploiting the result of
Proposition 2. In particular, given that h(π(ξ(t))) is T0-periodic, it is sufficient to use the infor-
mation of the steady-state output response of the point absorber system (5) over a single period,
i.e., [Tss, Tss + T0], to fully characterise h(π(ξ(t))).

Remark 12. Note that, while we explicitly use the (analytical) definition of system (5) throughout
our paper, the set of steady-state output data {yi

ss} can be generated either with a different numerical
model (e.g., solvers based upon computational fluid dynamics), or collected from tailored experiments
involving a real WEC prototype.

3.4. Systematic Overview

We provide, in this subsection, a systematic overview of the proposed model reduction
procedure, defining a number of fundamental steps (S#) towards the computation of a
reduced model by moment-matching for WEC systems, based upon the results presented
throughout Section 3. In addition, we provide a companion schematic illustration of the
procedure described in this section, in Figure 2.
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(S1) Choose the fundamental frequency ω0 = 2π/T0 associated with the selected wave
conditions.

(S2) Compute S as in Equation (10) and set L = [1 1].
(S3) Compute the set of trial trajectories {ξ i(t)}P

i=1 via the set of initial conditions
{ξ i(0)}P

i=1 of interest.
(S4) Compute the set of associated input signals {ζ i(t) = Lξ i(t)}P

i=1.
(S5) For each defined input ζ i, with i ∈ NP, compute the steady-state output response of

the WEC system {yi
ss(t)}P

i=1 (collected after a sufficiently large time Tss).
(S6) Choose the set of time instants T = {tq}R

q=1, with R > P, such that T ⊂ [Tss, Tss + T0]

and Assumption 4 holds.
(S7) Compute the matrices M and O as in Equation (18).
(S8) Compute Υ as the unique least-square solution expressed in (19).
(S9) Construct the family of reduced order models achieving moment-matching for the

WEC system as

Σ̃ :

{
Ω̇ = (S− ∆L)Ω + ∆ζ,

ỹ = CΥX(Ω) ≈ y,

for any matrix ∆ such that λ(S− ∆L) ⊂ C<0.

Figure 2. Schematic representation of the model reduction by moment-matching procedure described
throughout Section 3.

4. Numerical Study

For the numerical study presented in this section, we consider the point absorber
device described by the dynamical model presented in Section 2, and schematically illus-
trated in Figure 1. The numerical values for the set of parameters, corresponding with
the target system Σ in (5), are as adopted in [19]. The characterisation of the radiation
subsystem in (2) is performed here via boundary element methods, using the open-source
software NEMOH [27], in combination with a moment-based finite-order parametrisation
procedure [28,29], rendering a model Σr with order nr = 6.

To illustrate the nature of the nonlinear behaviour of the device under scrutiny, i.e., the
characteristics of the map g in Equation (8), Figure 3 shows the ‘magnitude’ of the associated
nonlinear effects (measured in terms of the 2-norm ‖g(x)‖), as a function of the first two
state variables x1 (displacement, in metres), and x2 (velocity, in metres per second). It can be
readily appreciated that, as soon as the device moves away from the physical equilibrium
position (x1, x2) = (0, 0), ‖g(x)‖ grows rapidly, stressing the relevance of the associated
nonlinear effects as soon as the WEC system departs from ‘small motion’ conditions.
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Figure 3. Indicative measure of the nonlinear behaviour associated with the point absorber system
under study.

Recall that, to construct the corresponding reduced order model, a data-driven ap-
proximation method is considered in Section 3.3. In particular, such a method explicitly
uses input–output data to reconstruct an approximation of moment associated with the
point absorber system (5). In line with Section 3.3, Figure 4 presents the set of inputs
ζ i(t), i ∈ N10, constructed via different initial conditions for the signal generator (10), used
to excite system Σ, with a fundamental frequency ω0 ≈ 1 [rad/s]. Note that such a set
of signals corresponds to a controlled WEC operating in regular sea states with period
T0 ≈ 6 [s], and wave heights in the set [0.5, 3] [m]. With the set of inputs illustrated in
Figure 4, we compute the corresponding set of steady-state outputs for the target system (5).
These are presented, using a solid-black line, in Figure 5.

