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Abstract: This research proposes a mooring system for an ocean current generator that is working
under the impact of typhoon waves. The turbine and the platform are kept stable at a designed water
depth to ensure that the generator remains undamaged and continuously generates electricity under
excessive water pressure. In this design, the turbine generator is mounted in front of the floating
platform by ropes and withstands the force of ocean currents, while the platform is anchored to
the deep seabed with lightweight, high-strength PE ropes. In addition, two pontoons are used to
connect the generator and the platform with ropes. When the balance is reached, the depth of the
generator and the depth of the platform’s dive can be determined by the length of the ropes. In this
study, typhoon irregular wave is represented by the Jonswap wave spectrum. The irregular wave
is simulated by six regular waves. The equation of motion of the mooring system is derived. The
theoretical solution of the dynamic system is presented to determine the dynamic displacements
of the platform, pontoon, turbine and the dynamic tensions of the ropes. The dynamic tensions of
the ropes increase with the cross-sectional area of pontoon. The natural frequency of the mooring
system depends on the parameters, including the mases of elements, the lengths of ropes and the
cross-sectional area of pontoons. In the proposed mooring configuration, the dynamic tension of the
rope is far less than the breaking strength of the rope; thus, the ocean turbine is stable, and no water
that flows through will be disturbed by the floating platform.

Keywords: dynamic tension; displacement; ocean current; floating platform; turbine; pontoon;
buffer spring

1. Introduction

An excellent, natural energy resource is the Kuroshio strong current flowing along
the east of Taiwan, which has an estimated electricity capacity of 4 GW [1]. Ocean current
is one of the potential energy sources to be developed. However, the seabed beneath the
Kuroshio current is almost over 1000 m in the area mentioned above. Moreover, several
typhoons strike Taiwan every year. These two disadvantages must be solved before a
current power generation system is constructed.

Investigation of fluid–structure interaction (FSI) is important for marine engineering,
aircraft, engines, bridges and biotechnology. FSI is the interaction of some movable or
deformable structures with an internal or surrounding fluid flow. Fluid–structure coupling
can be simply divided into one-way coupling and two-way coupling. One-way coupling
ignores the change of flow field space caused by structural deformation, so the calculation
is more simplified. Anagnostopoulos [2] investigated the dynamic response analyses
of offshore platforms under wave loadings and predicted the wave forces by means of
Morison’s equation. Therefore, the equation of motion for the lumped mass idealization
of the platform was presented. The system was one-way coupling. It was found that the
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importance of fluid–structure interaction increased with higher dynamic amplifications.
The effect of viscous damping due to the relative velocity between fluid and structure
significantly decreased the resonant response. Istrati and Buckle [3] investigated the effect
of FSI on connection forces in bridges caused by tsunami loads by using LS-DYNA software.
It was found that the flexibility and the dynamic characteristics of the bridge structure
significantly influenced the external tsunami loads on the bridge and the connection forces.

Xiang and Istrati [4] investigated the solitary wave–structure interaction of complex
coastal deck geometries by using the Lagrangian–Eulerian (ALE) method with a multi-
phase compressible formulation. It was found that, for small wave heights, the horizontal
and uplift forces increased with the number of girders (Ng), while, for large waves, the
opposite happened. Moreover, if the Ng was small, the wave particles accelerated after the
initial impact on the offshore girder, leading to more violent slamming and larger pressures
and forces on the deck. Conversely, if the Ng was large, unsynchronized eddies were
formed in each chamber, which dissipated energy and resulted in weaker impacts on the
deck. Obviously, if the surfaced structure is too large, the two-way coupling effect of wave–
structure interaction needs to be considered. In addition, the multi-phase flow simulation
needs to be considered in the numerical analysis, which is a very challenging problem
and important in marine engineering. Some literature [4–6] is devoted to this research.
Peregrine et al. [5] found that the breaking/broken waves and bores were dominated by
significant turbulence effects and air entrapment. The hydrodynamic loads caused by the
breaking wave on the marine decks were totally different from unbroken waves [6].

Firouz-Abadi et al. [7] investigated the stability analysis of shells conveying fluid.
The boundary element method was applied to model the potential flow. It was found
that the eigenvalues and mode shapes of the flow in the shell were strongly related to
the unsteady pressure that induced the shell vibration. Bose et al. [8] investigated the
flow-induced dynamic stability of a fluid–structure interaction (FSI) system comprising of a
symmetrical NACA 0012 airfoil supported by non-linear springs. Lin et al. [9] investigated
the wave propagation of an artery. A mathematical model was proposed to describe
the wave propagation through an isotropic, elastic, thick tube filled with viscous and
incompressible fluid. The tube is supported by the elastic muscle and simulated as the
viscoelastic foundation. The flexural Young and Lamb wave modes through a tube wall
are presented simultaneously. The dispersion curves and the energy transmissions of the
three modes were investigated. It was found that the effect of the viscoelastic foundation
constant on the wave speed and the transmission was significant.

The numerical method is usually used to investigate the dynamic behavior of the
two-way-coupled FSI. In general, the numerical methods include the boundary element
method [10], the finite volume method [11], the finite-element-based, arbitrary Lagrangian–
Eulerian method [12], particle-based methods, such as smoothed particle hydrodynam-
ics [13], and hybrid methods, such as coupled SPH-DEM [14] and coupled SPH-FEM [15].

There have been two cases where the performance of ocean current turbines was
tested in seas: (1) One 50 kW ocean current turbine, developed by the Wanchi company
(Kaohsiung City, Taiwan), was successfully moored to the 850 m deep seabed near the
offshore of Pingtung County, Taiwan, by Chen et al. [1]. The current turbine generated
about 26 kW under the current speed of 1.0 m/s; (2) An experimental 100-kW-class ocean
current turbine was located off the coast of Kuchinoshima Island, Kagoshima Prefecture,
and demonstrated by IHI and NEDO [16]. The current turbine generated about 30 kW
under the current speed of 1.0 m/s. The turbine system 50 m below the sea surface was
connected to the mooring foundation on the seabed at the depth of 100 m. The above
experiments were conducted under the condition of small waves, and the influence of
waves on the dynamic stability of the mooring system was not studied.

Zwieten et al. [17] investigated the C-plane prototype of an ocean current turbine with
a hydrodynamic platform that was connected to the seafloor with a rope. This turbine,
using its wingtips and canard to manipulate its depth and orientation in a temporally and
spatially varying current, could generate maximum energy production. This study did not
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take the problem of turbine damage due to excessive water pressure when diving too deep
into consideration. It also did not consider the disadvantages of the deeper ocean current, the
lower flow rate and the smaller power generation. The effect of waves was also not considered.

One of the most challenging tasks for the ocean current turbine system is to develop a
deep mooring technology because the targeted seabed is at a depth of almost 1000 m, as
mentioned. To monitor the performance of the ocean turbine, the dynamic stability of the
mooring system under the coupled effect of the ocean current and wave is needed [18–24].
Lin et al. [25] used the ocean current turbine system developed by the Wanchi company to
investigate the dynamic stability of the system subjected to regular wave and current forces.
The mooring system was composed of a turbine, a floating platform, traction ropes and a
mooring foundation. Results showed that the effects of several parameters of the system
on the dynamical stability of the ocean current turbine system were significant. However,
the dynamic tension of the rope was not investigated in the study.

As the mooring foundation is set on the seabed over 1000 m deep, a long mooring rope
is required. Consider the strength of the rope: lightweight, high-strength PE mooring ropes
are more beneficial than chain and steel ropes. Lin and Chen [26] found that, when the
ocean current velocity was 1 m/s and the rope length was about 2900 m, the drag force was
15 tons, and the rope was almost straight. In other words, the bending deformation of the
PE rope was negligible. The deformation of the rope was longitudinal only. Accordingly, the
mooring system is simulated in the linear elastic model to analyze the problem of dynamic
stability. Consider an ocean current power generation system composed of a surfaced
turbine, a floating platform, a towing rope and a mooring foundation [25]: whenever a
typhoon hits, the turbine generator is towed back to the shore to avoid any possible damage,
leaving the mooring system in the sea. Lin and Chen [26] proposed a protection method to
protect the mooring system that avoids the damage caused by typhoon wave current. The
principle of the design is that the platform generates a negative buoyancy to dive by letting
water flow into its inner tank, and the pontoon is used to create a positive buoyancy. When
the two elements are connected by a rope to achieve static equilibrium, the floating platform
is submerged at a fixed depth determined by the rope length. Furthermore, the linear elastic
model is used to construct the coupled motion equation of the system under a regular wave.
The analytical solutions of the coupled equations are derived. It is theoretically verified
that the proposed protection procedure can avoid the damage of the floating platform and
the mooring line due to typhoon wave impact.

