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Abstract: Intraspecific variation in morphology is widespread among seaweed species in different
habitats. We examined the morphological variation in Sargassum thunbergii involving diverse en-
vironmental factors. We quantified 16 morphological characteristics on 15 rocky intertidal shores
in Korea. A cluster analysis based on morphology identified three groups. Group M1 comprised
populations on the northern part of the east coast, where the thalli was short and thick, with large
leaf and air-vesicle. Group M3 consisted of populations on the west coast exclusively separated
from other populations, with short, slender and sparsely branched thalli. Group M2 comprised
populations on the southern part of the east coast and on the south coast (including Jeju Island), with
longest thalli and lateral branches. Principal coordinate analyses showed that group M1 and M3 were
mostly influenced by strong wave action and large tidal amplitudes, respectively. Group M2 were
under the influence of warm temperatures and high irradiance. Biota-environment matching analysis
showed that the morphology is affected by combinations of different local environmental factors and
also that tidal condition is important as a single variable, suggesting that morphology of S. thunbergii
reflects and adapts to local environmental conditions.

Keywords: Sargassum thunbergii; morphological variability; seaweed morphology; multiple environmental
factors; intertidal zone

1. Introduction

The populations of plant species in different habitat show alternative morphological
forms. The degree of intraspecies morphological differences is dependent on dispersal
distances and gene flow [1]. Considering that their life history traits were closely related
with morphology, morphological variability has important ecological and physiological im-
plications for the plant themselves and the organisms associated with them [2–5]. Seaweeds
having broad habitat ranges, from intertidal to subtidal zones, usually show high intraspe-
cific morphological variations [6]. Such morphological variability is believed to extend
selective advantages to individuals inhabiting various environmental conditions [7–10].
For example, large brown seaweeds such as Laminaria longicruis and Eisenia arborea have
narrow and strap-like blades to enhance their survival and fitness under wave-exposed
condition [8,11]. Thus, the existing morphological characteristics in seaweeds would reflect
local environmental conditions where they inhabit.

Seaweed morphology is influenced by many environmental factors, including sea-
son [12], depth [13,14], nutrient availability [2,15], wave action [16], irradiance [17,18],
temperature and salinity [19–21]. For example, Ulva fenestrate shows the optimal thallus
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growth at high irradiance and low temperature [17] and seaweeds growing in wave-
exposed sites (e.g., Codium fragile, Fucus spp. and Ecklonia radiata) are often much smaller
than those growing in sheltered waters [16,22–24]. Similarly, Saccharina latissima has nar-
row blade in hyposaline condition [19]. Due to the relationships between morphological
development and extrinsic conditions, some seaweed species can be used as environmental
indicators [25,26]. Hence, improved understanding of the impacts of environmental con-
ditions on seaweed morphology can be an important element in investigations of coastal
ecological health [27,28].

Morphological variability in seaweed results from the interactions of the muti-
factors [17,18]. Wave action is well known as a major physical factor that influence thal-
lus size and intraspecific morphological variability in seaweed because many studies
have focused on the effects of wave action [29]. Relatively few have investigated the in-
fluence of other abiotic factors, such as salinity, desiccation, nutrient concentration and
temperature, which affect morphology indirectly by altering physiological responses to
stressors [2,21,30,31]. Furthermore, biotic factors, biomass losses and defenses induced
by grazing pressure can affect morphological variability [27,30]. Although morphological
variation is affected by the complex interactions of multiple stressors [23,32], many investi-
gations have regarded only one or two factors. A better understanding of the relationships
between morphology and environment requires a more comprehensive approach that
considers multiple factors simultaneously.

The genus Sargassum C. Agardh is one of the most species-rich genera among the
Fucales, Phaeophyceae [33]. Sargassum thunbergii, an ecologically and economically im-
portant brown seaweed [34], is widely distributed from middle to lower intertidal zones
in the coastal areas of Northeast Asia including Korea, China and Japan [35–37]. This
species has high morphological variability and adjusts its growth form in accordance with
varying levels of local environmental conditions [34,38–40]. S. thunbergii provides habi-
tat, shelter and nursery areas for a wide variety of flora and fauna [41]. This species is
especially an important feed source for abalone and the rapidly developing holothurian
aquaculture. Additionally, S. thunbergii is a major source of bioactive components such
as alginate and pharmaceutical products and widely used in biosorptions of trace metal
ions [42–44]. Lately, due to large biomass and high productivity, this species has been
proposed as an appropriate candidate species to artificially restore large seaweed forests
in the intertidal zone in China [45]. The technology for commercial cultivation of S. thun-
bergii has been developed to meet various types of demand [34]. However, ecological
and physiological information available for cultivation, conservation and restoration of
S. thunbergii is still lacking [41,46,47], even though several studies have been conducted
on phylogenetic or population genetic diversity [48–50]. In particular, there have been
almost no attempts to identify environmental factors affecting intraspecific morphological
variation of S. thunbergii.