Figure 4. Set of inputs ζ i used to approximate the associated moment.

For the selection of the function space generated by the set {χi}N
i=1, used to approx-

imate the corresponding moment (see Definition 3), we select a smooth (polynomial)
mapping, defining a (ξ1, ξ2) manifold, i.e.,

(̃h ◦ π)(ξ) =
4

∑
i=0

3

∑
j=0

υijξ
i
1ξ

j
2, (20)

where N = 20. Having defined the corresponding input–output set, and the approximation
structure of (20), we can directly apply the methodology presented in Section 3.3, and com-
pute the corresponding approximated moment via the well-defined least-squares solution
in (19). The optimal coefficients corresponding to the expansion in (20) are presented here
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in Figure 6, while the outputs resulting from evaluating the approximated moment at each
corresponding trajectory of the signal generator (10) are presented in Figure 5, using a
dashed-red line, showing a virtually perfect match with each target. Note that, as per the
procedure proposed throughout Section 3, a single period T0 ≈ 6 [s] is shown in Figure 5,
which is sufficient to fully characterise the T0-periodic steady-state output response of the
WEC system.

Figure 5. Target steady-state responses (solid-black), along with the data-driven approximating
moment evaluated at each specific trajectory of G (dashed-red).

-0.5

0

0.5

0 5 10 15 20

Figure 6. Computed coefficients εij for the polynomial expansion (20).

Remark 13. Note that the absolute value of some of the coefficients presented in Figure 6 are very
close to zero, hence suggesting we could directly prescind of such a set in (20).

The approximation results presented in Figure 5 are extended in Figure 7, where
the approximated manifold (20) can be effectively appreciated, together with the tar-
get moment evaluated at each trajectory ξ(t) corresponding with the set of inputs of
Figure 4. Note that we also include the corresponding planar projections for each triple
(ξ1(t), ξ2(t), h(π(ξ(t)))).
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Figure 7. Approximated moment (̃h ◦ π)(ξ).

Up until this point, we have presented results concerning the approximation of the
moment of the point absorber system. We now use such results to build a reduced model,
which is effectively the ultimate objective of this study. Based upon the structure presented
in (14), we can construct a 2nd order reduced model for the point absorber system (5)
simply as

Σ̃ :


Ω̇ =

([
0 −0.6

0.6 0

]
− ∆

[
1 1

])
Ω + ∆ζ,

ỹ = (̃h ◦ π)(Ω),

(21)

with a gain matrix ∆ chosen such that the set λ(S−∆L) = {−0.13± j2.04}, which coincides
with the set of two dominant modes of the Jacobian linearisation of the WEC system about
the equilibrium position. Aiming to illustrate the nature of the resulting linear input-to-
state dynamics in (21), Figure 8 presents a Bode plot of both the Jacobian linearisation of the
point absober model (5) (dotted-blue), and the corresponding linearisation of the reduced
model (21) (dashed-red). Note that the latter can be readily defined in terms of (20) as

Σ̃l :

Ω̇ =

([
0 −0.6

0.6 0

]
− ∆

[
1 1

])
Ω + ∆ζ,

ỹl =
[
v10 v01

]
Ω.

(22)

It is clear from Figure 8 that, besides being capable of representing the nonlinear
behaviour of the associated WEC system (see also the discussion provided in the following
paragraph), the computed reduced model by moment-matching is also able to preserve
the dynamics of the WEC system in linear operating conditions. Furthermore, as can be
appreciated from Figure 9, the Nyquist plot of system (22) is fully defined on the right-
hand-side of the complex plane, i.e., the nonlinear reduced model (21) is locally passive (see,
e.g., [30]). Fulfilment of this property not only highlights the consistency of the reduced
model with respect to the underlying physical reality of the WEC energy absorption process,
but is also fundamental to guarantee existence and uniqueness (i.e., well-possedness) of
the solution of a vast family of WEC optimal control algorithms [31].
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Figure 8. Bode plot of the Jacobian linearisation of the WEC dynamical Equation (5) (dotted-blue),
and that associated with the reduced model, i.e., Equation (22).
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Figure 9. Nyquist plot of system (22).

