
Citation: Chowdhury, R.; Navsalkar,

A.; Subramani, D. GPU-Accelerated

Multi-Objective Optimal Planning in

Stochastic Dynamic Environments. J.

Mar. Sci. Eng. 2022, 10, 533.

https://doi.org/10.3390/

jmse10040533

Academic Editor: Rosemary Norman

Received: 1 March 2022

Accepted: 11 April 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

GPU-Accelerated Multi-Objective Optimal Planning in
Stochastic Dynamic Environments
Rohit Chowdhury 1 , Atharva Navsalkar 2 and Deepak Subramani 1,*

1 Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India;
rohitc1@iisc.ac.in

2 Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India;
anavsalkar@iitkgp.ac.in

* Correspondence: deepakns@iisc.ac.in

Abstract: The importance of autonomous marine vehicles is increasing in a wide range of ocean sci-
ence and engineering applications. Multi-objective optimization, where trade-offs between multiple
conflicting objectives are achieved (such as minimizing expected mission time, energy consumption,
and environmental energy harvesting), is crucial for planning optimal routes in stochastic dynamic
ocean environments. We develop a multi-objective path planner in stochastic dynamic flows by fur-
ther developing and improving our recently developed end-to-end GPU-accelerated single-objective
Markov Decision Process path planner. MDPs with scalarized rewards for multiple objectives are
formulated and solved in idealized stochastic dynamic ocean environments with dynamic obstacles.
Three simulated mission scenarios are completed to elucidate our approach and capabilities: (i) an
agent moving from a start to target by minimizing travel time and net-energy consumption when
harvesting solar energy in an uncertain flow; (ii) an agent moving from a start to target by minimizing
travel time and-energy consumption with uncertainties in obstacle initial positions; (iii) an agent at-
tempting to cross a shipping channel while avoiding multiple fast moving ships in an uncertain flow.
Optimal operating curves are computed in a fraction of the time that would be required for existing
solvers and algorithms. Crucially, our solution can serve as the benchmark for other approximate AI
algorithms such as Reinforcement Learning and help improve explainability of those models.

Keywords: multi-objective planning; path planning; markov decision process; GPU-accelerated
algorithms; explainable AI

1. Introduction

Optimal routing is essential for autonomous marine vehicles exploring the world’s
oceans and assisting in scientific, commercial, and maritime security applications. In sev-
eral situations, these vehicles are required to perform complex multi-objective missions
in a stochastic and dynamic oceanic environment where they get significantly advected
by the currents [1,2]. Recent work has utilized these flows for reducing operational costs
in single-objective missions (either time- or energy-optimal) [3–6]. Optimal routing where
an appropriate trade-off between multiple objectives is achieved is useful to improve
operational efficiency and reduce costs. However, such simultaneous multi-objective
planning, where travel time and net-energy (fuel) requirements are minimized in uncer-
tain dynamic environments specified by stochastic forecasts from rigorous flow physics
models has not been attempted yet. The challenge is primarily the computational cost
(e.g., [7–9]). Existing Markov Decision Process (MDP) [4] or Reinforcement Learning [10,11]
path planners are slow for realistic real-time applications. Path planners based on Dijk-
stra’s algorithm [12], variants of A∗ [13,14] and Delayed D∗ [15] work well in deterministic
settings, but their Monte Carlo versions are computationally inefficient. [16] provides a
survey of many such path planning algorithms. On the other hand, there are efficient level-
set path planners [17,18] which have only been developed for single objective missions in

J. Mar. Sci. Eng. 2022, 10, 533. https://doi.org/10.3390/jmse10040533 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10040533
https://doi.org/10.3390/jmse10040533
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-5227-4992
https://orcid.org/0000-0001-7169-3391
https://orcid.org/0000-0002-5972-8878
https://doi.org/10.3390/jmse10040533
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10040533?type=check_update&version=1

J. Mar. Sci. Eng. 2022, 10, 533 2 of 18

stochastic environments and their extension requires further theoretical and methodological
development.