Understanding how morphological traits of seaweed respond to varying environ-
mental factors is important in making management policy for its conservation, restoration
and aquaculture. In this study, we hypothesized that morphological differences among
S. thunbergii populations occur along the Korean coast depending on local environmental
conditions. The objectives of this study were (1) to identify the morphological differences
among S. thunbergii populations grown on Korean coasts and (2) to examine the determi-
nant of their morphology through quantifying the relationship between morphology of
S. thunbergii and local environmental factors.

2. Materials and Methods
2.1. Study Area

The present study was conducted at 15 study sites along the coasts of South Korea
including Jeju Island (Figure 1a). The eastern coast of Korea is exposed to high wave action
and its coastline is simple and monotonous. The tidal amplitude is very small (<30 cm) and
seaweed habitats are well developed. The southern part on the eastern coast is affected by
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the East Korean Warm Current (EKWC), which originates in the Tsushima Warm Current,
while the northern part is influenced by the North Korea Cold Current. The western coast of
Korea, which faces the Yellow Sea, is a typical drowned valley shoreline (muddy flats with
high turbidity) mostly dominated by macrotidal (tidal amplitudes reaching ca. 9 m). As the
West Korea Coastal Current flows around the western coast of Korea, water temperature
and salinity are relatively low. The southern coast of Korea has many semi-enclosed bays
with moderate wave exposure and is mesotidal, with semi-diurnal tidal range of 1–3 m.
Tsushima Warm Current, a branch of the Kuroshio Current, transports warm waters to
the southern sea of Korea and is divided to the Yellow Sea Warm Current and the East
Korean Warm Current, which affects the southwestern and the southeastern coast of Korea,
respectively. Jeju Island, located in the southern sea of Korea, is the largest island in Korea.
The climate of Jeju Island is strongly influenced by the Tsushima Warm Current flowing
around the island. The tidal regime is similar to that of the southern coast of Korea.
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Geojaedo Island (GJ), 13. Busan (BS); Jeju Island (○): 14. Gosan (GS), 15. Seongsan (SS). Solid lines 
indicate warm currents. The Yellow Sea Warm Current (YSWC) and the East Korean Warm Current 
(EKWC) stem from the Tsushima Warm Current (TWC), which originates in the Kuroshio Warm 
Current. Dashed lines indicate cold currents: the West Korea Cold Water (WKCW) and the North 
Korea Cold Current (NKCC) (modified from Gong et al. [51]); (b) Schematic diagram describing the 
morphology of S. thunbergii. Thallus height (TH); main branch (MB); stipe (ST); lateral branch (LB); 
internode interval (INT); leaf (LF); fulcrant leaf (FLF); air-vesicle (AV); mucro (MU); vesicle (VS); 
stalk of vesicle (VST). 

Fifteen sites where S. thunbergii dominated in the rocky shores were selected accord-
ing to [40]; the distance among sampling sites was more than 40 km (Figure 1a). The east-
ern sites (site 1–5) were on steep shores subjected to strong wave action. Most S. thunbergii 
populations were permanently submerged even during low tide. The northern and the 