Lin et al. [27] simulated a mooring system for ocean current generation during non-
typhoon periods and proposed a system that keeps the turbine statically stable at a designed
underwater depth to ensure that the ocean current generator can generate electricity
effectively. In their design, the turbine generator is connected to a surfaced platform,
the platform is anchored to the deep mooring foundation by lightweight, high-strength
polyethylene ropes and a pontoon is connected to ocean current turbines with rope. The
static balance of the ocean current turbine is formed. Therefore, the depth of the current
turbine can be determined by the length of the rope. Additionally, the linear elastic model is
used to simulate the motion equation of the overall mooring system under a regular wave.
The theoretical solution of the static and dynamic stability analysis of the mooring system
is proposed. The dynamic displacements of the components and the dynamic tensions of
ropes under the regular wave and ocean current are investigated. It is found that the effect
of the wave phase on the dynamic response of the system is significant. The length of the
rope can be adjusted to avoid resonance and reduce the tension of the rope. In addition, a
buffer spring is used to reduce the dynamic tension of the rope to increase the safety and
lifespan of the rope significantly.

To simplify the actual ocean waves, which are irregular, three approaches are com-
monly adopted: (1) the approximation of the wave field by a single, sinusoidal component
with a given height, period and direction (regular waves); (2) the use of a limited num-
ber of harmonics of a primary wave to approximate non-sinusoidal properties (irregular
waves); and (3) the representation of the water surface by an infinite summation of Fourier
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components (wave spectrum) [28]. Pierson and Moskowitz [29] presented the Pierson and
Moskowitz wave spectrum. The assumption was that, if the wind blows steadily over a
large area for a long time, the waves will reach equilibrium with the wind. This is the
concept of a fully developed sea, which requires winds of a sea that continuously blow
over hundreds of miles for several days to reach full development. Hasselmann et al. [30]
experimentally found that the wave spectrum can never be fully developed. The wave
spectrum continues to develop due to wave-to-wave interactions, even over long periods
of time and distances. Therefore, the Pierson–Moskowitz spectrum is modified to add an
additional and somewhat artificial factor to it to make the wave spectrum and experimental
measurements more closely matched. The Jonswap wave spectrum is presented.

This study proposes a mooring design in which the ocean current generator still
generates electricity when typhoon waves hit without interruption. To prevent the typhoon
waves from invading the ocean current generator set, a process is adopted whereby the
system dives below 60 m to avoid the damage of the typhoon waves. At the same time,
to prevent diving too deep from damaging the turbine, the turbine is in a static balance
at a predetermined depth underwater, and it must be able to maintain the a not-too-large
dynamic displacement. The surface velocity of the Kuroshio in eastern Taiwan is relatively
fast, and the deeper the water depth, the smaller the velocity. Therefore, the ocean current
generator group should not be placed too deep. This study proposes a safe and efficient
mooring system design and a linear elastic model to simulate the motion of the entire
mooring system. Results for analyzing the static and dynamic stability of mooring systems,
the dynamic displacements of turbines, floating platforms, pontoons and the dynamic
tension of ropes under the action of typhoon waves and ocean currents are studied. The
effects of several parameters on the dynamic behavior of the system are presented.

2. Mathematical Model

As shown in Figures 1 and 2, to prevent the damage of the typhoon waves, the
turbine and the floating platform are submerged to a depth of less than 60 m. Therefore,
the influence of the wave impact is almost negligible. In general, the dynamic response
of a large-surfaced structure subjected to wave impact force, which is non-uniform and
transient, is generally in the coupled translational–rotational (pitching, rolling and yawing)
motion. The good conditions for ocean current power generation are high flow rate and
stable flow direction, so the site is often a considerable distance from the shore: less affected
by the coast and less likely to produce breaking waves. The impact of breaking waves is
not considered in this manuscript.

When ocean currents flow through the blades of the ocean turbine, the turbine rotates
and drives the power generator to generate electricity. Meanwhile, the turbine unit is
subjected to the force of the ocean current; to fix the turbine unit, it is pulled by the floating
platform connected by rope B. The floating platform provides buoyancy and is anchored to
the deep seabed with lightweight, high-strength PE ropes. In addition, the ocean current
turbine is connected to pontoon 4 via rope D, and the balance between the current generator
and the pontoon is reached so that the depth of the turbine when the current is not affected
can be determined by the length LC of rope C. On one side of the floating platform, rope
B is used to pull the ocean current generator, and the other side of the floating platform
is pulled down and anchored on the deep seabed. The buoyancy of the floating platform
can be adjusted to be smaller than that of static balance so that, when ropes A and B are
pulled, the floating platform has negative buoyancy and pontoon 3 has positive buoyancy,
and rope C is used to connect the floating platform and pontoon 3 to achieve a balance
of positive and negative buoyancy. In this way, the depth of the floating platform can be
calculated by the length LC of rope C.



J. Mar. Sci. Eng. 2022, 10, 538 5 of 30

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 5 of 33 
 

 

positive buoyancy, and rope C is used to connect the floating platform and pontoon 3 to 

achieve a balance of positive and negative buoyancy. In this way, the depth of the floating 

platform can be calculated by the length LC of rope C. 

 

Figure 1. Coordinates of the current energy system composed of submarined ocean turbine, pon-

toons, floating platform, traction ropes and mooring foundation in the static state under steady 

ocean current. 

 
Figure 2. Coordinates of the current energy system composed of submarined ocean turbine, pon-

toon, floating platform, traction rope and mooring foundation in the dynamic state under steady 

ocean current and wave. 

 

 

 

 

  

 

 

 
 

              

                    

                    

               

            

                         

 

      

      

      

      

 

      

 

 

 

 

 

  

 

 

 

 

      

      

      

      

 

      

              

                    

                    

               

            

                         

 

Figure 1. Coordinates of the current energy system composed of submarined ocean turbine, pontoons,
floating platform, traction ropes and mooring foundation in the static state under steady ocean current.
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Figure 2. Coordinates of the current energy system composed of submarined ocean turbine, pontoon,
floating platform, traction rope and mooring foundation in the dynamic state under steady ocean
current and wave.

Lin and Chen [26] showed that a PE rope can be assumed to be a straight line under a
certain amount of ocean current drag force because the force deformation of the PE rope is
negligible. The linear elastic model presented by Lin and Chen [26] is used to analyze the
motion equation of the overall mooring system.
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Several assumptions are made based on these facts about ocean current energy con-
verters (OCEC):

- The current flow is steady;
- The masses of the turbine, floating platform and the pontoon are concentrated;
- Lightweight and high-strength PE mooring ropes are used;
- Under the ocean velocity, the deformed configuration of PE rope is nearly straight;
- The elongation strain of the ropes is small;
- The tension of the rope is considered uniform.

According to these assumptions, the motion of the mooring system is translational.
The coupled translational–rotational motion of a system subjected to non-uniform and
impulsive force from the wave current will be discussed in future research. The coupled,
linear, ordinary differential equations of the system are derived based on the assumptions.
Due to the wave fluctuation, the buoyance forces of the pontoons stimulate the mooring
system to vibrate. The coupled vibration motion of the system includes horizontal and
vertical oscillations.