Recently, we developed an end-to-end GPU accelerated MDP-based planner for single-
objective missions of autonomous marine vehicles in stochastic dynamic flows [19]. The
planner first builds the MDP model state transition probability and rewards. Next, it solves
the built MDP efficiently using a GPU. Our single objective planner is based on two key
ideas: (i) state transition probabilities and expected one-step rewards involve multiple
independent computations that can be efficiently parallelized using a GPU, by writing new
CUDA kernels specifically for this computation, and (ii) the state transition probability
matrices (STMs) are sparse, allowing the use of efficient GPU-implemented libraries for
sparse matrix operations. Multiple innovations in the implementation resulted in speed-
ups of 600–1000× compared to conventional sequential methods. We also introduced more
complicated planning environments with a stochastic dynamic scalar field and a stochas-
tic dynamic flow field. The present paper further develops the above end-to-end GPU
accelerated MDP-based optimal path planner to solve multi-objective planning problems.

1.1. Problem Statement

Let x ∈ Rn (n = 2, 3 for 2, 3-D space) denote space and t ∈ [0, ∞) denote time of
a spatio-temporal domain (Figure 1A) where an autonomous agent completes a mission
by traveling from xs at time t = 0 to x f in an manner that optimizes multiple objectives.
Let v(x, t; ωv) be a stochastic, dynamic flow in the domain that strongly advects the agent.
Further, let g(x, t; ωg) be a stochastic dynamic scalar field (like solar, wind or wave energy)
that the agent must collect during its mission. Here, ωv and ωg are samples of random
variables Ωv and Ωg drawn from their respective probability distribution functions. Each
sample ωv and ωg corresponds to a realization of the random velocity field and random
scalar field, respectively. The agent maneuvers by performing an action a according to a
deterministic policy π and is simultaneously advected by the instantaneous velocity field
V. The agent must avoid dynamic obstacles along the way. For demonstration, we assume
different configurations of obstacles (shown as striped rectangular boxes) for different
applications. For example, in the first two applications (Sections 4.1 and 4.2), we consider
two such obstacles moving eastwards with the same speed and separated by a distance d.
The x-coordinate of the obstacle on the left at time t = 0 is p0 (Figure 1A).

Figure 1. Schematic of the problem statement in continuous and discrete settings: (A) The au-
tonomous agent’s mission is to travel from xs to x f in a domain under the influence of a stochastic
dynamic flow field v(x, t; ωv) and a stochastic dynamic scalar field g(x, t; ωg) that must be collected.
We seek a set of optimal policies π∗(x, t) that optimizes a multi-objective cost function. (B) In the
discretized spatio-temporal grid, the agent takes an action a = π(s) from state s at discrete time t to
reach s′ in the next time-step t′ under the influence of random discrete velocity V(s).

Our goal is to find a set of optimal policies that approximate the Pareto-optimal front
to obtain an operating curve for competing objectives of minimizing the expected travel

J. Mar. Sci. Eng. 2022, 10, 533 3 of 18

time and expected energy consumption or net-energy consumption. An end user can select
any point from the operating curve that satisfies other operational requirements.

1.2. Prior Work

Multi-objective optimization [20–22] involves selecting the best solution from a Pareto-
optimal front or operating curve using user-specified preferences that quantify the impor-
tance of conflicting objectives. If the preferences are known a-priori, the most common
method used is the weighted sum method. Here, a linear sum of all the objectives is
considered as a single objective and a solution is computed. For a-posteriori preference
articulation, bio-inspired techniques such as genetic algorithms [23] and particle swarm
optimization [24] have been proposed, which are heuristic-based methods and do not guar-
antee convergence to the optimal solution. Hence, these methods find limited applications
in stochastic control applications.

Multi-objective MDPs (MOMDPs) formulate rewards as vectors instead of scalars,
where each vector component is a separate independent objective. Ref. [25] discusses
different classes of single-policy and multi-policy methods available to solve MOMDPs.
A common single-policy approach is to convert the multi-objective reward vector into a
scalarized value, making it possible to use existing methods to solve MDPs if weights are
known apriori. Alternatively, Ref. [26] uses a nonlinear Tchebycheff function to scalarize
the reward vector. Lexicographic MDPs [27] can be useful when a higher number of
objectives are present and can be ordered in terms of significance (such as safety over cost
and time, etc.). Constrained MDPs (CMDPs) optimize for a single objective with bounds for
other objectives and various methods have been described in [28] to solve such problems.
Ref. [29] discusses a dynamic programming based approach to formulate a multi-objective
voyage optimization problem.