Figure 1. Study sites (a) and schematic diagram of Sargassum thunbergii (b); (a) Study sites and oceanic
currents around Korea. Eastern coast (4): 1. Sokcho (SO), 2. Jumunjin (JM), 3. Samcheok (SC), 4.
Jukbyeon (JB), 5. Yeongdeok (YD); western coast (H): 6. Taean (TA), 7. Daecheon (DC), 8. Sinsido
Island (SI), 9. Yeonggwang (YG); southern coast (�): 10. Goheung (GH), 11. Namhae (NH), 12.
Geojaedo Island (GJ), 13. Busan (BS); Jeju Island (#): 14. Gosan (GS), 15. Seongsan (SS). Solid lines
indicate warm currents. The Yellow Sea Warm Current (YSWC) and the East Korean Warm Current
(EKWC) stem from the Tsushima Warm Current (TWC), which originates in the Kuroshio Warm
Current. Dashed lines indicate cold currents: the West Korea Cold Water (WKCW) and the North
Korea Cold Current (NKCC) (modified from Gong et al. [51]); (b) Schematic diagram describing the
morphology of S. thunbergii. Thallus height (TH); main branch (MB); stipe (ST); lateral branch (LB);
internode interval (INT); leaf (LF); fulcrant leaf (FLF); air-vesicle (AV); mucro (MU); vesicle (VS); stalk
of vesicle (VST).

Fifteen sites where S. thunbergii dominated in the rocky shores were selected according
to [40]; the distance among sampling sites was more than 40 km (Figure 1a). The eastern
sites (site 1–5) were on steep shores subjected to strong wave action. Most S. thunbergii
populations were permanently submerged even during low tide. The northern and the
southern parts on the eastern coasts are affected by cold (NKCC) and warm (EKWC) waters,
respectively. Site 3 is simultaneously affected by both NKCC and EKWC. The western sites
(site 6–9) have very turbid waters and broad expanses of flat and rocky substratum. During
low tide periods, S. thunbergii populations are exposed to protracted aerial exposure. The
southern sites (site 10–13) and two sites (site 14 and 15) on Jeju Island have moderate wave
exposure and tidal ranges. S. thunbergii populations in these sites are distributed from
middle to lower rocky intertidal habitats with gentle slopes and thus, the populations on
the southern coasts are periodically exposed to air during low tide.
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2.2. Environmental Parameters

Air temperature and sea surface temperature (◦C), maximum wave height (m), daily
incident photon irradiance (mol photons m–2 d–1) and salinity data were obtained from
the Korean Ocean Observing and Forecasting System (KOOFS, sms.khoa.go.kr/koofs) and
the National Climate Data Service System (NCDSS, sts.kma.go.kr), where daily data were
assembled from tidal stations, marine buoys and meteorological observatories at each study
site for the last 20 years (1992–2011). Air temperature, sea surface temperature and salinity
were measured every 30 or 60 min depending on those observation systems and then
averaged daily. Maximum wave height averaged daily the highest wave heights which were
calculated at 30 or 60 min intervals from data logged every 0.5 or 1 s. Accumulated daily
solar irradiance (MJ m−2) obtained from NCSS converted to the daily incident photon flux
density (mol photons m–2d–1) [52]. However, we could not obtain a full set of environmental
data at sites 1, 4, 7, 10 and 14. These sites were excluded data analyses for the relationship
between morphological variation and environments. The magnitude of tidal range were
classified into three categories of dominant water oscillation: category 1, microtidal system
(the east coast; generally mixed diurnal or semi-diurnal tides); category 2, mesotidal system
(the south coast and Jeju Island; generally semi-diurnal tides); category 3, macrotidal system
(the west coast; generally semi-diurnal tides).

2.3. Sampling Design and Morphological Measurements

Sargassum thunbergii was identified based on morphological characters described by
previous literature and their growth form was adjusted in accordance with various local
environmental conditions [38–40]. The species also has a high seasonal variation in mor-
phology. In particular, juveniles and subadult plants are morphologically immature during
winter, for example, incomplete development of lateral branch and modular organs (leaf,
air-vesicle and receptacle) because they are not yet fully grown. For summer and fall, they
shed their modular organs and branches due to thallus decay after sexual reproduction
and therefore, their morphology is complete and intact during spring season. To measure
clearly morphological responses to local conditions and prevent taxonomic misidentifi-
cation, we haphazardly collected 20 fully grown individuals with all modular organs at
each site during spring period, late April–early June 2011 (Figure A1) and 6–16 individuals
were used in analysis. The samples were fixed immediately in a 5–10% formalin-seawater
solution in the field, transported to the laboratory and processed immediately. Thallus
height, main branch diameter, the length and diameter of stipe and longest lateral branch,
internode interval, the length, width and thickness of leaf, the length, width and volume of
air-vesicle and the length of stalk and mucro were measured to the nearest 0.1 mm using
digital calipers as shown in Figure 1b.

