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Abstract: The development of wind wave (i.e., sea state) inside an intense tropical cyclone (TC) is
the dominant contributor to the sea surface roughness and thus significantly impacts the air–sea
interaction. The sea state is known to vary with TC characteristics (intensity, size, and translation
speed); however, comprehensive knowledge of the influence of TC characteristics on the sea state
and sea surface roughness is quite limited, largely because of the lack of observations. In this study,
numerical experiments are performed to investigate the influence of TC characteristics on the sea
state and the sea surface roughness under a range of idealized TCs. The numerical results indicate
that the sea states are systematically younger for a more intense or smaller TC, and their azimuthal
variation is predominantly determined by the TC translation. The dependence of the sea surface
roughness on wind speed shows systematic variations with the TC characteristics, which are most
significant for a moderately moving TC.

Keywords: tropical cyclone; numerical simulation; characteristic; sea state; sea surface roughness

1. Introduction

Extreme sea states generated by the intense wind forces of tropical cyclones (TCs) are
of wide interest in both scientific research on the dynamics of wind–wave interactions and
practical applications for their destructive threats to navigation and coastal safety. With the
increase in experimental, observational and modelling studies, an increasing number of
works have suggested that the sea state in a TC is closely correlated with the sea surface
roughness and thus controls the air–sea momentum and heat exchange across the air–sea
interface [1–4], which subsequently has an important influence on the development of the
TC intensity [5,6] and upper ocean responses, i.e., ocean currents and mixing [7], and storm
surges in nearshore regions [8].
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The sea state inside the TC is complicated due to the fast-changing wind field in
space and time as a result of the moving TC vortex. The sea state depends on the wind
fetch, and because the wind fetch is strongly limited by the curvature of the wind field,
waves that propagate forward in the direction of the TC remain in the intense wind forcing
longer and thus gain an “extended” fetch [9–12]. As a result, the wave fields are more
asymmetric than the wind field, which has been well confirmed by observational and
numerical results [13–17].

Directional wave measurements obtained from in situ buoys and airborne radar greatly
enrich the knowledge of the spatial structure of the wave field inside the TC [12,18–26].
Those studies showed that directional multimodal spectra prevail inside the TC, indicating
that the waves are mixed with locally generated sea waves and remotely generated waves.
The directional wave spectra and sea state show distinctive characteristics associated with
the storm-relative quadrant, as the directional wave spectra range from trimodal in the
right-rear quadrant to bimodal in the right-front quadrant to unimodal in the left-front
quadrant (TCs in the Northern Hemisphere); furthermore, the waves are young, steep, and
short in the right-rear quadrant and older, flatter and longer in the front-right and front-left
quadrants [21].

Considering that the growth of wind waves inside TCs follows self-similar laws
derived from fetch-limited conditions, Hwang and his coauthors [27,28] proposed the
effective fetch and duration for wave development inside TCs, which show a quasi-linear
radial dependence and a quasi-sinusoidal azimuthal dependence compared with hurricane
hunter wave observations, and models were developed to describe the effective fetch and
duration. The data they used come from a small number of TCs with a limited parameter
range, and the effect of “extended” fetches was not included.

Though these observations provide valuable information on the wave distribution
inside a TC, a comprehensive knowledge on the wave field inside TCs is still not very clear
because the observations cover a quite limited TC parameter range, which also limits the
understanding on the impact of TC characteristics on the sea surface roughness. As an
alternative, numerical modelling can overcome the shortage of observations, modelling
studies of the wave fields under TC conditions have been put forward in recent decades.
The third-generation spectral wave model has shown its capacity to simulate the wave
spectra and wave height distribution [13,29–31].

The study is devoted to the influence of TC characteristics on the spatial variation of
wave field and the related wind drag. Instead of studying the significant wave height, we
focused on the sea state parameters, the dimensional wave height and wave period, as they
are more closely related to the sea surface roughness. Idealized numerical experiments
on TC waves are designed to cover various TC parameters. The model configurations are
described in Section 2; the numerical results are presented in Section 3; physical formations
of the sea state are discussed in Section 4; and finally, the results are summarized in
Section 5.