The global displacements (xi, yi) for the i-th element shown in Figures 1 and 2 are the
sum of two parts: (1) the static one subjected to the steady current and (2) the dynamic one
subjected to the wave, as follows:

xi = xis + xid, yi = yis + yid, i = 1, 2, 3, 4 (1)

where x and y are the vertical and horizontal displacements, respectively. Because of the
pontoon buoyancy and the short length of rope between the turbine and the pontoon,
the horizontal dynamic displacements of the turbine and pontoon 4 are almost the same:
y2d ≈ y4d. In a similar way, the horizontal dynamic displacements of the floating platform
and pontoon 3 are almost the same: y1d ≈ y3d. In addition, the total tensions of ropes A, B, C
and D are also composed of two parts: (1) the static one and (2) the dynamic one, as follows:

Ti = Tis + Tid, i = A, B, C, D (2)

2.1. Static Displacements and Equilibrium under the Steady Current and without the Wave Effect

The static displacements of the five elements are:

x0 = 0, y0 = 0
x1s = Hbed − LC = LA sin θAs, y1s = LA cos θAs;

x2s = Hbed − LD = x1s − LB sin θBs, y2s = y1s + LB cos θBs
x3s = x1s + LC = Hbed, y3s = y1s

x4s = x3s = x2s + LD = Hbed, y4s = y2s

(3)

Due to x1s >> x1d, the global inclined angle qA can be expressed as:

sin θA =
x1

LA
=

x1s + x1d
LA

≈ x1s
LA

= sin θAs (4)

Due to xis >> xid, the global inclined angle qB can be expressed as:

sin θB =
x1 − x2

LB
=

(x1s + x1d)− (x2s + x2d)

LB
≈ x1s − x2s

LB
= sin θBs (5)

Under the steady current and without the wave effect, the static horizontal and vertical
equilibriums of the floating platform are written, respectively, as shown in Figure 1.

TBs cos θBs + FDBs = TAs cos θAs (6)

FB1s = TAs sin θAs + TBs sin θBs + W1 (7)
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where TAs, TBs, FB1s and W1 are the static tensions of ropes A and B, the buoyancy of the
floating platform and the weight of the floating platform, respectively. The steady drag of
the floating platform under current FDFs =

1
2 CDFyρAFYV2.

The static horizontal and vertical equilibriums of the turbine are expressed, respec-
tively, as:

TBs cos θBs = FDTs (8)

where the steady drag of the turbine FDTs = CDTy
1
2 ρATyV2.

FB2s = W2 − TDs − TBs sin θBs (9)

where TDs, FB2s and W2 are the static tensions of rope D, the static buoyancy and the weight
of the turbine, respectively. The static vertical equilibrium of pontoon 3 is expressed as:

FB3s = W3 + TCs (10)

where FB3s and W3 are the static buoyancy and the weight of pontoon 3, respectively. The
static vertical equilibrium of the pontoon 4 is expressed as:

FB4s = W4 + TDs (11)

where FB4s and W4 are the static buoyancy and the weight of pontoon 4, respectively.

2.2. Simulation of Irregular Wave

The irregular wave is represented by the Jonswap wave spectrum. The Jonswap wave
spectrum is given as a modification of the Pierson–Moskowitz spectrum in accordance with
DNV [28,31].

The wave energy spectrum is:

SJ( f ) = BJ H2
s f 4

p f−5exp

[
−5
4

(
f
fp

)−4
]

γb (12)

where f is the wave frequency, fp is the peak frequency and Hs is the significant wave height.

BJ =
0.06238×(1.094−0.01915lnγ)

0.230+0.0336γ− 0.0185
1.9+γ

, b = exp
[
−0.5

(
f− fp
σ fp

)2
]

,

σ =

{
0.07, for f ≤ fp
0.09, for f > fp

, γ= 3.3

(13)

Referring to the information from the Central Meteorological Bureau Library of Taiwan
about the typhoons that have invaded Taiwan from 1897 to 2019 [26,32] and selecting
150 typhoons that greatly affected Taiwan’s Green Island, the significant wave height Hs
during the 50-year regression period Hs =15.4 m, and the peak period Pw = 16.5 s.

Substituting the significant wave height Hs and the peak period Pw into Equations (12)
and (13), the Jonswap wave spectrum is determined, as shown in Figure 3.
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The frequency domain of the wave spectrum is divided into N subdomains of
(ω0, ω1), . . . , (ωN−1, ωN). The sea surface elevation of an irregular wave can be gen-
erated by the superposition of the regular wave components:

xw =
N

∑
i=1

ai sin
(

Ωit−
→
K i·
→
R + ϕi

)
(14)

where ai, Ωi, ϕi and
→
K i are the amplitude, angular frequency, phase angle and wave vector

of the i-th regular wave, respectively. The angular frequency is Ωi ∈ (ωi−1, ωi). The
amplitude can be determined by:

1
2

a2
i (Ωi) =

∫ ωi

ωi−1

S(ω)dω (15)

The linear dispersion relation is considered [33]:

Ω2
i = gk̃itanhk̃i Hbed (16)

where g is gravity. The wave number k̃i =

∣∣∣∣→K i

∣∣∣∣. Based on Equation (16), the wave number is

obtained. Further, the wave length λi can be determined via the relation between the wave
number k̃i and the wave length k̃i = 2π/λi. Based on Equations (14)–(16) and Figure 4,
and letting n = 6, the irregular wave is simulated by regular waves and listed in Table 1.
It is assumed that the total wave energy flow rate of the regular waves is equal to that of
the Jonswap wave spectrum. In cases 1~4, the numbers of regular waves range from 3 to
6. Every energy flow rate of every regular wave is assumed to be the same. According to
Equation (15), the amplitude of each regular wave is the same, and there is no distinction
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between the dominated wave and the secondary wave. Moreover, the frequency of the
regular wave and the given peak frequency are significantly different. In case 5, when
six regular waves are used to simulate an irregular wave, every energy flow rate of every
regular wave is different. It is obtained that the dominated wave frequency is consistent
with the given peak frequency, and the amplitude of the dominated wave is significantly
larger than that of other waves. The simulated results of case 6 are used later.

Table 1. Irregular wave simulated by regular waves [Hs = 15.4 m, Pw = 16.5 s, n = 6, Hbed = 1300 m].

Case Number of
Regular Waves 1 2 3 4 5 6

1 3
ai (m) 2.603 2.603 2.603 - - -

f i (Hz) 0.0369 0.0390 0.1893 - - -

2 4
ai (m) 2.255 2.255 2.255 2.255 - -

f i (Hz) 0.0365 0.0382 0.0390 0.0398 - -

3 5
ai (m) 2.017 2.017 2.017 2.017 2.017 -

f i (Hz) 0.0365 0.0382 0.0390 0.0398 0.0406 -

4 6
ai (m) 1.841 1.841 1.841 1.841 1.841 1.841

f i (Hz) 0.0365 0.0382 0.0390 0.0398 0.0406 0.1901

5 6

ai (m) 1.142 4.208 2.630 1.364 0.843 0.605

f i (Hz) 0.0425 0.0600 0.0850 0.1150 0.1500 0.2664

k̃i(1/m) 0.0073 0.0145 0.0291 0.0533 0.0906 0.2859

λi (m) 861.5 433.3 215.9 117.9 69.3 22.0

2.3. Dynamic Equilibrium with the Effects of the Steady Current and Irregular Wave

The dynamic equilibrium in the vertical direction for pontoon 3 is:

M3
..
x3d − FB3 + W3 + TC = 0 (17)

where M3 is the mass of pontoon 3. TC is the tension of rope C. Substituting Equations (2)
and (10) into Equation (17), one obtains:

M3
..
x3d + TCd − FB3d = 0 (18)

where the dynamic tension of the rope C is:

TCd = KCd(x3d − x1d) (19)

in which KCd is the effective spring constant. x3d − x1d is the dynamic elongation between
floating platform 1 and pontoon 3. Considering the safety of the rope, some buffer springs
are used to serially connect the rope between elements 1 and 3. The effective spring constant
of the rope–buffer spring connection is obtained:

KCd =
Krope C

1 + Krope C/KC,spring
(20)

where KC,spring is the constant of the spring connecting with rope C. The effective spring
constant of the rope C, Krope C = EC AC/LC, where EC, AC, and LC are the Young’s modulus,
cross-sectional area and length of rope C, respectively.
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Assuming the coordinates at pontoon 3 are as shown in Figure 3:

→
Rpontoon 3 = 0, (21)

The sea surface elevation at pontoon 3 is:

xw,pontoon 3 =
N=6

∑
i=1

ai sin(Ωit + ϕi) (22)

The coordinates at pontoon 4 are as shown in Figure 4:

→
Rpontoon 4 = LE

→
j (23)

The sea surface elevation at pontoon 4 is:

xw,pontoon 4 =
N=6

∑
i=1

ai sin(Ωit + ϕi + φi) (24)

where the phase angle φi =
2πLE

λi
cos α and LE =

√
L2

B − (LC − LD)
2. The values of the

relative angle α and the wave length λi are naturally determined. Nevertheless, the length
LE can be changed to obtain the desired phase angle φi.