2.4. Data Analysis

Hierarchical cluster analysis (with group-average linking) and Principal Coordinates
Analysis (PCoA) were carried out to identify morphological dissimilarity among the sites;
the PCoA ordination plot included morphological vectors. These were based on Euclidean
distance with square root-transformed and normalized data because each of the mor-
phological measurements were not on the same scale. Significant differences among the
groups formed by cluster analysis were tested by Similarity Profile (SIMPROF). To examine
the relationship between morphological characteristics and environmental parameters,
BIO-ENV (biota-environment) procedure was applied: this procedure explains the best
subset of environmental variables correlated with biological variables [53]. For example,
Umanzor et al. [54] demonstrated that the attenuation of irradiance and desiccation stress
among the several experimental treatments they performed were best factors to be corre-
lated with the abundance of macroinvertebrates. To use BIO-ENV, the two matrices for
environment and morphology must exactly refer to a common set of samples (sampling
site). We did not have, however, environmental data of all study sites as mentioned in
Section 2.2. BIO-ENV were carried out using the morphological data of the study sites
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corresponding to where environmental variables were obtained and PCoA ordination
plot was also modified accordingly. Here, as superimposing environmental vectors on
the modified PCoA ordination plot, we explained correlations among environmental vari-
ables, morphological groups and the modified PCoA axes. Multivariate analyses were
performed with PRIMER v6 and PERMANOVA+ software (PRIMER-e, Auckland, New
Zealand) [53,55].

Significant differences in each of the morphological measurements among the group
formed by cluster analysis were tested using a one-way ANOVA. Morphological data were
tested for normality and homogeneity of variance to the assumptions of parametric statistics
using Shapiro–Wilk’s and Levene’s tests, respectively. If these assumptions were not met,
data were log (x + 1) transformed prior to analysis. When a significant difference was
observed among variables, the means were examined using Student–Newman–Keuls (SNK)
tests to determine where the significant difference occurred. Statistical significance was set
at α < 0.05. All values are presented as means ± SE (standard error) and ANOVA were
conducted using SPSS software (version 20.0, IBM SPSS Statistics, New York, NY, USA).

3. Results
3.1. Environmental Parameters

Environmental conditions varied with 10 sampling sites where full sets of data were
obtained (Figure 2). The overall air and water temperatures were higher at sampling sites
located at southern coasts (including Jeju Island) and lower at sites located at western
and eastern coasts (Figure 2a,b). The surface photon irradiance was slightly higher at the
southern sites than at other sites (Figure 2c). The wave heights were apparently higher at
sites on the east coast than in other regions (Figure 2d). The salinity was lower off the west
coast than at other sites (Figure 2e).
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3.2. Morphological Variations

Morphological characteristics of Sargassum thunbergii were divided into five signifi-
cant groups by the hierarchical cluster analysis with SIMPROF test (π = 0.949, p = 0.001,
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Figure 3a). Site 1 and 2, the northern part on the eastern coasts, were independently sepa-
rated from other sites (we denominated them group M1). The western sites also formed an
exclusive group although they were divided into two groups, site 7 and site 6–9. When
SIMPROF test was independently carried out on a subset of the western sites only, they
(site 7 and site 6–9) did not show significant difference (π = 0.043, p = 0.89): it would be
reasonable to consider the western sites as virtually a single group (M3). The southern
sites including Jeju Island and the remains of eastern coasts were significantly split into
two groups. SIMPROF test with a subset of sites of these two groups, however, showed
nonsignificant differences (π = 0.223, p = 0.7) and therefore, they totally would be a single
group (M2). Consequently, morphological characteristics can be grouped into three clusters
by an arbitrary distance level of 5.5 (Figure 3b).
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LLL (length of longest lateral branch); LLD (diameter of longest lateral branch); MBD (main branch
diameter); INT (internode interval); LFL (leaf length); LFW (leaf width); LFT (leaf thickness); LFA
(leaf area); VL (vesicle length); VD (vesicle diameter); VV (vesicle volume); SKL (stalk length of
vesicle); MU (mucro length).