2. Model Configurations

The wave model is based on the WaveWatch III model (latest version of 6.07), which is
a third-generation spectral wave model that solves the radiative transfer equation for simu-
lations. In deep water, the source is balanced between the terms of wind input, nonlinear
wave–wave interaction and whitecap dissipation. The source term package ST4 [32] is used
for the parameterization of wind input and whitecap dissipation, and the cost-effective
discrete interaction approximate (DIA) is used for the nonlinear wave–wave interaction.

An idealized domain and bathymetry are assumed, which are 800 km in the x-direction
and 5000 km in the y-direction (as shown in Figure 1). Deep water conditions are considered
by setting the water depth to be a constant of 5000 m. The computational timestep is set
at 600 s, the time interval of wind input is 3600 s, and the grid resolution is 5 km in both
directions. To alleviate the GSE effect, the tuning factors are set at 8 [33]. The wave spectrum
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is resolved into frequency bins logarithmically spaced from 0.04118 to 0.7186 at intervals of
∆f /f = 0.1 and 36 regular azimuth direction bins.
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Figure 1. Simulation domain and initiation of the TC.

Idealized stationary and moving TCs are formulated, which start with the center
located at the point (x = 400 km, y = 0), and they move across the domain towards the north.
The wave model is initiated from a quiescent wave state, and the simulation duration
length is taken to be 90 h. The data after 60 h are analyzed when the maximum wave
heights reach a saturation value.

The driving wind force is constructed using the parametric cyclone wind model by
Jelesnianski [34] superimposed with a weighted TC translation speed [35]. The characteris-
tic TC parameters are selected by the maximum wind speed (Vm), radius of the maximum
wind (Rm) and translation speed (Vt). The TC parameters can cover a quite wide range
as illustrated by Tamiz and Young [26] in their statistical results. The Vm of TC intensity
can reach 60 m/s, for instance, the historical TCs Ivan and Katrina hit the coast with a Vm
approximating 60 m/s. Here, the maximum wind speeds Vm range from 30 to 60 m/s
with an interval of 10 m/s. The TC sizes range from small size (Rm = ~10 km, TC Ivan)
to large size (Rm = ~80 km, TC Bonnie). Here, we consider only two cases, as Rm is set to
25 and 50 km, because its influence on the sea state is systematic. The translation speed
is frequently observed in the low and moderate range of 2–9 m/s, such as in the famous
TC Megi (Vt = 8 m/s) and TC Bonnine (Vt = 3 m/s), and some very fast-moving TCs
(Vt > 10 m/s) have been statistically reported in the literature [26]. Since the TC translation
has a dominant and complex influence on the wave field distribution [14], we would apply
a relative wide distribution of Vt from slow to fast cases in terms of 2, 5, 8, 11 and 14 m/s.
Finally, a total of 30 experiments are formed with the combined parameters.

3. Results
3.1. Spatial Variation of the Sea State

The sea state parameters are chosen as the dimensionless wave height H# = gHs/U10
2

and dimensionless wave period T# = gTp/U10 (Hs is the significant wave height, g is
gravity, U10 is the speed at a height of 10 m and Tp is the dominant wave period). They
are closely connected and follow similar relationships under normal and steady wind
conditions [36–42]. These similar relationships are supposed to also hold for waves inside a
TC, as revealed by observations [11,12,16,17,27,43] in which the dominant role of nonlinear
wave–wave interactions is highlighted [12,44].

The spatial variations in H# and T# for different characteristics are listed in
Figures 2 and 3. As can be seen, the TC translation has a very strong impact on the
spatial asymmetry of H#, and with increasing Vt, the asymmetry increases. Previous stud-
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ies have well documented the influence of Vt on the spatial distribution of wave height.
The wave heights are stronger in the front-right sector, while H# displays quite different
features: its magnitude is relatively larger in the front-left sector for Vt = 8 m/s, and in
the back half plane for Vt = 14 m/s; in addition, H# is systematically smaller for a more
intense TC. The cases with Rm = 50 km have almost the same spatial pattern as those
with Rm = 25 km. The spatial distribution is also shown to vary with Vt and Rm, but it is
relatively larger in the front half plane with increasing Vt.
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The above results indicate that TC translation has a significant impact on the azimuthal
variation of H# and T#, but their respective effects appear to be different. To detail the
influence of Vt on the two parameters, we plot the half-sector-averaged values of H# and
T# against the seven Vt values in Figures 4 and 5, respectively. The subfigures correspond
to the results corresponding to different values of Vm and Rm. The H# at radial distances
of Rm (dashed lines) and 4Rm (solid lines) from the TC center are given to check the
radial variation, and the front sector and back sector correspond to the red lines and blue
lines, respectively.

