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Abstract: The aerosol extinction coefficient (AEC) characterises the attenuation of the light propagat-
ing in a turbid medium with suspended particles. Therefore, it is of great significance to carry out
AEC prediction research using state-of-art neural network (NN) methods. The attention mechanism
(AM) has become an indispensable part of NNs that focuses on input weight assignment. Traditional
AM is used in time steps to help generate the outputs. To select important features of meteorological
parameters (MP) that are helpful for forecasting, in this study, we apply AM to features instead of
time steps. Then we propose a bidirectional long short-term memory (BiLSTM) NN based on AM to
predict the AEC. The proposed method can remember information twice (i.e., forward and backward),
which can provide more context for AEC forecasting. Finally, an in situ measured MP dataset is
applied in the proposed model, which presents Maoming coastal area’s atmospheric conditions in
November 2020. The experimental results show that the model proposed in this paper has higher
accuracy compared with traditional NN, providing a novel solution to the AEC prediction problem
for the current studies of marine aerosol.

Keywords: attention mechanism; long short-term memory; aerosol extinction coefficient prediction

1. Introduction

The aerosol extinction coefficient (AEC) is a measure of how strongly aerosol particles
absorb and scatter light at a particular wavelength [1,2]. It is an important parameter
affecting the earth–atmosphere radiative transfer system and laser light propagation [3].
AEC can also alter atmospheric visibility and thus affect the atmospheric environment [4–7].
At present, a few studies on marine aerosols are based on observed data in the United
States, Europe, India, and other sea areas [8–10], and there is a lack of research on marine
aerosols in China. It is urgently needed to carry out AEC studies in Chinese seas, especially
over coastal areas. This study can provide a reference for future AEC research in China’s
coastal areas.

In 2004, Piazzola et al. used MEDEX to predict the AEC in coastal zones [11], and
Pen et al. developed a CAM model to predict coastal aerosol microphysical properties over
China seas in 2020 [12]. However, those parameterized models may not be suitable for
aerosol forecast. With the growth in available data and computing power in recent years,
artificial neural networks (ANNs) provide new solutions for the prediction of atmospheric
meteorological parameters [13–15]. ANNs are actually complex networks with a large
number of simple elements connected to each other, which are highly nonlinear and can
perform complex logical operations and realize nonlinear relationships [16]. Furthermore,
ANNs show better prediction accuracy than statistical methods [17]. ANNs do not require
much knowledge in the professional field, have low computational cost, and are widely
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used [18]. For instance, Pal et al. proposed a model by combining a self-organizing feature
map (SOFM) and multilayer perceptron networks (MLPs) to realize a hybrid network
named SOFM–MLP with better performance in atmospheric temperature prediction [19].
Zheng et al. proposed a model based on a radical basis function (RBF) NN to predict the
concentration of PM2.5, which significantly increased the prediction accuracy of PM2.5
compared with classic back propagation (BP) NN [20].

However, these studies did not consider the sequence characteristics of meteorological
data. Compared with traditional models, recurrent neural networks (RNNs) are generally
used when input data are sequential [21,22]. However, RNNs cannot solve the gradient
explosion and gradient disappearance problems caused by long-term dependencies [23].
To solve this problem, the long short-term memory (LSTM) was developed by Hochre-
iter and Schmidhuber as an extension of RNNs [24]. Based on LSTM, researchers have
proposed many methods in time series forecasting [25]. In 2014, Cho et al. proposed the
gate recurrent unit (GRU), which is performed similarly to LSTM but is computationally
cheaper [26,27]. The Bidirectional-LSTM (BiLSTM) was proven to outperform undirectional
ones by traversing the input data twice (i.e., (1) forward and (2) backward) [28,29]. These
studies all have achieved good results in time series forecasting under specific conditions.

Attention mechanisms have become an integral part of compelling sequence modeling
and transduction models in machine translation, with numerous applications in other fields
as well [30–33]. In 2019, Shin et al. proposed temporal pattern attention (TPA) to select
relevant time series and used it in time series forecasting. The proposed model achieves
better performance in almost all of the cases than traditional RNNs and LSTMs [34].