Morphological characteristics were significantly different among groups M1, M2 and
M3 (Table 1). Thallus height and longest lateral branch length were significantly longer
in group M2 than in the other groups. The smallest diameters of main and lateral branch
occurred in group M3. Stipe diameters were larger in groups M1 and M2 than in group
M3. Stipe diameters were significantly different among the groups, but stipe lengths were
not. The internode interval was the longest in group M3, meaning sparsely branched. Leaf-
and vesicle-related measurements were significantly larger in group M1 than in the other
groups. The PCoA plot summarized these findings well (Figure 3b). The first two axes of
the PCoA explained 65.1% of the total variation (PCoA1: 40.9%; PCoA2: 24.2%). The axis
of PCoA1 was positively correlated with leaf- (LFL: r = 0.810, LFW: r = 0.878, LFT: r = 0.684,
LFA: r = 0.929) and vesicle-related traits (VL: r = 0.912, VD: r = 0.718, VV: r = 0.794, SKL:
r = 0.620, ML: r = 0.727). Group M1 (with large values for leaf and vesicle) was strongly
correlated with vectors related to leaf and vesicle and separated from the others along the
axis of PCoA1. The axis of PCoA2 was positively correlated with thallus height (r = 0.652),
longest branch length (r = 0.857), branch diameter (MDB: r = 0.948, LLD: r = 0.966) and
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stipe diameter (r = 0.692). Group M2 (with large values for thallus height and branch, but
small leaf and vesicle) was strongly positively correlated with vectors related to thallus
height and lateral branch traits. Group M3 (with sparse branching and slender and small
thalli) was positively correlated with internode interval.

Table 1. One-way ANOVA results in morphological measurements of Sargassum thunbergii grouped
by hierarchical clustering. Data are mean ± SE (n = 12–93).

Morphological Characteristics Code Group M1 Group M2 Group M3

Thallus
Thallus height (cm) *** TH 27.8 ± 1.1 c 68.3 ± 2.7 a 35.2 ± 1.3 b

Main branch diameter (mm) *** MBD 2.0 ± 0.1 a 2.0 ± 0.1 a 1.2 ± 0.1 b

Stipe length (mm) NS STL 4.1 ± 0.2 a 3.7 ± 0.2 a 3.5 ± 0.2 a

Stipe diameter (mm) *** STD 6.6 ± 0.3 a 4.9 ± 0.2 b 3.2 ± 0.1 c

Longest lateral branch length (cm) *** LLL 4.4 ± 0.4 b 9.8 ± 0.5 a 3.2 ± 0.1 c

Longest lateral branch diameter (mm) *** LLD 1.1 ± 0.0 b 1.2 ± 0.0 a 0.4 ± 0.0 c

Internode interval (mm) *** INT 2.0 ± 0.0 c 4.2 ± 0.2 b 4.9 ± 0.2 a

Leaf
Leaf length (mm) *** LFL 9.2 ± 0.2 a 6.0 ± 0.2 c 6.7 ± 0.2 b

Leaf width (mm) *** LFW 0.8 ± 0.0 a 0.5 ± 0.0 b 0.4 ± 0.0 c

Leaf thickness (mm) ** LFT 0.41 ± 0.0 a 0.36 ± 0.0 b 0.34 ± 0.0 b

Leaf area (mm2) *** LFA 7.2 ± 0.2 a 3.1 ± 0.2 b 2.9 ± 0.1 b

Vesicle
Air-vesicle length (mm) *** VL 2.9 ± 0.1 a 2.2 ± 0.0 b 2.4 ± 0.1 b

Air-vesicle diameter (mm) * VD 1.0 ± 0.0 a 0.9 ± 0.0 b 0.9 ± 0.0 b

Air-vesicle volume (mm3) *** VV 6.7 ± 0.4 a 4.1 ± 0.2 b 4.6 ± 0.4 b

Stalk length (mm) *** SKL 3.1 ± 0.1 a 2.4 ± 0.1 b 2.2 ± 0.1 b

Mucro length (mm) *** ML 1.3 ± 0.1 a 0.9 ± 0.0 b 1.0 ± 0.1 b

Superscript of same small letter indicates no significant difference in morphological parameters among groups;
*: p < 0.05; **: p < 0.01; ***: p < 0.001; NS: no significance.