The radial dependence of H# is consistently positive, which has been reported by
Hwang [27] with SRA measurements. When the TC moves slowly (Vt = 2 m/s), the differ-
ences in H# between the two quadrants are quite small; as the TC moves faster at moderate
speeds (Vt = 3–8 m/s), H# in the front quadrant increases with Vt and is consistently larger
than those in the back quadrant; as the TC moves even faster (Vt > 9 m/s), an “inflection”
point occurs, above which the H# in the front quadrant begins to decrease while those in the
back quadrant increase with the Vt, and they would cross each other at a certain Vt, above
which H# in the front quadrant reverses to become larger. The quadrant reverse pattern is
more clearly present in the case with the weakest intensity and smallest size (Vm = 40 m/s
and Rm = 25 km). Zhang and Oey [15] suggested with altimeter measurements that the
wave heights in the front-right (FR) sector are asymmetrically larger when a TC moves
at moderate translation speeds (Vt = 3–8 m/s), while less extreme waves occur in the FR
sector for faster TCs. These features are consistent with the model results.
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T# is similar to H# when the TC moves at slow to moderate speeds; however, they
mostly do not have an “inflection” point, and T# in the front sector is consistently larger than
those in the back sector. As a result, the similarity relation between H# and T# at these higher
speeds is not consistent with the observation results [12]. Two possible reasons can account
for this: One is that the observations are mostly taken at low to moderate TC translation
speeds, and those at large translation speeds are lacking. In addition, there are the intrinsic



J. Mar. Sci. Eng. 2022, 10, 609 6 of 12

uncertainties in wave simulation that can be induced by several factors including numerical
schemes, physics and parameterizations or neglecting the wave-current effect [30].
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3.2. Implication on the Sea Surface Roughness

The sea surface roughness is directly related to the momentum flux across the air–sea
interface according to the Monin–Obukhov similarity theory:

u =
u∗
κ

ln
z
z0

(1)

where u* is the friction velocity, z is the height above the sea surface, u is the wind speed at
a height of z, z0 is the sea surface roughness and κ = 0.4 is the von Karman constant.

Abundant efforts have been devoted to the study of sea surface roughness, and it
has been widely accepted that sea surface roughness is not solely related to wind speed
but is strongly modulated by the sea state [45,46]. Liu et al. [47] proposed a sea surface
dynamic roughness z0 with the effect of sea spray for full wind speeds. It combines the
SCOR relation [48] and the resistance law of Makin [49] by using the 3/2 power law [50]
and the relation between the significant wave period and the peak wave period:

gz0

u2∗
=

{
c1−1/ω

l [0.03β∗ exp(−0.14β∗)]
1/ω, ∼ 0.35 < β∗ < 35

c1−1/ω
l (0.008)1/ω, β∗ > 35

(2)

where β∗ is the wave age expressed as the ratio of the phase speed of the dominant waves
and the friction velocity β∗ = cp/u∗, and ω is the correction parameter indicating the
impact of sea spray on the logarithmic wind profile, ω = min(1, αcr/κu∗), which represents
a critical value of the terminal velocity of falling sea spray droplets.

The drag coefficient is related to u* according to the so-called bulk formulation:

u∗ =
√

Cdu (3)