The wave force on the pontoons should include horizontal force and vertical force.
Because the length of the ropes connecting the pontoon to the turbine and the carrier is
more than 60 m, and the rope can only transmit the axial force and cannot transmit the
lateral force, the effect of horizontal force on the dynamic stability of system can be ignored.
The volume of the surfaced pontoon should be reduced as much as possible to reduce the
wave force, which can increase the dynamic stability and safety of the system and can also
be analyzed by the one-way-coupled FSI method. Because the volume of the pontoon is
considered small, the horizontal wave force to the pontoon is small. In addition, the length
of the ropes connecting the pontoon to the turbine and the carrier is more than 60 m, and
the rope can only transmit the axial force and cannot transmit the lateral force; the effect
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of horizontal force on the dynamic stability of system can be ignored. The corresponding
dynamic vertical buoyance of pontoon 3 can be expressed as:

FB3d(t) =
N

∑
i=1

[ fBs,i sin Ωit + fBc,i cos Ωit]− ABxρgx3d (25)

where fBs,i = ABxρgai cos ϕi, fBc,i = ABxρgai sin ϕi. Substituting Equations (19) and (22)
into Equation (18), one obtains:

M3
..
x3d − KCdx1d + (KCd + ABxρg)x3d =

N

∑
i=1

[ fBs,i sin Ωit + fBc,i cos Ωit] (26)

The pontoon is composed of two parts: (1) the floating section on the water surface
and (2) the underwater container. The floating section on the water surface is cylindrical
with equal diameters, and the dynamic buoyancy of the pontoon is related to its dynamic
displacement. The mass of the pontoon can be controlled by the water in the underwater
container. Therefore, the mass and cross-sectional area of the pontoon can be considered,
and their independent, individual effects can be studied.

The dynamic equilibrium in the vertical direction for pontoon 4 is:

M4
..
x4d − FB4 + W4 + TD = 0 (27)

where M4 is the mass of the pontoon 4, and TD is the tension of the rope D. Substituting
Equations (2) and (11) into Equation (29), one obtains:

M4
..
x4d − FB4d + TDd = 0 (28)

where the dynamic tension of rope D is:

TDd = KDd(x4d − x2d) (29)

in which KDd is the effective spring constant. x4d − x2d is the dynamic elongation between
floating platform 2 and pontoon 4. Considering the safety of the rope, some buffer springs
are used to serially connect the rope between elements 2 and 4. The effective spring constant
of the rope–buffer spring connection is obtained:

KDd =
Krope D

1 + Krope D/KD,spring
(30)

where KD,spring is the constant of the spring connecting with rope D. The effective spring
constant of rope D, Krope D = ED AD/LD, where ED, AD, and LD are the Young’s modulus,
cross-sectional area and length of the rope D, respectively.

According to Equation (24), the dynamic buoyance of pontoon 4 is:

FB4d(t) =
N

∑
i=1

[ fTs,i sin Ωit + fTc,i cos Ωit]− ABTρgx4d (31)

where fTs,i = ABTρgai cos(ϕi + φi), fTc,i = ABTρgai sin(ϕi + φi). Substituting Equations
(29) and (31) into Equation (28), one obtains:

M4
..
x4d − KDdx2d + (KDd + ABTρg)x4d =

N

∑
i=1

[ fTs,i sin Ωit + fTc,i cos Ωit] (32)

The dynamic equilibrium in the vertical direction for the floating platform is:(
M1 + me f f ,x

) ..
x1d − FB1s + W1 − TC + TA sin θA + TB sin θB = 0 (33)
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where M1 is the mass of the platform. The dynamic, effective mass of rope 1 in the x-
direction, me f f ,x =

4 fg LAs sin θ1
π2 , was derived by Lin and Chen [15]. Substituting Equations

(2) and (7) into Equation (33), one obtains:(
M1 + me f f ,x

) ..
x1d + TCd + TAd sin θA + TBd sin θB = 0 (34)

where TA is the dynamic tension of rope A.

TAd = KAdδAd (35)

The dynamic elongation is δAd = LAd − LA where LA and LAd are the static and
dynamic lengths of rope A, respectively. The effective spring constant of the rope–buffer
spring connection is:

KAd =
Krope A

1 + Krope A/KA,spring
(36)

where KA,spring is the constant of the spring connecting to rope A. The effective spring
constant of rope A is Krope A = EA AA/LA, where EA and AA are the Young’s modulus and
the cross-sectional area of rope A, respectively. The static and dynamic lengths are:

LA =
√

x2
1s + y2

1s , LAd =

√
(x1s + x1d)

2 + (y1s + y1d)
2 (37)

The approximated dynamic elongation is proposed by using the Taylor formula:

δAd =
x1s
LA

x1d +
y1s
LA

y1d (38)

where the dynamic tension of rope B is:

TBd = KBdδBd (39)

and where the dynamic elongation δBd = LBd − LBs. LBs and LBd are the static and dynamic
lengths of rope B. The effective spring constant of the rope–buffer spring connection is:

KBd =
Krope B

1 + Krope B/KB,spring
(40)

where KB,spring is the constant of the spring connecting with rope B. The effective spring
constant of rope B is Krope B = EB AB/LB, in which EB and AB are the Young’s modulus
and the cross-sectional area of rope B. The static and dynamic lengths are:

LB =

√
(x1s − x2s)

2 + (y1s − y2s)
2, LBd =

√
(x1 − x2)

2 + (y1 − y2)
2 (41)

Using the Tylor formula, one can obtain the approximated dynamic elongation:

δBd =
x1s − x2s

LB
(x1d − x2d) +

y1s − y2s

LB
(y1d − y2d) (42)

Substituting Equations (19), (35), (38), (39) and (42) into Equation (34), one obtains:(
M1 + me f f ,x

) ..
x1d +

(
KAd

x1s
LA

sin θA + KBd
x1s−x2s

LB
sin θB − KCd

)
x1d −

(
KBd

x1s−x2s
LB

sin θB

)
x2d

+KCdx3d +
(

KAd
y1s
LA

sin θA + KBd
y1s−y2s

LB
sin θB

)
y1d −

(
KBd

y1s−y2s
LB

sin θB

)
y2d = 0

(43)

The dynamic equilibrium in the vertical direction for the turbine is:

−M2
..
x2d −W2 + FB2s + TD + TB sin θB = 0 (44)
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Substituting Equations (2) and (9) into Equation (44), one obtains:

−M2
..
x2d + TDd + TBd sin θB = 0 (45)

Substituting Equations (29), (39) and (42) into Equation (45), one obtains:

M2
..
x2d − KBd

x1s−x2s
LB

sin θBx1d +
(

KDd + KBd
x1s−x2s

LB
sin θB

)
x2d − KDdx4d

−KBd
y1s−y2s

LB
sin θBy1d + KBd

y1s−y2s
LB

sin θBy2d = 0
(46)

The dynamic equilibrium in the horizontal direction for the floating platform is:

−
(

M1 + me f f ,y

) ..
y1d + FDFy − TA cos θA + TB cos θB = 0 (47)

where y1d is the dynamic horizontal displacement of the floating platform. The dynamic
effective mass of rope A in the y-direction is me f f ,y =

4 fg LA cos θA
π2 [26]. The horizontal force

on the platform due to the current velocity V and the horizontal velocity
.
y1d of the platform

are expressed as [34]:

FDFY =
1
2

CDFyρAFY
(
V − .

y1d
)2

=
1
2

CDFyρAFY

(
V2 − 2V

.
y1d +

.
y2

1d

)
≈ FDFs − CDFyρAFYV

.
y1d (48)

Because
.
y1d << V, the term

.
y2

1d is negligible. The drag coefficient of the floating
platform is considered close to that of a bullet, i.e., CDFy ≈ 0.3, [26].