Inspired by the above methods, this paper proposes a new model by combining an
attention mechanism and BiLSTM networks to predict coastal AEC. The effectiveness of
the Attention-BiLSTM network has been examined in other forecasting problems. For
example, the authors in [35] used an Attention-BiLSTM in forecasting tourist arrival and
achieved better accuracy than other methods considered in the same study. Liu et al. used
Attention-BiLSTM to predict traffic speed, and the method was evaluated over the data of
a certain area in Hangzhou [36]. The specific construction of the model proposed in this
paper is as follows: (1) establishing a multi-variate temporal prediction model based on
BiLSTM and (2) considering influences of different factors, adding an attention layer at the
features level into the BiLSTM. The prediction results will be compared with other models.

The rest of this paper is structured as follows. Section 2 introduces the AEC prediction
methodology proposed in this paper; the experimental and evaluation framework are
presented in Section 3. Section 4 describes the comparison methods and experimental
results. Finally, Section 5 concludes the paper.

2. Proposed Methodology of AEC Prediction
2.1. Overall Structure of the Proposed Attention-BiLSTM Method

Compared with traditional numerical weather forecasts, deep learning models are
especially suitable for short-term and sudden weather forecasts and have the advantages
of low cost and rapid response. AEC in marine areas is affected by various meteorological
parameters and has the characteristics of large and rapid changes, and short-term changes
are not periodic. The framework of the proposed method of predicting AEC in the marine
area is shown in Figure 1. Timesteps is a parameter used as the memory circle in BiLSTM,
which means that the input will be related to the previous timesteps of the data. f eatures is
the input dimension.

The detailed AEC prediction steps are described as follows:

1. Attention Mechanism. The traditional attention mechanism reviews the information
at each previous time step and selects relevant information to help generate the output.
In this paper, however, we select features dimension to find out which feature plays a
key role in the prediction result:

Att_dims = Permute(timesteps, f eatures) (1)
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After using the permute operation to invert the dimensions, attention weights are
multiplied by input and then fed to the BiLSTM unit.

2. BiLSTM unit. The BiLSTM model is used as a basic prediction model to predict AEC:

X = Bidirectional(LSTM(lstm_units))(input∗) (2)

where input∗ is the input multiplied by attention weights, lstm_units is hte size of the
hidden layer in the BiLSTM unit. The Bidirectional function is used to train data twice.

3. Dense layer. A dense layer is used to convert the output of BiLSTM into a predic-
tion result:

Prediction = Activation(X · kernel + b) (3)

Kernel is the weight matrix created by dense layer, and b is the bias vector. The
activation function used in the dense layer is linear.

Input(none, timesteps, f eatures)

Permute(none, f eatures, timesteps)

Dense(none, f eatures, timesteps)

Attention_vec(none, timesteps, f eatures) Attention_mul(none, timesteps, f eatures)

BiLSTM(none, 2 ∗ lstm_units)

Dense(none, 1)

Output

×

Figure 1. The framework of the method proposed in this paper.

2.2. Attention Mechanism

In natural language processing (NLP), attention-based models focus mainly on chang-
ing the network architecture to improve performance on machine translate tasks. The
typical attention mechanism selects information relevant to the current time step, each time
step in NLP contains a single word. However, in multivariate time series forecasting, it
fails to decide the importance of different variables for forecasting.

In this paper, the proposed attention mechanism basically attends to its feature vectors.
The attention weights select variables that are helpful for forecasting. The modified formula
is as follows:

ai = so f tmax(zi) =
ezi

∑j ezj
(4)

Attention(z, V) = ∑
i

aiVi (5)

where zi is the output of a dense layer, ai is the weight of the corresponding dimension,
and V is the feature dimension. First, use the data generator to generate a 10-dimensional
feature sequence, corresponding the scales of abscissa axis (i.e., 0 to 9), then select different
dimensions as the objective function in turn. Figure 2 shows the effect of our proposed
attention mechanism. It can be seen that the attention mechanism distributes attention
weights in the corresponding dimension, indicating it can focus on important features
while paying less attention to other features.
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Figure 2. Distribution of attention weights after introducing the attention mechanism.