3.3. Relationships between Morphological Variations and Environments

We found that the morphological characteristics of S. thunbergii have been highly
correlated with environmental variables (Figure 4 and Table 2). The locations of morpho-
logical groups in the modified PCoA plot which were analyzed using the study sites with
environmental variables corresponded to the locations of morphological characteristics in
Figure 3b (Figure 4). The study sites that clustered in groups R1, R2 and R3 corresponded to
those of groups M1, M2 and M3, but site 3 did not fit this pattern. Site 3 belonged to group
R1 corresponding to group M1, rather than to group R2 corresponding to group M2. The
grouping clearly corresponded to the direction of the overlain vectors for environmental
variables (Figure 4). The vector for wave height had a moderately positive correlation
with group R1 (r = 0.500), which separated this group from the others. The vectors for air
temperature, water temperature and irradiance were strongly positively correlated with
group R2 (r = 0.772, r = 0.785 and r = 0.583, respectively). The vector for tidal regime and
salinity were strongly positively (r = 0.878) and negatively (r = 0.832) correlated with group
R3, respectively.
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Figure 4. PCoA ordination plot based on Euclidean distances of square root-transformed morpholog-
ical parameters. Correlations between environmental variables and PCoA axes are represented by
vectors superimposed on the PCoA plot (Pearson correlation, r > 0.5). Dashed ellipses are groups
distinguished at a distance level of 5.5 in the hierarchical clustering analysis. Group R is also a
morphological group and we denominated the name R as illustrating the relationship between mor-
phology and environmental variables. AT (air temperature); WT (water temperature); IR (irradiance);
W (wave height); S (salinity); T (tidal regime).

Table 2. The best results acquired from BIO-ENV analysis of combined environmental variables
matching morphology of Sargassum thunbergii (Spearman correlation coefficient, ρ).

Number of
Variables Best Combinations of Environmental Variables

1 T (0.342), IR (0.339), AT (0.233), WT (0.182), S (0.099), W (0.002)
2 IR+T (0.464) 5, AT+T (0.397), AT+IR (0.393), WT+T (0.390)
3 AT+IR+T (0.519) 2, WT+IR+T (0.519) 2, AT+WT+T (0.440)
4 AT+WT+IR+T (0.556) 1, AT+S+IR+T (0.446), WT+S+IR+T (0.443)
5 AT+WT+S+IR+T (0.475) 4, AT+WT+IR+W+T (0.354)

AT (Air temperature); WT (Water temperature); W (Wave height); IR (Irradiance); S (Salinity); T (Tidal regime).
Superscript is five best results in numerical order.

The best permutations of combined environmental variables (BIO-ENV analysis)
matching to the morphology of S. thunbergii are listed in Table 2. The single variable which
best explains the site grouping, in manner consistent with the morphological patterns, is
tidal regime (ρ = 0.342). Tidal regime was always involved in the best five combinations,
indicating it is important to shape the morphology of S. thunbergii as a single variable.
On the other hand, the successful matches of the best five combinations included two
or more environmental variables at least. Spearman correlation coefficients were always
greater for combinations of multiple variables than for each single variable. Their Spearman
correlation coefficients did not show dramatic differences across the permutations. This
result indicates that the morphology of S. thunbergii is also influenced by combinations of
multiple environmental variables simultaneously rather than by a single dominant.

4. Discussion
4.1. Relationships between Morphological Variation and Environments

The morphology of Sargassum thunbergii markedly changed around the Korean coast-
line. We found the changes were highly correlated with different environmental condi-
tions on the different shores. Seaweed morphologies are often highly plastic. Thalli in
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wave-exposed areas are frequently much smaller and tougher than those growing in wave-
protected areas [16,22–24]. Additionally, many abiotic and biotic factors, including wave
action [24,29], light intensity [17,18], temperature [21], salinity [19,20] and grazing [56,57],
directly or indirectly affect the growth and morphology of seaweeds. Although these factors
interactively affect algal morphology, few studies have examined the relationships between
seaweed morphology and multiple environmental factors [58]. Our results showed that
determining the morphology of S. thunbergii was linked in a complex manner with different
local environmental conditions.