where Cd can be determined from Equations (1)–(3) in an iterative manner, in which u
typically uses that at a height of 10 m.
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Cd is assumed to be linearly related to the wind speed under normal wind conditions
U10 < 20 m/s [51], while it was observed to level off or even decline at certain high winds
U10: 25–33 m/s [52–54]. The wind speed variation in Cd calculated using the modelling
results is given in Figure 6. Cd continues to increase with the wind speed; then, an inflection
point occurs in the wind speed range of 20–30 m/s, after which the trend is reversed. The
variation is generally consistent with the observation results. The variation in Cd at a given
wind speed is found to be sector-dependent: the drag coefficients in the back sector are
systematically higher than those in the front sector. This is expected because the wind
drag (sea surface roughness) is inversely related to the dimensionless wave period T# as
indicated by Equation (2). As a result, the sea surface roughness is greater for younger
waves. As illustrated above, the waves are consistently more developed in the front sector
than those in the back sector.
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The influence of TC parameters on the wind variation in Cd can be clearly identified.
The spread variation in Cd with wind speed is most dominant when a TC moves at mod-
erate speed (Vt = 8 m/s), and for a very intense and large TC (Vm = 60 m/s, Rm = 50 km),
the sector difference is largest when the TC moves at a very fast speed (Vt = 14 m/s). In
addition to the sector difference, systematical variations in the drag coefficients are induced
by the TC parameters: the drag coefficients are systematically larger for a weaker or a
smaller TC, and the difference appears to be more significant for a TC moving at a moderate
speed (Vt = 8 m/s). TC translation also has an impact on the extremes of the drag coefficient:
when the TC moves increasingly fast, the extremes of the drag coefficient diminish from
~4 × 10−3 at Vt = 2 m/s to ~3.5 × 10−3 at Vt = 14 m/s. The physical interpretation of the
influence of TC parameters on the sea state and sea surface roughness are discussed in the
next section.

4. Discussion

The modelling results reveal significant radial and azimuth variations in the sea states,
and distinct characteristics in the sea surface roughness that depend on the TC parameters
(Vm, Rm, Vt). We interpret these features by considering the local and nonlocal effects on
wind wave growth under the wind forcing of TCs.

The local effect is attributed to the local wind variability resulting from the moving
TC vortex. A schematic description of the local wind variation is shown in Figure 7. The
black arrow and blue arrow denote the wind speed at a time interval of 1 h, in which the
black arrow corresponds to Time = 0 h and the blue arrow corresponds to Time = 1 h. As
the figure shows, the wind variation is more significant when the distance is closer to the
TC centre. To represent the wind variability, we define a ratio ∆U of U’ (Time = 1 h) to U
(Time = 0), in which U’ is the component of U in the direction of U (Time = 0). Physically, the
wind input is more efficient for a larger ∆U, and it is expected to decrease with increasing
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Vt. Given a constant Vt = 6 m/s, ∆U is estimated to be 0.91 and 0.97 at distances of Rm
and 4Rm for Rm = 50 km and Vm = 30 km/s, respectively, and it is estimated to be 0.97 and
0.99 at distances of Rm and 4Rm for Rm = 100 km and Vm = 30 km/s, respectively. This
result indicates that the wind variability is smaller at a larger distance for a given Rm and is
smaller at a given distance for a larger Rm. This result was expected based on the fact that
the wind variability is related to the curvature of the wind field. No sensitivity is found in
∆U by changing Vm.
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TC center.

The nonlocal effect is attributed to the fact that the waves in the outer region from the
Rm are mixed with nonlocal waves and local wind-generated seas, which is evidenced in
the observed directional skew in the two-dimensional wave spectrum and misalignment in
the direction between the dominant wave and the local wind [12,24]. The nonlocal waves
are generated remotely in the intense wind regions (in the vicinity of Rm), as schematically
illustrated by Moon [13] in their Figure 17: waves from the intense wind region propagate
to the right of the wind direction in the outer region. However, one cannot identify nonlocal
waves well from one-dimensional spectra because they commonly have a single spectral
peak [12], in which nonlinear wave–wave interactions result in a sustained transfer of
energy from the locally generated wind sea to remotely generated waves and smooth the
“gap” between them [44], which helps nonlocal waves maintain the dominant feature in
the one-dimensional spectrum. As a result, the nonlinear interaction can contribute to the
radial variation in the sea state parameters.

A sensitivity test on the influence of the nonlinear interaction is performed by clos-
ing the nonlinear interaction source term in the numerical modelling. We use the case
(Vm = 40 m/s and Rm = 25 km) as an example, and the results are overlaid in the subfigures
of Figures 4 and 5. As the figures show, the “inflection” point reoccurs in T#, and it corre-
sponds to a smaller Vt in H# after the nonlinear interaction source is closed. Additionally,
the radial dependence is systematically reduced without the influence of the nonlinear
interaction. This result indicates that the nonlinear interaction plays an important role in
both the radial and azimuthal variations in the sea state.

