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Abstract: Dissimilatory nitrate reduction to ammonium (DNRA) can save N by converting nitrate
into ammonium and avoiding nitrate leaching and runoff in saltmarshes. However, little is known
about the effects of invasive plants on DNRA in the upper and deeper soil layers in salt marshes. Here,
we investigated DNRA rates in the soils of six different depth layers (0–5, 5–10, 10–20, 20–30, 30–50,
and 50–100 cm) from the invasive Spartina alterniflora marshland, two native plants Scirpus mariqueter
and Phragmites australis marshlands, and bare mudflat on Chongming Island, located in the Yangtze
River Estuary, China. Our results show that S. alterniflora significantly increased DNRA rates in both
the upper 50 cm soil and deeper 50–100 cm soil layers. With respect to the entire soil profile, the
NO3

− reduction content calculated from DNRA in S. alterniflora marshland was 502.84 g N m−2 yr−1,
increased by 47.10%, 49.42%, and 38.57% compared to bare mudflat, S. mariquete, and P. australis,
respectively. Moreover, NO3

− reduction content from the 50–100 cm soil layers was almost identical
to that in the upper 50 cm of the soil. In the month of May, DNRA is primarily regulated by SO4

2−

and pH in the upper and deeper soil layers, respectively, whereas, in the month of October, soil pH
accounted for the most variables of DNRA in both the upper and deeper soil layers. Altogether, these
results from a new perspective confirm that S. alterniflora invasion increases soil N pool and may
further push its invasion in salt marshes, and the importance of deeper soil in nitrogen cycling cannot
be ignored.

Keywords: dissimilatory nitrate reduction to ammonium (DNRA); Spartina alterniflora; deep soil;
salt marshes

1. Introduction

Nitrogen (N) is the main limiting factor for plant growth and net primary produc-
tivity in wetlands [1]. However, almost 50% of the N used for production is lost to the
environment [2,3]. The nitrification process can convert ammonium (NH4

+) into nitrate
(NO3

−) via soil microbes, which may accelerate the NO3
− leaching and nitrous oxide (N2O,

a very important long-lived greenhouse gas) emissions [4–6]. Compared to NO3
−, NH4

+

has a positive charge, which is less likely to be lost through gaseous emissions or leaching
and is more readily absorbed by plants due to it having a lower energy requirement [7].
Therefore, the rapid conversion of NO3

− to NH4
+ may play a key role in the transformation

of N conversion in ecosystems [8]. Dissimilatory nitrate reduction to ammonium (DNRA)
increases the pool of NH4

+ and decreases the size of the NO3
− pool, which can provide

more NH4
+ for assimilation and absorption by primary producers [9–12]. The DNRA is

often ignored in the study of soil N pool in salt marshes, but it has been shown to play an
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important role in grassland, agriculture, and forest, where DNRA accounted for 0~54%,
3.9~25.4%, and 41.6~75% of NO3

− reduction, respectively [13–15]. Additionally, research
on DNRA in salt marshes under different habitat types has not been well studied.

Salt marshes, which are located in the transitional zones between land and sea, can
provide unique ecosystem services such as flood mitigation, carbon storage, and wildlife
production [16]; however, salt marshes are fragile ecosystems vulnerable to the invasive
species Spartina alterniflora (S. alterniflora), which is a species native to the Atlantic and Gulf
Coasts of North America [17]. S. alterniflora was intentionally introduced to China in the
1970s for accentuating sediment accumulation and forming land, planted in several loca-
tions in the 1980s, extensively spread in the 1990s, and now has widely spread throughout
the country’s coastline due to its high ecological adaptability [18–20]. Numerous studies
have reported that S. alterniflora invasion significantly impacts soil key N cycle by increasing
the total N stocks in the tissues and the soil [21], enhancing the ecosystem N pools [22] and
altering microbial community structure and soil physicochemical properties [23].