Substituting Equations (2), (7), (35), (38), (39), (42) and (48) into Equation (47), one obtains:(
M1 + me f f ,y

) ..
y1d + CDFyρAFyV

.
y1d

+
(

KAd
x1s
LA

cos θA − KBd
x1s−x2s

LB
cos θB

)
x1d + KBd

x1s−x2s
LB

cos θBx2d

+
(

KAd
y1s
LA

cos θA − KBd
y1s−y2s

LB
cos θB

)
y1d + KBd

y1s−y2s
LB

cos θBy2d = 0

(49)

It is discovered from Equation (49) that the second term is the damping effect for
vibration of the system. The damping effect depends on the parameters: (1) the damping
coefficient CDyF, (2) the damping area ABY and (3) the current velocity V.

The dynamic equilibrium in the horizontal direction for the turbine is:

−M2
..
y2d + FDTy − TB cos θB = 0 (50)

where y2d is the dynamic, horizontal displacement of the turbine. The horizontal force on
the platform caused by the current velocity V and the horizontal velocity

.
y2d of the turbine

is expressed as [34]:

FDTy = CDTy
1
2

ρATy
(
V − .

y2d
)2

= CDTy
1
2

ρATy

(
V2 − 2V

.
y2d +

.
y2

2d

/ )
≈ FDTs − CDyTρATyV

.
y2d (51)

where ATy is the effective operating area of the turbine. The theoretical effective drag

coefficient of optimum efficiency is CDTy = 8/9, [27]. Considering
.
y2d << V, the term

.
y2

2d is
negligible. Substituting Equations (2), (8), (39), (42) and (51) into Equation (50), one obtains:

M2
..
y2d + CDTyρATyV

.
y2d + KBd

x1s−x2s
LB

cos θBx1d

−KBd
x1s−x2s

LB
cos θBx2d + KBd

y1s−y2s
LB

cos θBy1d − KBd
y1s−y2s

LB
cos θBy2d = 0

(52)

It is discovered from Equation (52) that the second term is the damping effect for
vibration of the system. The damping effect depends on the parameters: (1) the damping
coefficient CDTy, (2) the damping area ATY and (3) the current velocity V.

Finally, the coupled equations of motion in terms of the dynamic displacements
x1d, x2d, x3d, x4d, y1d, and y2d are discovered as Equations (26), (32), (34), (49), (52) and (56).
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2.4. Solution Method
2.4.1. Free Vibration

Without the excitation of wave and under steady ocean current, the coupled motion of
the system is in free vibration. According to Equations (26), (32), (34), (49), (52) and (56),
the coupled equations of free vibration can be expressed as:

M
..
Zd + C

.
Zd + KZd = 0 (53)

where

Zd =



x1d
x2d
x3d
x4d
y1d
y2d

, M =



(
M1 + me f f ,x

)
0 0 0 0 0

0 M2 0 0 0 0
0 0 M3 0 0 0
0 0 0 M4 0 0
0 0 0 0

(
M1 + me f f ,y

)
0

0 0 0 0 0 M2



C =



C1 0 0 0 0 0
0 C2 0 0 0 0
0 0 C3 0 0 0
0 0 0 C4 0 0
0 0 0 0 C5 0
0 0 0 0 0 C6

, K =



K11 K12 K13 0 K15 K16
K21 K22 0 K24 K25 K26
K31 0 K33 0 0 0
0 K42 0 K44 0 0

K51 K52 0 0 K55 K56
K61 K62 0 0 K65 K66



(54)

C1 = C2 = C3 = C4= 0, C5 = CDFyρAFyV, C6 = CDTyρATyV
K11 =

(
KAd

x1s
LA

sin θA + KBd
x1s−x2s

LB
sin θB + KCd

)
K12 = −

(
KBd

x1s−x2s
LB

sin θB

)
, K13 = −KCd

K15 =
(

KAd
y1s
LA

sin θA + KBd
y1s−y2s

LB
sin θB

)
, K16 = −

(
KBd

y1s−y2s
LB

sin θB

)
K21 = −KBd

x1s−x2s
LB

sin θB, K22 =
(

KDd + KBd
x1s−x2s

LB
sin θB

)
,

K24 = −KDd, K25 = −KBd
y1s−y2s

LB
sin θB, K26 = KBd

y1s−y2s
LB

sin θB

K31 = −KCd K42 = −KDd
K33 = (KCd + ABxρg) K44 = (KDd + ABTρg)
K51 =

(
KAd

x1s
LA

cos θA − KBd
x1s−x2s

LB
cos θB

)
, K52 = KBd

x1s−x2s
LB

cos θB

K55 =
(

KAd
y1s
LA

cos θA − KBd
y1s−y2s

LB
cos θB

)
, K56 = KBd

y1s−y2s
LB

cos θB

K61 = KBd
x1s−x2s

LB
cos θB, K62 = −KBd

x1s−x2s
LB

cos θB,
K65 = KBd

y1s−y2s
LB

cos θB, K66 = −KBd
y1s−y2s

LB
cos θB;

(55)

The solution of Equation (53) is assumed to be:

Zd =
[

x1d x2d x3d x4d y1d y2d
]T

= (zdc cos Ωt + zds sin Ωt) (56)

where zdc =
[

x1d,c x2d,c x3d,c x4d,c y1d,c y2d,c
]T

,

zds =
[

x1d,s x2d,s x3d,s x4d,s y1d,s y2d,s
]T

. Substituting Equation (56) into Equa-
tion (53), one obtains:((

M−1K−Ω2I
)

zdc + ΩM−1Czds

)
cos Ωt

+
((

M−1K−Ω2I
)

zds −ΩM−1Czdc

)
sin Ωt = 0

(57)

Due to the orthogonality of sin Ωt and cos Ωt, Equation (57) becomes:(
M−1K−Ω2I

)
zdc + ΩM−1Czds = 0 (58)
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−ΩM−1Czdc +
(

M−1K−Ω2I
)

zds = 0 (59)

Further, Equation (58) can be expressed as:

zdc = −
(

M−1K−Ω2I
)−1

ΩM−1Czds (60)

Substituting Equation (60) into Equation (59), one obtains:

Qzds = 0 (61)

where Q = Ω2M−1C
(

M−1K−Ω2I
)−1

M−1C +
(

M−1K−Ω2I
)

. The frequency equation is:

|Q| = 0 (62)

The natural frequencies of the system can be determined via Equation (62).

2.4.2. Forced Vibration

Considering the excitation of the wave, the coupled Equations (26), (32), (34), (49), (52)
and (56) can be rewritten in the matrix format as follows:

M
..
Zd + C

.
Zd + KZd = Fd (63)

where

Fd =

[
0 0

N
∑

i=1
[ fBs,i sin Ωit + fBc,i cos Ωit]

N
∑

i=1
[ fTs,i sin Ωit + fTc,i cos Ωit] 0 0

]T

,

fBs,i = ABxρgai cos ϕi, fBc,i = ABxρgai sin ϕi
fTs,i = ABTρgai cos(ϕi + φi), fTc,i = ABTρgai sin(ϕi + φi)

(64)

The solution of Equation (63) is assumed:

Zd =
[

x1d x2d x3d x4d y1d y2d
]T

=
N

∑
i=1

(zdc,i cos Ωit + zds,i sin Ωit), (65)

where zdc,i =
[

x1d,c x2d,c x3d,c x4d,c y1d,c y2d,c
]T,

zds,i =
[

x1d,s x2d,s x3d,s x4d,s y1d,s y2d,s
]T. Substituting Equation (65) into Equa-

tion (63), one obtains:

−
N
∑

i=1
Ω2

i (zdc,i cos Ωit + zds,i sin Ωit) + M−1C
N
∑

i=1
(−Ωizdc,i sin Ωit + Ωizds,i cos Ωit)

+M−1K
N
∑

i=1
(zdc,i cos Ωit + zds,i sin Ωit) =

N
∑

i=1
(Fs,i sin Ωit + Fc,i cos Ωit)

(66)

Multiplying Equation (66) by cos Ωmt and integrating it from 0 to the period Tm,
2π/Ωm, Equation (66) becomes:

N

∑
i=1

aimzdc,i +
N

∑
i=1

bimzds,i = χcm, m = 1, 2, . . . , N (67)
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where

aim =
[
αim

(
M−1K−Ω2

i I
)
− βimΩiM−1C

]
, bim =

[
βim

(
M−1K−Ω2

i I
)
− αimΩiM−1C

]
χcm =

N
∑

i=1
(Fs,iβim + Fc,iαim)