Given the moving nature of a TC, waves generated in the front-right sector can
grow higher and longer because they experience an “extended” fetch from the advancing
wave field [11], and these waves would interact with the local wind-generated seas at
different locations relative to the TC center that strongly depend on the translation speed
of the TC, as schematically illustrated in Figure 8. Note that the variation in dominant
wave speed induced by the TC translation is much less than that of TC moving speed
as revealed from the modeling results. When the TC moves very slowly, the waves may
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“out run” the TC and propagate ahead of the wind field, and the “extended” fetch and
its contribution to the azimuthal dependence of the sea state are small. As the TC moves
gradually faster at moderate speeds, the “extended” fetch increases, resulting in a feature
where the waves in the front quadrant are more developed than those in the back quadrant.
The largest directional difference would be expected under the resonance condition that Vt
is comparable with the group velocity of the nonlocal waves [12]. As the TC moves even
faster, these storm-tracing waves are left behind and interact with the local wind seas in
the back sector; in contrast, the waves in the front quadrant are dominated by the local
wind-generated seas. As a result, the sea states in the front quadrant are less developed,
and their radial dependence is also reduced. Thus, it is concluded that the azimuthal
variation in the sea states depends on the relative translation speed (Vt) of the TC to the
group velocity (Cg) of the storm-tracing waves.
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In conclusion, the radial dependence of the sea state parameters results from both local
and nonlocal effects that are mainly related to the curved nature of TCs. The azimuthal
dependence results from the nonlocal effect of a TC, which is mainly modulated by the
moving nature of a TC. This finding helps to understand the influence of TC parameters
on the spatial variation in the sea state parameters. The influence of Rm is interpreted as it
reflects the curvature of the wind field. The azimuthal variation depends on the relativity
of Vt to Cg of storm-tracing waves. The systematic deviation in the sea state with Vm can be
understood as a longer wind duration or fetch being required for a wave to reach a certain
development stage at a higher wind speed; thus, for the same TC size and translation, the
waves are expected to be younger for a higher wind speed.

5. Summary

The wind waves generated inside a TC can have devastating effects on coastal regions
and dominant effects on air–sea momentum and heat exchange. Observations are still too
scarce to gain a comprehensive knowledge on the development of wind waves. In this
study, we perform a numerical analysis on the influence of TC characteristics on the spatial
variation in the sea state parameters and sea surface roughness. The results indicate that
Vm and Rm introduce systematic variations in the sea state parameters, while the azimuthal
variation in the sea states is predominantly determined by Vt. For TCs moving from low to
moderate speeds, the asymmetry introduced for sea state parameters at the front sector is
consistently larger than those in the back sector; this situation lasts until the TC reaches a
threshold of Vt, above which the sea state parameters in the back sector become larger. The
threshold of Vt is not constant but depends on Vm and Rm. The radial dependence in the
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front quadrant is considerably reduced above the threshold of Vt. The formation of the sea
state is discussed in terms of the local and non-local contribution of the surface waves that
are related to the moving and curvature nature of the TC.

For application use in ocean modeling, coastal engineering and the simulation of TC
development, the parameterization of the sea surface roughness as a function of wind speed
alone or assuming the wind drag as a constant is still frequently applied for convenience.
Using the numerical modelling results, we further performed parametric analysis on the
influence of TC parameters on the sea surface roughness and drag, which characterize the
air–sea interaction and are strongly related to the sea state parameter. The variations in
the drag coefficient with wind speed are significantly modulated by the TC parameters,
which appear to be mostly significant when TCs move at moderate speeds. These results
can be useful in the interpretation the air–sea interactions under different TC conditions,
and this motivates the need to incorporate the TC parameters into the a wave-independent
parameterization of the sea surface roughness.

There are still many limitations to this study. First, though the accuracy of the WWIII
model has been well validated in some case studies, it is not fully evaluated under fast-
moving TCs, and there is still room for model improvement. For instance, the nonlinear
wave–wave interaction term is popularly used with DIA, which tends to overestimate the
energy transfer from high frequency to low frequency [31]. Second, the parameterization of
sea surface roughness may also contain some uncertainty, and accurately describing the sea
surface roughness or wind drag under extreme high wave conditions remains a challenge
largely because of the lack of observations. Despite these limitations, it is believed that
the numerical results can qualitatively describe the dominant features of sea state and sea
surface roughness under a TC condition.
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