Another approach is to model the MOMDP as a partially observable MDP (POMDP) [30].
The unobserved state in the POMDP formulation is equivalent to the actual objective and
the belief vector is equivalent to the MOMDP weight vector. GPU-based parallel implemen-
tations that use the Monte-Carlo Value Iteration algorithm to solve the continuous-state
POMDPs have been proposed [31,32]. Approximate point-based methods [33–35] have
also been implemented with GPUs to solve POMDPs [36]. Despite the available methods,
solving MOMDPs and POMDPs remains computationally demanding and prohibitive for
large-scale problems, especially for path planning of autonomous marine vehicles.

In [37], a linear combination of rewards is used to find the convex hull (a subset of
Pareto front) by the Convex Hull Value Iteration algorithm. Multiple runs of a weighted
sum method to get an approximate Pareto front or operating curve was proposed [20,25],
but a single run itself was computationally infeasible for large scale applications. We
propose using our recent GPU accelerated algorithm [19] to make this approach feasible.

The present paper’s key contributions are: (i) development and implementation of
a computationally efficient GPU-accelerated algorithm to solve multi-objective optimal
path planning problems in stochastic dynamic environments. We build an MDP model
with a scalarized weighted sum reward function, compute optimal policies and operating
curves in a fraction of the time required by traditional solvers, and (ii) demonstration of our
algorithm for two applications in an idealized stochastic ocean flow environment, including
a novel “shipping channel crossing” mission. Further, the uncertain environment flow is
modeled using the dynamically orthogonal stochastic flow equations.

In what follows, we first briefly introduce the MDP framework for optimal planning
(Section 2). Next, we develop our multi-objective optimal planner (Section 3). Then, we
demonstrate its applications and highlight the computational advantages in Section 4.
Finally, we conclude in Section 5.

2. Optimal Path Planning with MDPs

We use a finite horizon, undiscounted, total cost MDP defined by the tuple 〈S ,A, P, R〉
to solve our problem statement. Here, S and A are the sets of states and actions, P is

J. Mar. Sci. Eng. 2022, 10, 533 4 of 18

the state transition probabilities, and R is the expected one-step rewards. The compu-
tational domain is discretized to a spatio-temporal grid world (Figure 1B), where each
discrete state (shown as a cell) s is indexed by discrete (xs, ts). The random velocity at s
is v(s; ωv). At each state s, the agent can take an action a. The spatial motion is given by
x′ = f (x, a; ωv) = x + (v(s; ωv) + a)∆t, and the temporal update is t′ = t + ∆t. Such
kinematic models are common in many practical applications [4,5,38–42], especially for
autonomous marine vehicles where strong flows advect slow-moving agents. The successor
state is defined as s′ = cell(x′, t′), where the cell() function maps the spatial and temporal
coordinates to the appropriate discrete state in the domain. Simultaneously, the agent also
collects energy g(s; ωg) and g(s′; ωg) at s and s′, respectively. The agent receives a one-step
reward R(s, a; s′) upon making the transition.The state transition probabilities and one-step
rewards are Pa

s,s′ = Pr(St+1 = s′|St = s, At = a) and R(s, a) = E[Rt+1|St = s, At = a].
Here, St, At, Rt are random variables that denote the state, action, and reward at time t, and
s, s′ ∈ S , a ∈ A. A policy π is a mapping from the state space S to a probability distribution
over the action space A. An exact optimal policy π∗(s) ∀ s ∈ S can be computed using the
Bellman optimality conditions and dynamic programming as

π∗(s) = arg max
a∈A

[
R(s, a) + ∑

s′
Pa

s,s′v
∗(s′)

]
. (1)

For large state spaces corresponding to realistic problems without closed-form ex-
pression for flow uncertainty, computing the state transition matrices (STMs) and optimal
policies is computationally infeasible. Hence, efficient and scalable algorithms are required.
To this end, we recently developed an end-to-end GPU-accelerated planner [19] that com-
putes these STMs and solves a single-objective MDP to obtain an optimal policy in a fraction
of the time required by conventional sequential methods without resorting to approximate
methods like Reinforcement Learning.