2.3. Bidirectional Long Short-Term Memory

The basic neural network only establishes weight connections between layers. To
process sequence data, RNN establishes weight connections between neurons.

LSTM is specifically designed to solve the long-term dependencies problem of general
RNNs. All RNNs have a chain form of repeating neural network modules. In standard
RNN, this repeating module has only one tanh layer. LSTM, which is widely used, has a
slightly different recurrent function:

ht, wt = F(ht−1, ct−1, xt) (6)

The repeating module of LSTM contains four interactive layers. Through three care-
fully designed doors, forget gate ft, input gate it, and output gate ot, the LSTM cell allows
information to pass through selectively to protect and control the transmission of informa-
tion. The forget gate ft can be written as:

ft = σ(W f · [ht−1, xt] + b f ) (7)

where σ is the sigmoid function. W f and b f are the weights and biases, respectively. The
input gate it is similar to the forget gate ft:

it = σ(Wi · [ht−1, xt] + bi) (8)

where the weights and biases are different. The candidate memory cell c̃t can be represented
as the combination of ht−1 and xt, and the state of cell ct can be updated by multiplying ft,
ct−1, it, and c̃t:

c̃t = tanh(Wc · [ht−1, xt] + bc) (9)

ct = ft � ct−1 + it � c̃t (10)
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After the cell gates have been updated, the output ht can be calculated by the output
gate ot and cell gate ct:

ot = σ(Wo · [ht−1, xt] + bo) (11)

ht = ot � tanh(ct) (12)

The RNN cell and LSTM cell are shown in Figure 3. In LSTM, the memory unit c can
capture key information and has the ability to save it for a certain time interval. The storage
period of memory unit c is longer than short-term memory h, but it is also shorter than
long-term memory, so it is called long short-term memory.

tanh

ht−1

xt

ht

ht
(a)

σ σ tanh σ

× +

× ×

tanh

ct−1

ht−1

xt

ct

ht

ht

ft

(b)

it
c̃t

ot

Figure 3. Diagram of structures of (a) RNN and (b) LSTM cells.

BiLSTM is an extension of the LSTM model in which two LSTM cells are applied in
one BiLSTM cell. Its structure is as in Figure 4. Applying LSTM twice leads to improving
learning long-term dependencies and thus consequently will improve the accuracy of the
model. In this work, we pass the variables related to AEC prediction into BiLSTM after
attention weighting.
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LSTM LSTM LSTM

LSTM LSTM LSTM

xt−1 xt xt+1

ht−1 ht ht+1

+ + +

Figure 4. Workflow for simple BiLSTM model.

3. Experimental and Evaluation Framework
3.1. Data Description

The atmosphere parameters of the Maoming (APM) dataset present Maoming atmo-
spheric data for the period of November 2020. Researchers carried out field experiments
and set up experimental equipment in Maoming. After nearly a month of observation, the
experiment finally collected more than 100,000 pieces of relevant data. The installation
location of the instrument is marked in Figure 5. There are three main reasons why we
chose this point as the observation platform:

1. Marine meteorological science experiment base at Bohe, Maoming, is established and
supported by the China Meteorological Administration and the Guangdong Institute
of Tropical and Marine Meteorology. The station is a well-known and widely accepted
experimental point for marine environment monitoring and marine climate studies.

2. The terrain of the station here is flat, and it is easy to set up an observation platform;
data measured and collected in this station can represent China’s typical coastal
environments well;

3. During that time, the weather was very good, and it was suitable for measuring
coastal meteorological and atmospheric parameters.

Figure 5. Google map of Bohe observation station with a longitude of 111.32° and a latitude of 21.45°.
(https://www.google.com/maps/@21.45,111.317806,8z, accessed on 8 January 2022).

https://www.google.com/maps/@21.45,111.317806,8z
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Table 1 presents the features contained in the mentioned dataset. The data are mainly
divided into three categories.