Group R3 (corresponding to group M3) occurred exclusively on the Korean west
coast and their morphological traits were obviously distinct from the other groups. Thalli
in this group had short and slender branches and long internode intervals (Figure 3b
and Table 1); hence, they were small, soft in texture and sparsely branched thalli. Large
tidal amplitude was a best factor grouping the sampling sites as a single variable, which
exclusively separated group R3 from other groups (Figure 4 and Table 2). The west coast
of Korea has calm waters, but the large tidal amplitudes and a very gentle slope prolong
the aerial exposure times of intertidal creatures. During prolonged atmospheric exposure,
thalli are exposed to intense stresses, including desiccation, strong solar radiation, mineral
nutrient starvation and extreme fluctuations in salinity and temperature. Yu et al. [45]
found that photosynthetic activity of the thalli was reduced by desiccation, heat stress
and prolonged aerial exposure, as shown previously for other seaweed species [59–61].
Mueller et al. [58] recently emphasized the role of tidal regime-related stressors in the
morphological expression of intertidal seaweeds. The distinctive morphology of group
R3 in our study can be explained by the extremely stressful conditions of the macrotidal
regime. In addition, many seaweeds produce diminutive thalli in low-salinity waters [62].
As an example, short fucoid thalli with narrow stipes are frequently observed in low-
salinity intertidal zones [20,31]. In the present study, the morphological characteristics of
the members of group R3 (also M3) were negatively correlated with salinity (Figure 4).
Thus, our results support that physiological responses to the harsh stresses associated with
macrotidal regime likely affected the growth and morphogenesis of S. thunbergii.

The morphologies of group R2 (corresponding to M2) were strongly correlated with
temperatures and irradiance and weakly correlated with wave height (Figure 4). The
study sites in this group ranged from Jeju Island to the southern part of the mainland
east coast, where the influences of two warm currents prevail (the TWC and EKWC; see
Figure 1b). The intertidal zone of the south coast of Korea is particularly sheltered by the ria
configuration of the coastline. Thalli in this group were larger than any other groups: they
have long and thick branches and thick stipes (Figure 3b and Table 1). Among all study
sites, biomass per thallus should be highest in these southern locations. The thick stipes are
able to help supporting heavy thalli [63]. Large forms of S. thunbergii often occur in warm
and/or sheltered locations [35,38,40], but to date, there has been no direct evidence that the
size is related to temperature or shelter. Here, we provide more robust evidence to support
this postulation. Many species of seaweeds reach larger sizes or biomass in wave-sheltered
waters than in areas exposed to strong hydrodynamic forces (e.g., [11,22,24,64,65]). Growth
and survival of seaweed need optimal range of temperature, water motion to allow for
nutrient uptake, but not too strong to remove algal thallus, and sufficient light of high
levels without photo-inhibition. As identifying the above-mentioned optimal conditions
for growth of S. thunbergii is not the focus of this study, we do not cover that in detail here.
Nevertheless, given our results and distribution of large forms in warm and/or sheltered
areas, morphological characteristics of S. thunbergii in the southern locations likely result
from proper combinations of those environmental factors. Actually, growth of S. thunbergii
in marine farms increases with temperature and the thallus length reached about 2 m [66];
note the fact that most marine farms are located in sheltered and environmentally suitable
places for the maximum growth and survival of the subject organism. These results indicate
that strong light, warm temperatures and shelter may promote the formation of large thalli
in S. thunbergii.
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The morphologies of group R1 (corresponding to M1) were correlated with wave
height (Figure 4). Specimens of group M1, on the northern part of the east coast, had large
leaves and vesicles and their thalli and lateral branch were very short, thick and bushy
(Figure 3b and Table 1). Such a morphological form would likely be advantageous in the
wave-exposed environments of the northern part of the east coast. For example, thick and
flexible stipe and small and thick thallus are very effective in preventing dislodgement
and/or breakage from the strong hydrodynamic forces [8,16]. S. thunbergii on the east coast
have been mostly submerged even during the low tide due to very small tidal amplitude.
Thalli on this coast were very dense, which may have caused self-shading. Large air vesicles
likely have functional significance in competition for light by providing increased buoyancy
to raise thalli towards the surface. Large leaves can also enhance light interception due to
maximized leaf surface. Therefore, morphological characteristics of group M1 would be a
typical seaweed form in wave-exposed areas.