A forecast of the stochastic dynamic environmental flow field and energy field is
required to compute the STMs and rewards for the MDP-based optimal planning problem.
The stochastic flow field is obtained using the Dynamically Orthogonal (DO) barotropic
Quasi-Geostrophic (QG) stochastic equations for canonical flows [17,18,43] and is decom-
posed in the form v(x, t; ωv) = v̄(x, t) + ∑i µi(t; ωv)ṽi(x, t), where v̄(x, t) is the so-called
DO mean, ṽi(x, t) are the DO modes, and µi(t; ωv) are the DO coefficients. The fluid flow
data is obtained through the DO mean, modes, and coefficients, which are solved numeri-
cally using the computationally efficient stochastic DO Navier-Stokes equations [44–46].

The DO equations provide a significant computational advantage (100–10,000×
speedup) over alternate techniques such as ensemble ocean forecasting to obtain the
stochastic flow field [47]. Similarly, the energy field to be collected (e.g., solar, wind)
must be obtained using appropriate environmental models [48,49]. The usage of flow
simulations from the DO equations for the multi-objective planning missions is itself novel,
and makes our approach stand apart from other path planning methods.

3. Multi-Objective Planning

Multi-objective problems can be converted into single objective problems using a suit-
able scalarization function [25,50]. Now, we formulate a weighted scalar reward function
for our multi-objective path planning problem.

3.1. Multi-Objective Reward Formulation

The general reward structure for a single objective problem is as follows:

Rk(s, a; s′) =

rterm s′ ∈ Starg

routbound s′ ∈ Spenalty

Rk,gen(s, a; s′) o.w.

(2)

J. Mar. Sci. Eng. 2022, 10, 533 5 of 18

Here, k ∈ {1, 2, 3} and represents some mission objective. The agent is given a positive
reward rterm if it reaches a state in the set of target states Starg. This set contains all states
corresponding to the target position x f at any timestep. The agent is penalized with a
large negative reward routbound if it reaches a state in the set of penalizable states Spenalty.
This set includes states that are outside the domain’s boundary, that coincide with a state
occupied by an obstacle or states at the last time-step Nt. Therefore, the agent is penalized
with routbound if it lands in a state s′ that is marked as an obstacle or if s′ is not inside the
spatial domain. It is also penalized if it cannot reach the target location until the last time-
step Nt. This incentivizes the agent to avoid collision with obstacles and stay within the
spatio-temporal domain. Otherwise, (i.e., if s′ ∈ S \ (Starg

⋃ Spenalty)), the agent receives a
general objective-specific one-step reward Rk,gen(s, a; s′). It is to be noted that for a given
(s, a), s′ depends on the random sample ωv.

For the multi-objective reward formulation, we consider problems that have two
competing cost objectives. The first objective is to minimize expected travel time with the
corresponding one-step reward

R1,gen(s, a; s′) = −∆t , (3)

i.e, the agent is penalized a constant value for each time-step. The second objective is to
minimize either (i) Expected energy consumption with the one-step reward defined as

R2,gen(s, a; s′) = −c f F2∆t , (4)

or (ii) Expected net energy consumption with the one-step reward

R3,gen(s, a; s′) =
[
−c f F2 + cr

(
g(s) + g(s′)

2

)]
∆t . (5)

In the former, the agent’s energy consumption is modeled as a function of its speed F
(c f is a conversion constant). In the latter, the agent is equipped with an energy harvesting
mechanism that collects from the stochastic dynamic energy field g(•), and cr is a constant.
The mission specific expected one-step reward is defined as

Rk(s, a) = E[Rk(s, a; s′)] k = {1, 2, 3} , (6)

where the expectation is taken over the joint distribution P(s′, ωg|s, a).
To solve a multi-objective problem, we first scalarize the one-step rewards by taking a

linear combination of the rewards of the corresponding single-objective problems.