αim =

{ Tm
2 , i = m

Ωi sin(ΩiTm)
(Ωi+Ωm)(Ωi−Ωm)

, i 6= m
, βim =


0, i = m

Ωi(1−cos(ΩiTm))
(Ωi+Ωm)(Ωi−Ωm)

, i 6= m

(68)

Multiplying Equation (66) by sin Ωmt and integrating it from 0 to the period Tm,
2π/Ωm, Equation (66) becomes:

N

∑
i=1

cimzdc,i +
N

∑
i=1

dimzds,i = χsm, m = 1, 2, . . . , N (69)

where

cim =
[

βmi

(
M−1K−Ω2

i I
)
− γimΩiM−1C

]
, dim =

[
γim

(
M−1K−Ω2

i I
)
− βmiΩiM−1C

]
χsm =

N
∑

i=1
(Fs,iγim + Fc,iβmi)

γim =

{ Tm
2 , i = m
Ωm sin(ΩiTm)

(Ωi+Ωm)(Ωi−Ωm)
, i 6= m

(70)

Equations (67) and (69) can be written as:

BZ=F (71)

where

B =




a11 a21 · · · aN1
a12 a22 · · · aN2

...
... · · ·

...
a1N a2N · · · aNN


6N×6N


b11 b21 · · · bN1
b12 b22 · · · bN2

...
... · · ·

...
b1N b2N · · · bNN


6N×6N

c11 c21 · · · cN1
c12 c22 · · · cN2

...
... · · ·

...
c1N c2N · · · cNN


6N×6N


d11 d21 · · · dN2
d12 d22 · · · dN2

...
... · · ·

...
d1N d2N · · · dNN


6N×6N


12N×12N

,

Z=




zdc,1
zdc,2

...
zdc,N


6N×1

zds,1
zds,2

...
zds,N


6N×1


12N×1

, F =




χc1
χc2

...
χcN


6N×1

χs1
χs2

...
χsN


6N×1


12N×1

(72)

The solution of Equation (65) is:
Z=B−1F (73)

Further, one can derive the dynamic tensions of ropes under irregular wave as follows:
The dynamic tension of rope A is:

TAd =
N

∑
i=1

TAdc,i cos Ωit + TAds,i sin Ωit (74)
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where TAdc,i = KAd

(
x1s
LA

x1dc,i +
y1s
LA

y1dc,i

)
, TAds,i = KAd

(
x1s
LA

x1ds,i +
y1s
LA

y1ds,i

)
.

The dynamic tension of rope B is:

TBd =
N

∑
i=1

TBdc,i cos Ωit + TBds,i sin Ωit (75)

where
TBdc,i = KBd

[
x2s−x1s

LB
(x2dc,i − x1dc,i) +

y2s−y1s
LB

(y2dc,i − y1dc,i)
]
,

TBds,i = KBd

[
x2s−x1s

LB
(x2ds,i − x1ds,i) +

y2s−y1s
LB

(y2ds,i − y1ds,i)
]
.

The dynamic tension of rope C is:

TCd =
N

∑
i=1

TCdc,i cos Ωit + TCds,i sin Ωit (76)

where TCdc,i = KCd(x3dc,i − x1dc,i), TCds,i = KCd(x3ds,i − x1ds,i).
The dynamic tension of rope D is:

TDd =
N

∑
i=1

TDdc,i cos Ωit + TDds,i sin Ωit (77)

where TDdc,i = KDd(x4dc,i − x2dc,i), TDds,i = KDd(x4ds,i − x2ds,i).

3. Numerical Results and Discussion

This study investigates the dynamic response of two kinds of mooring system under
the typhoon irregular wave: (1) the diving depth of the turbine LD = 60 m, the diving
depth of the floating platform LC ≥ 60 m and (2) the diving depth of the floating platform
LC = 60 m, the diving depth of the turbine LD ≥ 60 m. Meanwhile, the effects of several
parameters on the dynamic response are investigated.

Firstly, the first kind of mooring system is investigated. Consider the conditions in
Figure 5a,b: (1) the depth of seabed Hbed = 1300 m, (2) the cross-sectional area of pontoon
3 connecting to floating platform ABX = 2.12 m2, (3) the cross-sectional area of pontoon 4
connecting to turbine ABT = 2.12 m2, (4) no buffer spring, (5) the ropes A, B, C and D are
made of some commercial, high-strength PE dyneema; Young’s modulus EPE = 100 GPa,
weight per unit length fg,PE = 16.22 kg/m, diameter DPE = 154 mm, cross-sectional area
APE = 0.0186 m2, fracture strength Tfracture = 759 tons, (6) the static diving depth of the
turbine LD = 60 m, (7) the horizontal distance between the turbine and floating platform
LE = 100 m, (8) the inclined angle of the rope A, θA = 30

◦
, (9) the current velocity V = 1 m/s,

(10) the irregular wave is simulated by six regular waves which are listed in Table 1, (11)
the wave phase angles ϕi, i = 1, 2, . . . , 6 are assumed as

{
30
◦
, 60

◦
, 90

◦
, 120

◦
, 170

◦
, 270

◦}
,

(12) the masses of turbine, floating platform and pontoons M1 = 300 tons, M2 = 838 tons,
M3 = M4 = 250 tons, (13) the cross-sectional area of the floating platform and turbine
AFY = 23 m2 and ATY = 500 m2, (14) the effective damping coefficients CDFy = 0.3 and
CDTy = 8/9, (15) the static axial force to turbine FDTs = 180 tons and (16) the relative
orientation between current and wave α = 60◦.
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Figure 5. Dynamic tensions of ropes and Dynamic displacements of elements under the typhoon
irregular wave. (a) Dynamic tension of the four ropes under the typhoon irregular wave as a function
of the diving length for LE = 100 m; (b) Dynamic displacements of the four elements at resonance for
LC = 66 m.

Figure 5a demonstrates the effect of the diving depth of the floating platform LC on
the maximum dynamic tensions of the four ropes, TA,max, TB,max, TC,max and TD,max under
the typhoon irregular wave when the diving depth of the turbine LD = 60 m. The irregular
wave is simulated by six regular waves which are listed in Table 1. When the depth LC
increases from 60 m, the dynamic tensions of the ropes increase significantly. If LC,res = 66 m , the
resonance happens, and the maximum dynamic tensions TA,max = 2422 tons, TC,max = 7329 tons
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and TD,max = 18,835 tons, which is over that of the fracture strength of rope, Tfracture = 759 tons.
Figure 5b demonstrates the vibration mode at the resonance. It is found that the displacements
x2d and x4d of turbine 2 and pontoon 4 are largest. Therefore, the maximum dynamic tension is
that of rope D, TD,max.

When LC increases further, the dynamic tension decreases sharply. If LC > 80 m, all the
dynamic tensions are significantly less than the fracture strength of rope, Tfracture = 759 tons.
If LC = 80 m, TA,max = 442 tons, TB,max = 27 tons, TC,max = 187 tons, thenTD,max = 478 tons.
The maximum one among the four dynamic tensions is Tmax = TD,max = 478 tons. If LC = 150 m, the
maximum dynamic tension Tmax = TA,max = 367 tons. This is because the natural frequency
changes with the length LC. The excitation frequencies of the irregular wave are different
to the natural frequency of the mooring system. Therefore, the resonance does not exist.
It is found that the greater the diving depth of the floating platform LC, the smaller the
maximum dynamic tension. In other words, the mooring system of the diving depth of the
floating platform LC = 150 m is better than that of LC = 80 m. Because the diving depth of
the floating platform is different to that of turbine, the water flowing through the floating
platform does not interfere with the flow field of the turbine. Moreover, for LC > 80 m, the
dynamic tension TA,max of rope A decreases with the diving depth LC. This is because the
angle θA of rope A decreases with the diving depth LC. The towing force is horizontal due
to the ocean velocity. Meanwhile, the dynamic tension TB,max of rope B increases with the
diving depth LC. It is because the angle θB of rope B increases with the diving depth LC.