There exists little data about the effects of the invasive species on the DNRA in salt
marshes. Few papers were found involving the effects of S. alterniflora invasion on DNRA,
which are helpful to understand the importance of exotic plant invasion on nitrogen cycling
in salt marshes [24–27]; however, these studies are limited to upper soil layers between 0
and 50 cm, and no studies have been reported on DNRA in deeper soil layers. Studies in
other ecosystems have shown that the role of the N cycle in deeper soil layers cannot be
ignored [28–30]. Salt marshes are one of the most important blue carbon ecosystems [31],
and investigations of carbon stocks in these ecosystems generally consider a fixed soil depth,
usually a 0–100 cm layer [32]. Moreover, N leaching also affects deeper layers through tidal
and subsurface runoff and the root biomass of S. alterniflora is higher than that of native
species in the 0–100 cm soil profile [21,33]. Thus, studies focusing on S. alterniflora invasion
on DNRA at the soil profile to a depth of 100 cm are generally considered appropriate for
obtaining an overall understanding of the DNRA process in the salt marsh ecosystem.

Substrate, carbon source, oxygen content, and pH are recognized as the key important
factors affecting DNRA rates [34]. Previous studies have shown that there are some
differences in the terms of the physical and chemical properties between S. alterniflora
and native plants. Notably, the root biomass of S. alterniflora in the 0–100 cm soil layer is
higher than that of native plants, which benefits S. alterniflora to improve root respiration
and transport more oxygen to the soil. In addition, the roots of S. alterniflora can also
contribute to the secretion of organic acids that lower soil pH and alter soil carbon and
nitrogen pools [22]. Compared with indigenous plants, S. alterniflora also has a stronger
siltation-promoting ability, which helps the burial of the surface soil to deeper soil layers.
Therefore, we assumed that DNRA rates in S. alterniflora soils were significantly higher than
those in other habitat types both at the upper soil layers (0–50 cm) and deeper soil layer
(50–100 cm). To test our hypothesis, we conducted a field study to investigate whether
differences in DNRA in the 0–100 cm soil profile exist between S. alterniflora and native
species in Chongming Island, located in the Yangtze River Estuary, China.

2. Materials and Methods
2.1. Study Site and Experimental Design

The current study was carried out on Chongming Island locates in Yangtze Estuary
(31◦69′ N, 121◦65′ E). The island, with a total area of 1267 km2, is China’s largest estuarine
Island [35]. This region has a typical subtropical monsoon climate with annual average
precipitation and temperature of approximately 1200 mm and 16 ◦C, respectively [36]. This
area is experiencing regular semidiurnal tides with two different diurnal tidal periods.
S. alterniflora invasion on the island are serious, and its rapid growth has outcompeted the
local species Phragmites australis and Scirpus mariqueter since its introduction in this area in
2001 [37].

From the water–land margin to salt marsh, the habitat types are bare mudflat, S. mariqueter
marshland, S. alterniflora marshland, and P. australis marshland, located at 0, 50, 400, and
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500 m from water–land margin, respectively. Four filed plots (10 × 10 m) spaced at an aver-
age of 100 m apart in each habitat types were set up in 2018 (Figure 1), and experimental
design had been described elsewhere [37].
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2.2. Sample Collection

Soil cores (0–5, 5–10, 10–20, 20–30, 30–50, and 50–100 cm in depth) were collected
on 5 May 2018 and 25 October 2018 with an Eijkelkamp gouge auger during the diurnal
ebb-tide hours, and a total of 96 samples were obtained. To determine the bulk density and
soil moisture, vertical soil profiles were collected using standard 100-cm3 containers at the
same depths as soil core samples were obtained. These soil sections were then oven-dried
at 105 ◦C for 24 h to measure bulk density and soil moisture. The soil temperature and
redox potential (Eh) of each soil layer were recorded immediately. Three 0.5 × 0.5 m
quadrats were randomly set at 0.5 m away from the sampling point to measure above-
ground biomass. After collection, the soil samples were sealed in sterile plastic bags and
then transported to the laboratory and divided into two parts: the first part was stored at
4 ◦C to measure the DNRA rates, and the second part was air-dried and sieved through a
2 mm filter to analyze soil properties.