Rα(s, a) = (1− α)Rm(s, a) + αRn(s, a) m, n ∈ {1, 2, 3} m 6= n . (7)

In the present paper, we consider two multi-objective problems. In one problem, we
optimize the expected travel time and energy consumption. In the other, we optimize the
expected travel time and net-energy consumption. The net energy consumption is the
difference between the energy consumed by the agent’s propulsion for manoeuvring and
the energy collected from the scalar energy (wind/solar) field. The scalarized one-step
rewards for the two problems are defined as

Rα12(s, a) = (1− α12)R1(s, a) + α12R2(s, a) , (8)

Rα13(s, a) = (1− α13)R1(s, a) + α13R3(s, a) , (9)

where α12, α13 are scalar weights. This is the weighted-sum approach to scalarization.
Scalarization may also be done using other methods like an exponentially weighted product
of objectives. We have experimented with the same and reported similar results (not shown
here) without any improvement over the weighted-sum approach.

J. Mar. Sci. Eng. 2022, 10, 533 6 of 18

Then we compute the optimal value function for the problem by solving the Bellman
optimality equation

v∗α(s) = max
a∈A

[
Rα(s, a) + ∑

s′
Pa

s,s′v
∗
α(s
′)

]
, (10)

where α = α12 or α = α13, depending on the multi-objective problem. v∗α is the optimal value
function that maximizes the expected weighted sum of scalarized rewards Rα, given that
the agent starts at a state s. v∗α can be numerically computed using dynamic programming
based algorithms like value iteration. Once v∗α is obtained, we compute the corresponding
optimal policy π∗α using Equation (1).

3.2. GPU Accelerated Algorithm

Algorithm 1 shows an overview of our GPU accelerated planning algorithm imple-
mented on CUDA [51]. There are two phases of the algorithm: (i) the initial model building
phase (Lines 1–13); (ii) the reward scalarization and optimal policy computation phase
(Line 14–17). The algorithm efficiently executes the first phase once and the second phase
nα number of α values in [0, 1] (Line 14). The algorithm takes as input the environment
data and other problem specific parameters and returns a set of nα optimal policies and
value functions as output.

Let us consider solving the first multi-objective problem, where we optimize the ex-
pected travel time and energy consumption. In the initial model building phase, computing
the STM Pa and the expected one-step reward vectors Ra

1, Ra
2 corresponding to the two ob-

jectives (Line 10) requires s′(ωv) and Rk(s, a; s′(ωv)), k = {1, 2}, which are “embarrassingly
parallel” computations that can be done simultaneously across states, actions, and realiza-
tions. However, limited GPU memory poses a challenge that we overcame by using the DO
representation of the ocean flow and using sparse matrix formats for Pa. We also proved
that using the mean of the scalar field is sufficient for the posed problem [19]. Moreover,
Lines 5, 6, 8, and 9 inside the for-loops (Lines 3 and 4) correspond to efficient CUDA kernels
that perform parallel computations for all states at time t and all realizations. For example,
computing the STM Pa for a given action a requires launching three CUDA kernels in
sequence. Each kernel launches an optimal predetermined number of threads to perform
a specific task in parallel. The first kernel (Line 5) computes s′(ωv) and corresponding
one-step rewards R1(s, a; s′(ωv)) and R2(s, a; s′(ωv)) for all realizations ωv, for all states at
time t, in parallel, and stores them in an array. The next kernel (Line 6) accesses this array
through multiple threads in parallel to count the number of times each s′ is reached from
the given (s, a) across all realizations. Finally, another kernel (Line 8) reduces the count
information to a structured STM Pa,t in sparse format after memory is allocated for the same
(Line 7). Similarly, another kernel (Line 9) is responsible for computing the mean of the one-
step rewards across all realizations and the values are stored in the reward vectors Ra,t

1 , Ra,t
2 .

At the end of the loop the model for timestep t (i.e., Pa,t, Ra,t
1 , Ra,t

2) is appended to that of
the previous timestep. Consequently, after the last timestep we obtain Pa, Ra

1, Ra
2 ∀a ∈ A.

Finally, all Pa, Ra
1, Ra

2 are appended across actions to obtain P, R1, R2 (Line 13), which is
necessary at a later stage for providing the appropriate input data structure to the sparse
value iteration algorithm (Line 16). We refer the reader to the single objective version of the
algorithm [19] for further details of the CUDA kernels and appending operations.