1. AEC, measured by CAPS-ALB. AEC is the target value predicted in the experiment.
2. General meteorological parameters, measured by WXT520. The sensor data we used

in the experiment include temperature, relative humidity, and air pressure.
3. Visibility, measured by SWS-100. There is no doubt that visibility is an important

parameter affecting AEC. For higher accuracy, visibility is measured by SWS-100 as
an independent parameter in this experiment.

Table 1. APM Properties Description.

Type Description

Date Observation date
AEC Observed actual value of AEC
VIS Observed actual value of visibility
T Observed actual value of temperature

RH Observed actual value of relative humidity
AP Observed actual value of air pressure

3.2. Evaluation Metrics for Prediction Capacity

To fully evaluate the performance of the model, Mean Absolute Errors (MAE), Root
Mean Squared Errors (RMSE), and Adjusted R-Squared (AdjR2) were used to evaluate the
prediction capacity of the proposed method from different scales:

1. MAE is the average value of the absolute error between the predicted value ỹt
i and

the actual value yt
i , and N represents the size of the test set. It can better reflect the

actual situation of the predicted value error. The specific equation is:

MAE =
1
N

N

∑
i=1

∣∣ỹt
i − yt

i
∣∣ (13)

2. RMSE is the arithmetic square root of the Mean Squared Errors (MSE), and MSE is
the expected value of the square of the difference between the estimated value of the
parameter and the true value of the parameter. RMSE represents the deviation of the
square root between ỹt

i and yt
i in the total data size ratio. The smaller the value is, the

better the accuracy of the prediction model to describe the experimental data. The
RMSE equation can be expressed by the following formula:

RMSE =

√√√√ 1
N

N

∑
i=1

(ỹi
t − yi

t)
2 (14)

3. To analyze the prediction ability improvement of the proposed method, AdjR2 is
chosen to measures how well the predicted values fit the true values. R2 is the ratio of
the regression sum of squares to the total deviation of squares. The larger the ratio,
the more accurate the model and the more significant the regression effect:

R2 = 1− residual sum of squares
total sum of squares

= 1− ∑N
i=1(ỹi − yi)

2

∑N
i=1(ȳi − yi)2

(15)

AdjR2 offsets the impact of the number of samples on R and is suitable for multiple
features time series forecasting. AdjR2 can be defined as follows:

AdjR2 = 1− (1− R2)(N − 1)
N − P− 1

(16)
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where P is the number of features. Ordinary R is suitable for describing the strength
of the model’s fitting ability when describing individual features. However, as the
number of samples increases, R will inevitably increase, so this paper chooses AdjR2.

4. PRMSE and PMAE represent the improvements in RMSE and MAE, respectively. These
indicators are defined as follows:

PRMSE =
|RMSE1 − RMSE2|

RMSE1
× 100%, (17)

PMAE =
|MAE1 −MAE2|

MAE2
× 100%, (18)

4. Experimental Results
4.1. Data Processing

Due to weather and power supply, the machines were not running all the time, so it is
important to clean and preprocess the data. First, uninterrupted data were selected, then
data were recorded every five seconds. After grouping the data in minutes, it is found that
there are outliers in the data. The measured value of the instrument within a short period
is NaN. The following formula was used to process the data, which makes the data smooth
and more reliable:

data.loc[i] =

{
(data.loc[i− 1] + data.loc[i− 2])/2, if data.loc.[i] < (data.loc[i− 1] + data.loc[i + 1])/3
data.loc[i], if data.loc.[i] ≥ (data.loc[i− 1] + data.loc[i + 1])/3

(19)

Among them, loci is the current data, loci−1 and loci−2 are the data one time step and
two time steps before, and loci+1 is the data after one time step. The processed data are
shown as Figure 6.

Figure 6. Coastal meteorological parameters of the Maoming area in November 2020.

Feature scaling is an important content in data preprocessing. There are two reasons
why we need feature scaling in this experiment:

1. Different features have different scales, in order to eliminate the influence of the unit
and scale differences between features and treat each dimension feature equally, it is
necessary to normalize the features.