2.3. Analysis of Soil Characteristics

Soil salinity and pH were measured with a modular multi-channel benchtop pH
meter after soil was mixed with deionized water free CO2 at a ratio of 1:2.5 [38,39]. The
concentrations of NH4

+, NO3
− and NO2

− were measured on a continuous flow injection
analyzer (SAN plus, Skalar, the Netherlands) after extraction with 2 M KCI solution [40–42].
The total carbon (TC) and total nitrogen (TN) were analyzed using CN Elementary Analyser
after soil carbonates were removed by acidifing with 1 mol L−1 HCl [43].

2.4. Measurement of the DNRA Rates

Slurry incubations combining 15N isotope-tracing method were conducted to measure
DNRA rates [44]. Specifically, soil slurries were made with 25 g of fresh soil and 175 mL
of tidal water, and then filled with helium (He) gas for approximately 30 min to achieve
anaerobic conditions. After pre-incubation for 48h in 12-mL screw-capped Exetainer vials
(Labco) under in situ temperature (23.5 C for May, 25 ◦C for October) in dark conditions to
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deplete the residual nitrate, nitrite and oxygen, samples were then spiked with 100 µL of
15NO3

− (12.5 mM, 15N at 99%). Immediately after, these samples were injected with ZnCl2
(200 µL 50% w/v) to inhibit microbial activity in time-series incubations at 0, 2, 4, and
8 h, respectively. The Hypobromite method was used to convert 15NH4

+ from the DNRA
process to 29N2 and 30N2, and then these produced gases were determined by membrane
inlet mass spectrometry (MIMS) [45]. Furthermore, 15NH4

+ with concentrations of 0, 5,
10, and 20 µmol L−1 were also oxidized by using the hypobromite method, respectively.
Thus, a standard curve was established to calculate the concentrations of 15NH4

+ from the
incubation slurries. The DNRA rates were calculated by the following equation:

RDNRA = S×V ×W−1

where RDNRA corresponds to DNRA rates (nmol 15N g−1h−1), S is the slope of 15NH4
+

concentrations versus incubation time (nmol 15N L−1h−1), V denotes the vial volume (L),
and W is the soil weight (g).

2.5. Statistical Analysis

The data in this study were analyzed by using SPSS Statistics version 19.0 (SPSS, Inc.,
Chicago, IL, USA) and Rstudio software version 3.5.1 (Rstudio, Inc., Boston, MA, USA).
Mean and standard error values of each parameter were calculated (Mean ± SD, n = 4).
Analysis of two-way ANOVA was carried out to observe the significance of soil depth and
habitat type on DNRA rates and NO3

− retention content, and analysis of one-way ANOVA
using LSD’s test was employed to evaluate the differences of NO3

− retention content
among habitat types. Post hoc analyses of significant results were conducted using Tukey’s
multiple comparison tests, and the significance level was set at p < 0.05. To determine the
most concise model, equations with the lowest AIC were used to select the most suitable
model through stepwise multiple regression. Stepwise multiple regression analysis was
carried out using R software with soil physical and chemical properties as variables and
DNRA as the dependent variable.

We consolidated data into annual NO3
− reduction content (NR) to obtain a better

overview of different habitat types on DNRA. NO3
− retention content (NR) from a given

habitat type with s soil layers was calculated using the following equation:

NR =
1
2

{
∑s

n=1[(pin)× din × hn] + ∑s
n=1

[(
pjn
)
× djn × hn

]}
× t× c

where NR (g N m−2 y−1) is NO3
− retention content; n and s represent the soil layer and

number of soil layers, respectively; pin and din are the DNRA rate (nmol N g−1 h−1) and
bulk density (g cm−3) of soil layer n in the month of May, respectively; pjn and djn are
the DNRA rate (nmol N g−1h−1) and bulk density (g cm−3) of soil layer n in the month
of October, respectively ; hn denotes the thickness of soil layer n (cm); t denotes time
(24 × 365 h); and c = 14× 10−5 represents a unit conversion factor.