In the second phase, we compute the final model by scalarizing the expected one-
step reward using a given α (Line 15). Thereafter, the optimal policy π∗α is computed by
plugging P, Rα into a sparse value iteration algorithm (Line 16, [52]) with efficient parallel
GPU-implementation of matrix operations. We obtain a set of optimal polices {π∗α} by
executing the second phase for nα different values of α. It must be noted that the initial
model building phase is independent of α and is executed just once.

J. Mar. Sci. Eng. 2022, 10, 533 7 of 18

Algorithm 1: GPU Accelerated Planning Algorithm.
Input: env_data, prob_type, prob_params, grid_params
Output: {v∗α},{π∗α}

1: Copy data to GPU;
2: Allocate GPU memory for intermediate data, Ra

1 and Ra
2 ∀a;

3: for (t = 0; t < Nt; t ++) do
4: for a ∈ A do
5: Compute s′(ωv), R1(s, a; s′(ωv)) and R2(s, a; s′(ωv)) ∀s ∈ St ∀ωv;
6: Count number of times s′ is reached for given (s, a);
7: Allocate memory for Pa,t;
8: Reduce the count data to a sparse STM Pa,t;
9: Compute R1(s, a) := Eωv [R1(s, a; s′(ωv))] and R2(s, a) := Eωv [R2(s, a; s′(ωv))]

through sample mean and store in Ra,t
1 , Ra,t

2 ;
10: Pa, Ra

1, Ra
2 ← Append_model_in_time(Pa,t, Ra,t

1 , Ra,t
2);

11: end for
12: end for
13: P, R1, R2 ← Append_model_in_actions({Pa}, {Ra

1}, {Ra
2});

14: for α in range(0, 1, nα) do
15: Compute Rα := (1− α)R1 + αR2

16: v∗α, π∗α ← Sparse_Value_Iter(P, Rα);
17: end for

We achieve a 600–1000× reduction in the time required for the model building phase,
depending on the GPU [19].

3.3. Operating Curves

For each α, our algorithm computes the optimal policy π∗α . When α = 0, the optimal
policy simply minimizes the expected travel time, whereas when α = 1 it minimizes the
energy objective. Any other α ∈ (0, 1) minimizes a weighted combination of the two.

The optimal operating curve is computed by executing the optimal policy π∗α over all
the realizations of the stochastic velocity field to obtain the average travel time Tavg(α) and
energy (or net-energy) consumption Eavg(α) for each α. An appropriate point can be chosen
from the operating curve for field execution based on other operational requirements. In
the following section, we demonstrate applications of our multi-objective planner.

4. Applications

We demonstrate two different multi-objective missions in a stochastic double-gyre
ocean flow field obtained by solving the dynamically orthogonal quasi-geostrophic equa-
tions [44]. Such wind-driven double-gyre flows are encountered in several realistic scenar-
ios in mid-latitude regional oceans such as the Northwest Atlantic ocean (Gulf Stream and
eddies) [53,54]. See [17] for the equations and dynamics of this flow field that has been
often used to demonstrate new methods for path planning. For easy reference, we have
included the equations used to simulate the double-gyre flow field in Appendix B.

The planning is performed on a discrete spatio-temporal grid of size 100× 100× 120,
with ∆x = ∆y = 1 and ∆t = 1 non-dimensional units. The environment and the di-
mensional scales are common for the first two applications, (Sections 4.1 and 4.2) and are
described next. The scales for the third application are different (see Section 4.3). For the
first two applications, the non-dimensionalization is done such that one non-dimensional
unit of space is 4 km and time is 0.115 days. Such state space dimensions are realistic [5,55]
and have been chosen to demonstrate the computational capability of our algorithm with
realistic grid dimensions. Note that for the algorithm developed in the present paper, the
computational effort depends only on the grid size. Thus, it suffices to use an idealized
flow field for demonstration.