4.2. Environmental Factors in the Intertidal Zone

Although the sites on the east coast of Korea are subjected to strong wave exposure
(Figure 2d and see 2.1 study site), wave height did not completely separate the five sites (site
1–5) from other sites. At first glance, it can make a hasty prediction that morphologies on the
east coast (site 1–5) would strongly correlate with wave height. However, the morphologies
on this coast fell into two groups, northern part (M1 and R1) and southern part (M2 and
R2) according to correlations with different environmental variables (Figures 3b and 4).
The site 3 is geographically located between the sites 1–2 and 4–5 on the eastern coast.
Interestingly, the same pattern also appeared on the PCoA plots and site 3 belonged to
both morphological groups M2 and R1 (Figures 3b and 4). These mean that morphologies
of specimens on site 3 have an intermediate form resulting from a combined effect of
different environmental variables. Actually, morphological characteristics of both group
M1 and M2, or intermediate forms between them were observed at the specimens from
site 3. There are two different water masses near site 3, where two currents with different
temperatures meet (Figure 1a). Thalli at site 3 were very likely exposed to a complexity of
environmental factors, including wave heights, warm and cold water temperatures and
fluctuating irradiance. These indicate that combined effects of local environmental variables
influenced the morphological grouping although the whole of the Korean east coast is
affected by high waves. Our findings are in line with previous studies that demonstrated
seaweed morphology in response to local environmental conditions when the degree of
wave exposures were similar [23,32].

Many studies have suggested that the degree of wave exposure is the most important
determinant of morphology and survival in seaweed (reviewed by Hurd [29]). Water
turbulence is likely a principal factor in the subtidal zone, where environmental conditions
are stable compared to the intertidal zone, but this is just one of many interacting factors
(e.g., irradiance, temperature, nutrients) in the intertidal zone that vary dramatically in
space and time [29]. In this study, wave height was only a partially dominant factor
in the northern part of the east coast due to locally different environmental variations
(Figure 4). Rather, as a single variable, tidal regime was more important (Table 2); it
separated exclusively the western coast sites as a whole from other sites (Figure 4). This is
probably because tide-induced stresses are greater than wave-induced impacts in intertidal
zone [58]. Therefore, tidal condition would be a more important factor shaping morphology
of intertidal seaweeds than wave forces at regional scale.

Meanwhile, there are different root causes in the morphological differentiation of
seaweeds. For example, dwarf forms in seaweeds have several different causes in response
to the harsh environments such as high on the shore [67,68] and tide-induced stress [58] as
well as high wave action [16,24]. In this study, although thallus height was significantly
shorter in group M1 and M3 than in group M2 (Table 1), the underlying causal factors were
different. The short size of thalli in group M1 is linked to strong wave action, while that of
thalli in group M3 was linked to tide-induced stress. Members of group M2 had the largest
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thallus due to favorable conditions such as temperatures, irradiance and less wave impact.
Thus, the morphological differentiation in intertidal seaweeds is controlled by combinations
of various local environmental factors rather than by a single dominant effect.

5. Conclusions

This study examined morphological variability in intertidal brown seaweed Sargassum
thunbergii and their relationships with diverse environmental variables at regional scale.
Tidal-induced stresses were important as a single variable at regional scale while wave
force was a lesser environmental factor which should be considered together with local
conditions in intertidal zone. Simultaneously, our results showed morphological differenti-
ation adjusting to locally different environmental conditions, highlighting consideration
of multiple environmental variables to examine biological and ecological processes of
intertidal seaweeds. Diverse morphologies of S. thunbergii resulted from adaptation to
different habitat conditions and could provide information about the environments where
they inhabit. This study provides valuable information regarding coastal ecological heath,
restoration and aquaculture using S. thunbergii. There are, of course, other factors affecting
seaweed morphology (e.g., nutrients, season and grazing) which were not involved in
this study. Further studies incorporating them can improve understanding morphological
variability of intertidal seaweeds.
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Figure A1. Photographs of the representative Sargassum thunbergii specimens collected from our 
study sites: (a) The northern part of the east coast (st. 1–2); (b) the mid part of the east coast (st. 3); 
(c) the southern part of the east coast (st. 4–5); (d) the west coast (st. 6–9); (e) the south coast; (f) Jeju 
Island. Specimens (c,e,f) are just a part of a whole individual because almost all the large branches 
have been cut off to make a specimen on the limited paper. Scale bar indicates 5 cm. 
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