Figure 6 presents the relation between the diving depth LC of the floating platform and
the dynamic tensions of ropes under the typhoon irregular wave for the distance LE = 200 m.
Aside from the distance LE =200 m, all other parameters are the same as those of Figure 5. It can
be observed in Figure 6 that, when LE = 200 m, the maximum resonant position LC,res = 80 m is
different to LC,res = 66 m for LE = 100 m in Figure 5. The effect of the horizontal distance between
the turbine and floating platform LE on the dynamic tension with LC = 150 m is negligible.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 21 of 33 
 

 

Figure 5. Dynamic tensions of ropes and Dynamic displacements of elements under the typhoon 

irregular wave. (a) Dynamic tension of the four ropes under the typhoon irregular wave as a func-

tion of the diving length for LE = 100 m; (b) Dynamic displacements of the four elements at resonance 

for 66 CL m= . 

Figure 6 presents the relation between the diving depth LC of the floating platform 

and the dynamic tensions of ropes under the typhoon irregular wave for the distance LE = 

200 m. Aside from the distance LE =200 m, all other parameters are the same as those of 

Figure 5. It can be observed in Figure 6 that, when LE = 200 m, the maximum resonant 

position LC,res = 80 m is different to LC,res = 66 m for LE = 100 m in Figure 5. The effect of the 

horizontal distance between the turbine and floating platform LE on the dynamic tension 

with LC = 150 m is negligible.  

 

Figure 6. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the 

diving length LC and the horizontal distance between the turbine and floating platform LE. 

Figure 7 shows the effects of the diving depth of the floating platform LC and the mass 

of pontoons M3 and M4 on the dynamic tensions of the four ropes, TA,max, TB,max, TC,max and 

TD,max under the typhoon irregular wave. In this case, the mass of pontoons M3 = M4 = 150 

tons; other parameters are the same as those of Figure 6. It is found that, if the mass of 

pontoons M3 = M4 = 150 tons, the resonance occurs at several diving depths of the floating 

platform LC, and the maximum dynamic tensions are over that of the fracture strength of 

rope, Tfracture = 759 tons. In other words, if the weight of the pontoon is too low, the dynamic 

displacement of the system is too intense, resulting in the excessive dynamic tension of 

the rope. 

Figure 6. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the
diving length LC and the horizontal distance between the turbine and floating platform LE.

Figure 7 shows the effects of the diving depth of the floating platform LC and the
mass of pontoons M3 and M4 on the dynamic tensions of the four ropes, TA,max, TB,max,
TC,max and TD,max under the typhoon irregular wave. In this case, the mass of pontoons
M3 = M4 = 150 tons; other parameters are the same as those of Figure 6. It is found that, if
the mass of pontoons M3 = M4 = 150 tons, the resonance occurs at several diving depths of
the floating platform LC, and the maximum dynamic tensions are over that of the fracture
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strength of rope, Tfracture = 759 tons. In other words, if the weight of the pontoon is too low,
the dynamic displacement of the system is too intense, resulting in the excessive dynamic
tension of the rope.
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Figure 7. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the
diving length LC and the mass of pontoons M3 and M4.

Further, the second kind of mooring system is investigated. Figure 8 demonstrates
the effect of the diving depth of the floating platform LD and the mass of pontoons M3 and
M4 on the maximum dynamic tensions of the four ropes, TA,max, TB,max, TC,max and TD,max
under the typhoon irregular wave when the diving depth of the turbine LC = 60 m and the
horizontal distance between the turbine and floating platform LE = 100 m. All the other
parameters are the same as those of Figure 5. It is found that there is no resonance. The
dynamic tension increases with the diving depth of the floating platform LD, especially in
the case where M3 = M4 = 150 tons. The maximum tension is that of rope A, TA,max, which
is close or over that of the fracture strength of rope, Tfracture = 759 tons. It is concluded that
this mooring system should not be proposed.

Figure 9 demonstrates the effect of the diving depth of the turbine LD and the mass of
pontoons M3 and M4 on the maximum dynamic tensions of the four ropes, TA,max, TB,max,
TC,max and TD,max under the typhoon irregular wave when the diving depth of the floating
platform LC = 60 m and the horizontal distance between the turbine and floating platform
LE = 200 m. All the other parameters are the same as those in Figure 8. It is found that the
maximum tension of the four ropes is the dynamic tension of rope A, TA,max. If the mass of
pontoons M3 = M4 =150 tons, the maximum tension TA,max decreases with the diving depth of the
turbine LD. However, it is the reverse for the case of the mass of pontoons M3 = M4 = 250 tons.
Moreover, the dynamic tension TA,max, with the mass of pontoons M3 = M4 = 150 tons, is
obviously less than that of the mass of pontoons M3 = M4 = 250 tons.
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Figure 9. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the
diving length LD and the mass of pontoons M3 and M4 for LE = 200 m.

On the eastern coast of Taiwan, the average velocity of the Kuroshio at a depth of
150 m is 0.65 m/s, and that at a depth of 30 m is 1.1 m/s [35]. It is well known that the
potential energy of ocean current can be estimated by using the formula η 1

2 ρAV3, where h
is the efficiency, r is the density, A is the operating area and V is the flow velocity. Based on
the formula, the ratio of the potential power generation of the diving depth of the turbine
LD = 30 m to that of LD = 150 m is about 4.85. In other words, the deeper the diving depth
of the turbine LD, the smaller the power generation.
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Figure 10a demonstrates the dynamic displacements of the turbine, floating platform
and pontoons.
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Figure 10. (a) Dynamic displacements of the four elements and (b) dynamic tensions of ropes under
typhoon irregular wave for LC = 60 m, LD = 70 m.

The diving depth of the floating platform LC = 60 m, the diving depth of the turbine
LD = 70 m and the mass of pontoons M3 = M4 = 150 tons. The other parameters are the
same as those in Figure 9. Dynamic displacements are multi-frequency coupled. The
horizontal displacements of the turbine and the floating platform y1d and y2d are very
small, the amplitude is about 0.30 m, the vertical displacements x1d and x3d are large and
the amplitude is about 15.5 m, which is close to the significant wave HS = 15.4 m. The
amplitudes of vertical displacements x2d and x4d are about 15.5 m. The amplitudes of
vertical displacements x1d and x3d are about 9.69 m. The vertical displacements of pontoon
3 and the floating platform directly connected by using rope C are synchronized and similar.
The vertical displacements of pontoon 4 and the turbine directly connected by using rope
D are synchronized and similar.

Figure 10b demonstrates the dynamic tension of the rope. The maximum dynamic
tension TA,max of rope A connecting the floating platform and the mooring foundation is
about 589 tons. The maximum dynamic tension TB,max of rope B connecting the turbine
and the floating platform is about 38 tons. The maximum dynamic tension TC,max of rope C
connecting pontoon 3 and the floating platform is about 322 tons. The maximum dynamic
tension TD,max of rope D connecting pontoon 4 and the turbine is about 75 tons.

Figure 11a demonstrates the dynamic displacements of the turbine, floating platform
and pontoons. The diving depth of the floating platform LC = 150 m, the diving depth of
the turbine LD = 60 m. The other parameters are the same as those in Figure 6. Dynamic
displacements are multi-frequency coupled. The horizontal displacements of the turbine
and the floating platform y1d and y2d are very small, the amplitude is about 0.14 m, the
amplitudes of vertical displacements x1d and x3d are about 8.6 m and the amplitudes of
vertical displacements x2d and x4d are about 9.6 m, which are significantly lower than the
significant wave HS = 15.4 m. The vertical displacements of pontoon 3 and the floating
platform directly connected by using rope C are synchronized and similar. The verti-
cal displacements of pontoon 4 and the turbine directly connected by using rope D are
synchronized and similar.
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Figure 11. (a) Dynamic displacements of the four elements and (b) dynamic tensions of ropes under
typhoon irregular wave for LC = 150 m, LD = 60 m.

Figure 11b demonstrates the dynamic tension of rope. The maximum dynamic tension
TA,max of rope A connecting the floating platform and the mooring foundation is about
375 tons. The maximum dynamic tension TB,max of rope B connecting the turbine and
the floating platform is about 58 tons. The maximum dynamic tension TC,max of rope C
connecting pontoon 3 and the floating platform is about 143 tons. The maximum dynamic
tension TD,max of rope D connecting pontoon 4 and the turbine is about 131 tons.