J. Mar. Sci. Eng. 2022, 10, 533 8 of 18

Figure 2 shows the complete environment at t = 0 for an example realization of
the velocity field (Figure 2A) and the scalar energy field (Figure 2B). Both the fields are
stochastic and dynamic (time-varying), but Figure 2 shows just one realization at t = 0. The
evolution of the environment with time can be seen in the backgrounds of Figures 3 and 4
and also in the corresponding videos (Table A1 in Appendix A). The stochastic energy
field g used for the energy collection objective is assumed to be a solar radiation incident
on the ocean surface, simulating a cloud cover moving westwards (Figure 2B). The red
region is a relatively sunny (high radiation) region whereas the yellow region is a relatively
cloudy region (low radiation). An agent may spend time in the sunny regions of the
domain to collect energy depending on its mission requirement. Further, the dynamic
obstacles are assumed to be restricted zones that move eastwards with a known speed
without affecting the flow. The starting positions of dynamic obstacles are assumed to
be known in the first application (p0 = 10) (Section 4.1) and as uncertain in the second
application (Section 4.2). In non-dimensional units, the size of each obstacle is 10× 10
with d = 50 and their speeds being 0.5. The action space is discretized to 32 actions–16
possible headings, each with 2 possible magnitudes. It is to be noted that our planner
can easily accommodate multiple vehicle speeds and headings, with different maximum
speeds. These quantities are input parameters fed to the planner through a configuration
file, which one can simply edit to simulate different vehicle speed capabilities. We highlight
the same in Section 4.3 where we demonstrate the shipping channel crossing problem
with two different agent capabilities; 5000 realizations of the flow field are considered.
In dimensional units, the maximum magnitude of the flow field is 2.28 m/s (5.7 non-
dimensional units), and the agent’s maximum speed is 0.8 m/s (2 non-dimensional units).
These velocity magnitudes are derived from realistic flows and have been used for path
planning applications [42]. Since the flow is relatively strong, the autonomous marine
agent modeled here gets strongly advected. The agent’s mission is to start at xs = (40, 15)
(represented by a circular marker) to arrive at the position x f = (40, 85) (represented by a
star-shaped marker) while optimizing multiple-objectives.

Figure 2. Mission Environment (A) An example realization at t = 0 of the stochastic double gyre
flow shown as streamlines overlaid on a color plot of the magnitude. (B) Same as A, but showing an
example scalar radiation field as the background color, on which the velocity streamlines are placed.
The dynamic obstacles are shown as gray filled patches.

J. Mar. Sci. Eng. 2022, 10, 533 9 of 18

Figure 3. Time evolution of trajectory distribution obtained by following the optimal policy for
different α values for optimal time and net energy mission. (A) α = 0, equivalent to time optimal
planning; (B) α = 0.3, intermediate behavior between α = 0 and α = 1; (C) α = 1, equivalent to
net-energy optimal planning. The background is colored with the solar radiation’s magnitude and
overlaid with flow streamlines. Trajectories are colored with their net-energy consumption. Note that
the time stamp of individual snapshots are different.

Figure 4. Operating curves and trajectories for optimal time and net energy mission with unknown
p0: (A) Expected Time vs Energy operating curves for different initial positions p0 of the obstacles.
Each point is colored with its α value. (B) Distribution of final trajectories obtained by following the
optimal policy for α = 0.3. Each plot along the row displays these trajectories for a given value of p0.
(C) Same as (B) but for α = 0.7. All plots along a column correspond to the same p0.