Aiming at illustrating the accuracy of the computed reduced model (21) under non-
linear operating conditions, Figure 10 (top) shows output time-traces for both the target
nonlinear (solid-black) point absorber system (5), and the moment-based reduced order
model (dashed-red) model (21), for an input ζ corresponding to a wave height of 2.5 [m].
Furthermore, Figure 10 (bottom) offers the evolution of the absolute value of the approxi-
mation error, i.e., |y− ỹ|. It is hence straightforward to appreciate that, once the transient
period extinguishes, target and approximating time traces become almost indistinguish-
able, as expected from the moment-matching-based model reduction procedure proposed
in Section 3. Finally, Figure 11 offers a comparison between the normalised run-time 6

required by both target (solved via a Runge–Kutta (4,5) pair), and reduced model by
moment-matching. It is clear that the reduced model computes in an order of magnitude
faster than the target nonlinear WEC system, both due to its smaller order (dimension),
and its linear input-to-state nature.
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Figure 10. (Top): Output traces for target point absorber system (solid-black), and the computed
approximating model by moment-matching (dashed-red). (Bottom): Error between target and
approximating response as a function of time.

Figure 11. Normalised run-time required to solve the target nonlinear WEC model (solid black),
and the reduced model by moment-matching (dashed red).

5. Conclusions

This paper presents a data-driven approach to construct reduced models for a state-of-
the-art wave energy conversion system. The methodology chosen and developed generates
models which are input-to-state linear, with any nonlinear behaviour confined to the output
map. Such a map is the result of a data-driven approximation procedure, where the so-
called moment of the point absorber system is estimated via a least-squares procedure.
The user has full control over the complexity of such an approximation, being able to freely
select the characteristics of the associated approximation space. The performance of the
strategy is illustrated via a numerical case study, showing that the approach is capable of
providing parsimonious models with preservation of steady-state response characteristics.
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Appendix A. Proof of Proposition 1

We begin by noting that, under Assumption 1, the triple of matrices (L, S, ξ(0)) is
effectively minimal. Furthermore, note that the signal generator (10) is such that λ(S) ⊂ C0

with corresponding eigenspaces {A1, A2} such that dim(Ai) = 1 for i ∈ {1, 2}, i.e., the
generator G is Poisson stable. Under these conditions, the result of this proposition holds
directly via [11], as long as the zero equilibrium of the point absorber system ẋ = f (x, 0) is
locally exponentially stable. Since this is the case by Assumption 2, the proof follows.

Appendix B. Proof of Proposition 2

The definition of the autonomous system (10) directly implies that the function ζ is
T0-periodic, with a period T0 = 2π/ω0 (see Remark 4). Furthermore, by Assumption 2,
the zero equilibrium of (5) is locally exponentially stable, and its (well-defined) steady-
state solution is also T0-periodic (the reader is referred to [32] for further detail). Taking
into account the minimality condition on the triple ([1 1], S, ξ(0)), i.e., Assumption 1,
the following equality xss(t) = π(ξ(t)) holds (see Proposition 1), and it is hence we can
conclude that h ◦ π ◦ ξ is T0-periodic.

Notes
1 Note that this is performed without any loss of generality, and aiming to simplify the notation used throughout our study.

Similar considerations can be made for a multi-DoF WEC system (see, e.g., [17,18].)
2 From now on, the dependence on t is dropped when clear from the context.
3 Note that this is performed without any loss of generality, and merely due to the importance of the velocity variable within the

WEC optimal control formulation.
4 See [20,21] for a formal discussion on the dynamical properties associated with Σr.
5 The interested reader is referred to [26] for a formal treatment of the concept of excitability for a general class of systems.
6 The normalised run-time is defined as the time required to compute the output corresponding to each analysed model, and the

simulation length.
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