Figure 12 demonstrates the effects of the diving depth of the floating platform LC and
the buffer spring connected in series with ropes C and D on the dynamic tension of the
rope. The diving depth of the turbine LD = 60 m. The effective spring constants of the two
buffer springs are KC,spring = KD,spring = Krope A. The other parameters are the same as those
in Figure 5. Compared with Figure 5, it is found that the dynamic tensions TA,max, TB,max
and TC,max of the ropes A, B and C are significantly reduced at the resonance point, but the
effect on TD,max is not obvious and is still over the fracture strength Tfracture. If the diving
depth of the floating platform LC > 72 m, the effect of the buffer springs on the dynamic
tensions is negligible. It is concluded that the effect of the buffer springs on the dynamic
tensions of this mooring system is slight.

Figure 13 demonstrates the effects of the cross-sectional area of pontoon ABX, APX and
the diving depth of the floating platform LC on the dynamic tensions of the four ropes.
The cross-sectional area of the two pontoons is ABX = APX = 4 m2. The other parameters
are the same as those in Figure 5. Compared with Figure 5, it is found that the dynamic
tensions are significantly increased. At the resonance point, the dynamic tension is over
the fracture strength Tfracture. If the diving depth of the floating platform LC > 85 m, the
dynamic tension is close to the fracture strength Tfracture. It is concluded that the larger the
cross-sectional area of the pontoon, the larger the dynamic tension.
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Figure 13. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the
cross-sectional area of the two pontoons ABX, APX and the diving depth of the floating platform LC.

Figure 14 demonstrates the effects of the significant wave height Hs and the peak
period Pw on the dynamic tension TA,max. Based on Equations (14)–(16), the irregular wave
is simulated by six regular waves, i.e., n = 6. The six regular waves share according to
the ratio of energy {2,35,8,4,3,1}. The amplitude ai, frequency f i, the wave number ki and
wave length li can be determined. The diving depths LC = 60 m and LD =150 m. The
horizontal distance between the turbine and floating platform LE = 200 m. Two buffer
springs are connected in series with ropes C and D. The effective spring constants of the
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two buffer springs are KC,spring = KD,spring = Krope A. The other parameters are the same
as those of Figure 5. It is found that the more the significant wave height Hs, the larger
the dynamic tension TA,max. For the peak period Tp = 13.5 s, the dynamic tension TA,max
increases dramatically with the significant wave height Hs. With the increase of the peak
period Tp, the increase rate of the dynamic tension TA,max becomes low.
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Figure 14. Dynamic tension TA,max under the typhoon irregular wave as a function of the significant
wave height Hs and the peak period Tp.

Figure 15 demonstrates the effect of the relative angle a of the wave and ocean current
on the dynamic tension. The significant wave height Hs = 15 m, and the peak period
Pw = 16.5 s. The other parameters are the same as those of Figure 14. It is observed
that the effect of the relative angle a of the wave and ocean current on the dynamic tension
is significant. TA,max(α = 180◦) and TC,max(α = 180◦) are much larger than TA,max(α = 0◦) and
TC,max(α = 0◦), respectively. Moreover, TD,max(α = 90◦) is significantly larger than TA,max(α = 0◦) and
TA,max(α = 180◦).
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Figure 15. Dynamic tension of the four ropes under the typhoon irregular wave as a function of the
relative angle α.

Based on the frequency Equation (62), the effects of the masses M3, M4 and M2 and the
distance LE and the areas on the natural frequencies are investigated and listed in Table 2.
It is found that the larger the cross-sectional areas of pontoon ABx and ABT, the higher the
natural frequencies of the system. The larger the masses of pontoon M3 and M4, the lower
the natural frequencies of the system. The larger the mass of turbine M2, the lower the
first natural frequency of the system. However, the effect of the mass of turbine M2 on
the second natural frequency of the system is negligible. The larger the distance between
the turbine and the floating platform LE, the higher the second natural frequency of the
system. However, the effect of the distance LE on the first natural frequency of the system
is negligible.

Table 2. The first two natural frequencies f n1 and f n2 as a function of the masses M3, M4 and M2, the
distance LE and the areas ABx, ABT for M1 = 300 tons.

LE
(m)

M3, M4
(tons)

M2
(tons)

ABx = ABT = 2.12 m2 ABx = ABT = 4 m2

fn1 (Hz) fn2 (Hz) fn1 (Hz) fn2 (Hz)

130

250

838 0.0220 0.0703 0.0302 0.0761

535 0.0258 0.0703 0.0355 0.0761

200
838 0.0220 0.0806 0.0302 0.0857

535 0.0258 0.0806 0.0355 0.0857

130
150 535

0.0277 0.0776 0.0379 0.0839

200 0.0277 0.0890 0.0380 0.0946



J. Mar. Sci. Eng. 2022, 10, 538 27 of 30

4. Conclusions

This paper studies the safe design of a mooring system for an ocean current generator
that is working under the impact of typhoon waves. Two mooring designs are investi-
gated, and one safe and feasible mooring system is proposed. The proposed mooring
design can stabilize the turbine and platform around a certain predetermined water depth,
thereby, maintaining the stability and safety of the ocean current generator. The effects of
several parameters on the dynamic response under irregular wave impact were discovered
as follows:

(1) Considering the first mooring configuration, the diving depth LD of the turbine is
fixed at 60 m. When the diving depth of the floating platform LC =150 m, the dynamic
tension is significantly less than the fracture strength TFracture of rope, and it is far from
the resonance. Moreover, because the diving depth LD of the turbine is far from the
depth LC of the floating platform, the floating platform does not interrupt the turbine
water flow. Because the floating platform is a structure without a rotating mechanism
in it, such as the rotating blade of a turbine, the water-proof at the depth of 150 m
under sea surface is easily constructed. Therefore, this mooring configuration is safe
and feasible;

(2) Considering the second mooring configuration, the diving depth LC of the floating
platform is fixed at 60 m. When the diving depth LD of the floating platform is larger
than the diving depth LC, there is no resonance point, but the dynamic tension TAd,max
of rope A is obviously larger than that of the first method and close to the fracture
strength TFracture. It is found [32] that, for the Kuroshio current on the eastern coast of
Taiwan, the greater the depth under the sea surface, the lower the current flow rate. The
ratio of the potential power generation of the diving depth of the turbine LD = 30 m to
that of LD = 150 m is about 4.85. Moreover, because there are the rotating blades of
the turbine, the water-proof at the higher pressure under sea surface is difficult to
construct. Therefore, the second mooring configuration is not recommended;

(3) The larger the area of pontoons ABX and ATX, the larger the maximum dynamic
tensions, especially for TAd,max;

(4) For the first mooring configuration, if the weight of the pontoon is too low, the
dynamic displacement of the system is too intense, resulting in the excessive dynamic
tension of the rope;

(5) The effect of the buffer springs on the dynamic tensions of the first mooring configu-
ration is slight.

The coupled translational and rotational motions will be studied in another manuscript.
Moreover, the transient response of the system subjected to impact force will be investigated
in the future.
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Nomenclature

ABX, ABT cross-sectional area of pontoons 3 and 4, respectively
ABY, ATY damping area of platform and turbine under current, respectively
ai amplitude of the i-th regular wave
CDFy, CDTy damping coefficient of floating platform and turbine
FB buoyance
FD drag under current
f wave frequency
Hbed depth of seabed
Hs significant wave height
g gravity
K effective spring constant
→
K i wave vector of the i-th regular wave
k̃i wave number of the i-th regular wave
Li, i = A,B,C,D length of rope i
Li length of rope i
Mi mass of element i
me f f ,x, me f f ,y vertical and horizontal effective mass of rope A, respectively
Pw peak period of wave
→
R coordinate
Ti tension force of rope i
t time variable
V ocean current velocity

xi, i = 1~4
vertical displacements of the floating platform, the turbine
and the pontoons, respectively

xw sea surface elevation
y1, y2 horizontal displacements of the floating platform and the turbine, respectively
α relative angle between the directions of wave and current
ρ density of sea water
Ωi angular frequency of the i-th regular wave
ω angular frequency
ϕi phase angle of the i-th regular wave
φi phase delay of the i-th regular wave
θi angles of rope i
λi length of the i-th regular wave
δi elongation of rope i

Subscript

0~4 mooring foundation, floating platform, turbine and two pontoons, respectively
A, B, C, D Ropes A, B, C and D, respectively
s, d static and dynamic, respectively
PE high-strength PE dyneema rope
p peak
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