3. Results
3.1. Potential Rates of DNRA

In the month of May, DNRA rates were not affected by soil depth or habitat type
(Figure 2). No significant differences were found in the DNRA rates between habitat types
in either upper soil layers or in the deeper soil layers. The DNRA rates in S. alterniflora
marshland were not significantly different from those in the other habitat types in the
month of May. In the month of October, the DNRA rates in the S. alterniflora marshland
were significantly higher than those in other habitat types in all soil layers. DNRA in the
deeper soil layers (50–100 cm) in the month of October were markedly higher than those
in the 0–5 cm and 5–10 cm the upper soil layers. The two-month-averaged DNRA in the
S. alterniflora stands was significantly higher than that of other habitat types (Figure 3).
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3.2. NO3
− Reduction Content

Where the volume of soil for each habitat type was used to compute NO3
− reduc-

tion content per unit area, the results showed that NO3
− retention content in the 0–50 cm

layer was almost equivalent to that in the deeper layers (50–100 cm). In the 0–50 cm layer,
NO3

− retention content in S. alterniflora soil was increased by 50.51%, 46.81%, and 40.45%
compared with that of bare mudflat, S. mariqueter, and P. australis, respectively (Figure 4a).
In the deeper soil layer, NO3

− retention content in S. alterniflora was 47.38%, 52.43%, and
41.42% higher than that in the soils of bare mudflat, S. mariqueter, and P. australis, respec-
tively. NO3

− retention content in the whole 0–100 cm soil profile increased in the following
order: S. mariqueter (254.32 g N m−2 yr−1) < bare mudflat (281.15 g N m−2 yr−1) < P. australis
(308.89 g N m−2 yr−1) < S. alterniflora (502.84 g N m−2 yr−1) (Figure 4b).
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3.3. Influences of Soil Variables on Potential Rates of DNRA

Multiple linear regression analyses to were used to determine which linear combina-
tion of independent variables was best conductive to predict DNRA rates (Tables 1 and S1).
In the month of May, SO4

2−, NO2
−, and temperature accounted for the most variables of

DNRA in the soil to the depth of 50 cm, and DNRA rates in deeper soil from 50–100 cm
were the largest, as explained by pH, bulk density, and NO2

−. In the month of October, pH
and salinity were best explained by the changes in DNRA rates in the upper soil layers,
while in the deeper soil layer, DNRA rates were best accounted for by pH and bulk density.

Table 1. Multiple linear regression equations for DNRA versus environmental factors measured at
0–50 cm and 50–100 cm depths across the region in two months.

Month Soil Depth Equation R2 p

May
0–50 cm DNRA = −0.37 SO4

2− − 0.32NO2
− − 0.26 Temperature + 0.03 Fe3+ + 7.66 0.45 <0.01

50–100 cm DNRA = −3.17 pH − 1.86 Bulk density − 0.18 NO2
− + 0.09 NH4

+ + 29.34 0.66 <0.01

October
0–50 cm DNRA = −4.47 pH + 0.41 Salinity + 0.27 NO3

− − 0.07 NH4
+ + 0.01 Eh − 34.95 0.56 <0.01

50–100 cm DNRA =−9.52 pH− 3.10 Bulk density− 0.86 Temperature− 0.01 Eh + 0.95 NO3
− + 9.864 0.89 <0.01

4. Discussion

In this study, we investigated the effect of exotic S. alterniflora invasion on DNRA
rates in both the upper and deeper soil layers in the 0–100 cm soil profile. Our results
showed that S. alterniflora significantly increased DNRA rates compared to other habitat
types (Figures 2 and 3), which is consistent with findings in previous studies [24,45]. The
higher NO3

− reduction content in S. alterniflora may acerbate the export of more NH4
+ into

the soil, which in turn causes S. alterniflora to absorb more N to accelerate plant growth
and promote further invasion of S. alterniflora [22]. In addition, our results also found that
the ability of NO3

− to convert to NH4
+ under the influence of different habitat types is

almost equal to that of upper sediments (Figure 4), indicating that we cannot ignore the
importance of deeper soils in the comprehensive evaluation of the conversion of inorganic
N pools from DNRA in salt marshes.