2. For the loss function of the model, gradient descent converges faster after feature scaling.
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The scaling method used in this paper is the min–max scaler, which is very sensitive
to outliers because outliers affect the max or min value, so this method is only suitable for
the case where the data are distributed in a range. The Min–max scaler can be written as:

x∗ =
x−min(x)

max(x)−min(x)
(20)

where x is the current data, min(x) is the minimum, max(x) is the maximum, and x∗ is the
normalized data.

The Figure 7 show that temperature and relative humidity have obvious periodicity.
The temperature is highest around noon and lowest around midnight. The relative humidity
is lowest around noon and highest at midnight.

Figure 7. Boxplot of different features: (a) Hourly Air Pressure Statistics, (b) Hourly Temperature
Statistics, (c) Hourly Relative Humidity Statistics, and (d) Hourly Visibility Statistics.

4.2. Comparison Methods

To verify the predictive capacity of the proposed prediction method fairly, we com-
pared it with six comparison methods: Multilayer Perceptron (MLP), RNN, LSTM, GRU,
BiLSTM, and BiLSTM-Attention. RNN, LSTM, and BiLSTM have been introduced in
Section 2. The others are as follows:

1. MLP method
MLP is a class of feed-forward (FF) NNs. MLP utilizes a supervised learning technique
called back-propagation for training. Its multiple layers and non-linear activation distin-
guish MLP from a linear perceptron. It can distinguish data that are not linearly separable.

2. GRU method
GRU is a variant of the LSTM neural network [37]. It combines the forget and output
gates in the LSTM into a new gate called the update gate to obtain fewer parameters
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and faster training speeds. GRU has been shown to exhibit better performance on
certain smaller and less frequent datasets.

3. BiLSTM-Attention method
This method is similar to the proposed method in this paper. The difference is that
this method puts attention after BiLSTM.

4.3. Results Analysis and Discussion

To improve the reliability of the experimental results, we chose two datasets to verify
the ability of the proposed method (dataset A: 19 November 2020 6:53 to 14:57; dataset B: 20
November 2020 0:05 to 18:00). After data preparation and selection of comparison methods,
we draw two main conclusions from the experimental results:

• Models based on LSTM obtain better performance than the traditional RNN model.
As Tables 2 and 3 show that for the AEC prediction in the Maoming area, the LSTM
and LSTM variants have higher prediction accuracy than RNN. For instance, com-
pared with the MLP, other methods’ percentage improvements in RMSE were 33.1%,
41.8%, 47.4%, 50.0%, 51.0%, and 52.8%, respectively, in dataset A, while they were
21.1%, 30.4%, 33.0%, 36.3%, 46.2%, and 51.3%, respectively, in dataset B; the percentage
improvements in MAE were 36.8%, 45.0%, 48.8%, 51.5%, 55.0%, and 56.6%, respec-
tively, in dataset A, while they were 16.4%, 28.0%, 31.4%, 34.6%, 44.9%, and 51.4%,
respectively, in dataset B.
Figure 8 shows the estimated prediction error results of different AEC prediction
methods in APM. According to this figure, some positive findings could be obtained:
(1) LSTM methods have higher prediction accuracy than traditional methods in AEC
prediction; (2) compared with normal LSTM methods, the forecasting capacities of
BiLSTM approaches is superior; and (3) the attention mechanism can slightly improve
the accuracy of prediction.

• The BiLSTM model based on the attention mechanism achieves a better prediction
effect than other methods.
Figure 9 shows different methods’ performances in a Taylor diagram, which is often
used to evaluate the accuracy of models. The scatter in the Taylor diagram represents
the model; the radial distance from the dot represents the ratio of the standard devi-
ation of the model to the observation, indicating the model’s ability to simulate the
center amplitude. The closer the standard deviation is to one, the better the simulation
ability; RMSE is a measure of the distance between the model and the observation,
represented in the figure as a dotted green semicircle with point A as the center; the
correlation coefficient is determined by the azimuth position of the model. When the
model prediction result is more consistent with the observed value, the closer the
model point is to the observation point in the x-axis; thus, the model has a high corre-
lation with the observation. This figure shows that the method proposed in this paper
obtains the best performance in AEC prediction than other traditional NN methods.