In the month of May, in the upper soil layers, SO4
2− was an important factor influ-

encing the DRNA rates, which is consistent with the observation that reduced sulfides
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(S2
−, SO3

2−) can provide an electron donor for DNRA [46,47]. SO4
2− is one of the most

abundant ions in seawater, and its morphology and distribution in inter-root sediments
can be affected by plant types [48]. Previous studies have demonstrated that SO4

2− concen-
tration was significantly enhanced after S. alterniflora [49,50]. However, during the early
growth stages in the month of May, the sulfide in S. alterniflora tissues in the previous year
is decomposed slowly; thus, SO4

2− concentration in the soil of S. alterniflora marshland was
not higher than that of other habitat types during this phase (Figure S1i), which may explain
why DNRA rates had no difference between S. alterniflora and other habitat types in the
early growth phase in the upper soil layers [51]. In deeper soil layers, we found that pH and
bulk density explained the largest proportion of the variance in DNRA (Tables 1 and S1).
DNRA bacteria are susceptible to changes in pH and oxygen contents [52]. It is widely
accepted that the pH for DNRA lies between 5 and 9, and a high pH value enhances the
DNRA process [34]. In the early growth phase, roots of S. alterniflora and two other native
plants used more energy to grow and may not secrete small molecules of organic acids to
change soil pH, which may contribute to unchanged DNRA in the 50–100 cm layer between
the different habitat types [22].

In the month of October, soil pH explained the largest proportion of the variance of
DNRA in both the upper and deeper soil layers (Tables 1 and S1). During the late growth
phase, the biomass of S. alterniflora was significantly higher than S. mariqueter and P. australis
(Figure S2), and well-developed root tissue was able to secrete more organic acids to alter
soil pH, which was more acidic after S. alterniflora invasion compared to S. mariqueter and
P. australis [37], which helped to increase DNRA rates in S. alterniflora marshland in both
the surface and deep soil layers. Moreover, salinity was positively correlated with DNRA
in the top 0–50 cm (Table 1), which is consistent with the observation that microbes are
susceptible to changes in salinity mediating DNRA [53]. The higher salinity in the upper
soil layers of S. alterniflora marshland recorded in the present study (Figure S1b), may
thus have contributed to enhancing DNRA [54]. S. alterniflora invasion alters soil physical
properties (e.g., reducing the soil bulk density) that can affect DNRA activity by regulating
oxygen and influencing NO3

− leakage content [55], which may have contributed to the
DNRA rate in the deeper soil layers.

5. Conclusions

This study reported the effects of invasive S. alterniflora on DNRA rates in salt marshes
in the 0–100 cm soil layer. Our results indicated that S. alterniflora invasion can significantly
increase the DNRA rates, and NO3

− reduction content in the entire 0–100 cm soil profile.
This suggests that increasing soil N pool content, except through litter decomposition and
promotion of soil mineralization [25,51], S. alterniflora can also increase DNRA rates to
increase inorganic soil N content, which indirectly further promotes S. alterniflora invasion.
In addition, the NO3

− reduction content via DNRA in the 50–100 cm soil layer was almost
identical to that of upper soil layers, which indicates that assessing DNRA capacity in salt
marshes and deeper soils should be considered in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse10050655/s1, Figure S1: Influence of habitat type, soil depth
and month on soil properties (mean ± SE) (a: Water; b: Salinity; c: pH; d: Eh; e: Bulk density;
f: Temperature; g: TC; h: TN; i: SO4

2−; j: NH4
+; k: NO3

−; l: NO2
−). M = May, O = October. BF bare

mudflat; SM S. mariqueter; SA S. alterniflora; PA P.australis; Figure S2: Aboveground biomass among
different habitat types. Different letters indicate significant differences (p < 0.05) among different
habitat types. SM, S. mariqueter; SA, S. alterniflora; PA, P. australis. Table S1: The interpretation rate for
each environmental variable obtained from the results of redundancy analysis (RDA) at 0–50 and
50–100 cm soil depths in the two months.
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