Figure 8. Error estimation result of AEC prediction methods in (a) dataset A and (b) dataset B.
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Table 2. Percentage Improvement of Methods in Comparisons with MLP (dataset A).

Prediction Approaches PRMSE PMAE AdjR2

RNN 33.1% 36.8% 0.679
LSTM 41.8% 45.0% 0.758
GRU 47.4% 48.8% 0.804

BiLSTM 50.0% 51.5% 0.821
BiLSTM-Attention 51.0% 55.0% 0.829
Proposed Method 52.8% 56.6% 0.84

Table 3. Percentage Improvement of Methods in Comparisons with MLP (dataset B).

Prediction Approaches PRMSE PMAE AdjR2

RNN 21.1% 16.4% 0.727
LSTM 30.4% 28.0% 0.788
GRU 33.0% 31.4% 0.808

BiLSTM 36.3% 34.6% 0.822
BiLSTM-Attention 46.2% 44.9% 0.873
Proposed Method 51.3% 51.4% 0.896

Figure 9. Taylor diagram of different models in (a) dataset A and (b) dataset B.
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As shown in Figures 10 and 11, all LSTMs can predict the trend of AEC well. We can
also obtain two main points: (1) Despite its high accuracy, GRU is less capable of capturing
data changes than LSTM; (2) compared with BiLSTM-Attention, the proposed prediction
method can better capture the data changes while obtaining the best prediction effect.

(a) (b)

(c) (d)

(e) (f)

Figure 10. The performance of prediction in dataset A by using (a) RNN, (b) LSTM, (c) GRU,
(d) BiLSTM, (e) BiLSTMAttention, and (f) Proposed Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. The performance of prediction in dataset B by using (a) RNN, (b) LSTM, (c) GRU,
(d) BiLSTM, (e) BiLSTMAttention, and (f) Proposed Method.

5. Concluding Remarks

In this paper, we reviewed recent published works that involve the use of NN al-
gorithms for time series forecasting. The main NN algorithms, including ANNs, RNNs,
LSTMs, Attention-based models, and their applications, were introduced first. After a
discussion of the reviewed studies, a model used for AEC prediction was proposed. It
can be divided into two main parts: (a) the Attention Mechanism and (b) the BiLSTM.
The proposed model, namely, Attention-BiLSTM, combines the attention mechanism’s
weight-selection ability with BiLSTM’s ability to predict process sequence features to
predict AEC.

The experimental data were collected from Maoming, China, in November 2020. Then
we preprocessed the data to make them smooth. This paper reported the results of the
experiment, through which the performance and accuracy, as well as the behavioral training
of MLP, RNN, LSTM, BiLSTM, BiLSTM-Attention, and Attention-BiLSTM models, were
analyzed and compared. The model proposed in this paper has improved accuracy by
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23.7% compared with the classic RNN. Compared with other different LSTM variants, the
accuracy is improved and the changes in data trends can be captured accurately.

Although many new models have been developed for time series forecasting those
years, some limitations still exist and may impose non-negligible effect on the AEC forecast-
ing. Firstly, in the process of collecting experimental data, the missing data phenomenon
occurs from time to time. Secondly, current research mostly focuses on short-term fore-
casts, and long-sequence forecasts are more desirable. Therefore, our next research can be
expanded in the following ways:

1. Different meteorological parameters need to be added as features in the future. Ac-
cording to attention mechanism theory, our method will automatically adjusts the
weights of different features.

2. More geographic locations should be selected for prediction, which will make experi-
mental results more convincing.

3. Long-sequence time-series forecasting (LSTF) must be considered. In practical appli-
cation problems, we need to forecast long time series. Our next work, we will focus on
improving the forecast time and making the research more practical while ensuring
the forecast accuracy.
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