J. Mar. Sci. Eng. 2022, 10, 533 10 of 18

4.1. Optimal Time and Net Energy Missions

First, we consider a scenario where the agent must complete its mission while minimiz-
ing its expected travel time and net-energy consumption. We use the scalarized one-step
rewards defined in Equation (9) for building and solving MDPs for multiple values of
α ∈ [0, 1] at intervals of 0.05 with our GPU accelerated algorithm (Algorithm 1). We obtain
the optimal operating curve (Figure 5) for expected time vs net-energy using the procedure
defined in Section 3. Here, each point on the curve corresponds to a particular α value and
shows the trade-off between the average mission travel time and net energy consumption
for the corresponding optimal policy π∗α . Figure 3A–C show the temporal evolution of
the trajectory distribution obtained by following the optimal policies for α = 0, 0.3 and
1, respectively. For example, Figure 3A shows a distribution of trajectories that was ob-
tained by following the optimal policy π∗α=0 across the 5000 realizations of the velocity
field. Each trajectory is colored by the net-energy consumed by the agent in following it.
The triangular marker at the end of each trajectory represents the position of the agent at
the time (mentioned above each snapshot). As can be seen, the optimal policy and hence
the trajectories for different α values have significantly different properties. When α = 0
(Figure 3A), the Rα is simply the same as R1(s, a) and π∗α=0 is a pure time-optimal policy.
Therefore, the agent’s policy is to take high-speed actions while trying to utilize the flow to
reach the target in the shortest possible time. Similarly, when α = 1 (Figure 3C), π∗α=1 is a
pure net-energy optimal policy. Here, the agent takes low-speed actions and follows more
time-consuming paths while utilizing the flow to expend less energy, thereby minimizing
the net-energy consumption. In fact, for certain realizations, the agent loops around in the
sunny region in the lower half of the domain. For these realizations, when the agent is in
the region X ∈ [50, 70], Y ∈ [43, 47] (t = 40) the obstacle prevents the agent from moving up
to the upper half of the domain. So instead of expending more energy to go against the flow
to avoid the obstacle, it simply loops around in the lower half, utilizing the flow, collecting
more energy from the radiation, and then proceeds towards the target unobstructed by the
obstacle. For α = 0.3 (Figure 3B) the trajectories display an intermediate behavior between
that of α = 0 and α = 1. Here, minimizing the net-energy consumption is prioritized just
enough to make the agent take longer paths, but not enough to make loops in the sunny
region as the agent also prioritizes its travel time to a certain extent. Please note that the
timestamps of the snapshots in Figure 3A–C are different for better visualization of the
evolving path distributions, but the radiation field is the same.

Figure 5. Expected Travel Time vs. Net Energy operating curve for optimal time and net energy
missions. Each point is for an α value colored as per the color bar.

J. Mar. Sci. Eng. 2022, 10, 533 11 of 18

4.2. Optimal Time and Energy Missions with Unknown p0

Second, we consider a mission where an Autonomous Underwater Vehicle (AUV)
must reach its target x f while minimizing its expected travel time and energy consumption.
However, in this case we assume that the initial position p0 of the obstacle is unknown at
t = 0 (see Figure 1)) and model it as a uniform random variable. As our GPU-accelerated
planner efficiently computes the optimal time-energy operating curve, the key idea now
is to take samples of p0 and obtain time-energy operating curves for each sample. In this
application, the AUV is not collecting external energy as the focus is on time vs energy
expenditure for an underwater application. Figure 4A shows the optimal time-energy
operating curves for various values of p0. Each plot along the row of Figure 4B shows
the distribution of full trajectories obtained by following the optimal policy at α = 0.3
but for varying values of p0. Figure 4C is similar to Figure 4B, but for α = 0.7. All plots
along a column of Figure 4 correspond to the same p0. The trajectories are colored by their
energy consummations and the background is colored with the flow magnitude overlaid
with streamlines. An interesting observation for p0 = 20 and p0 = 30 is that the operating
curve has a U-shape, with the minima occurring at approximately α = 0.3. The part of the
curve corresponding to α > 0.3 is not Pareto-optimal since the mission could be completed
at a shorter travel time for some α < 0.3 with the same average energy consumption.
For example, for p0 = 20 in Figure 4A, the policies for α = 0.25 (light green dot) and
α = 0.55 (light brown dot) consume nearly the same amount of average energy (70 units)
but the average travel time for the former is nearly 10 units less compared to the latter.
This makes the policy at α = 0.55 sub-optimal in the Pareto sense. A similar argument
holds true for all policies with α > 0.3. The U-shape is a consequence of the following.
As we increase α, more weight is given to the energy objective, which results in the agent
taking low-velocity actions, utilizing the flow and consuming less energy at the expense
of more time. However, the relative velocities of the flow, the obstacles and the AUV are
such that, for most realizations, the obstacle blocks the AUV’s path from the north as the
AUV moves from west to east in the region Y ∈ [40, 50]. As a result, the AUV has to
maneuver and wait for the obstacle to move away (see the region X ∈ [70, 80], Y ∈ [40, 50]
in Figure 4C for p0 = 20 and p0 = 30). In contrast, for α = 0.3, p0 = 20 (Figure 4B), the AUV
easily maneuvers through the space between the two obstacles. This results in the AUV
consuming more energy on average because of the delay caused by the obstacle. Another
interesting observation is the apparently erratic behavior of the agent for some realizations
(yellow colored trajectories) around the region X ∈ [65, 75], Y ∈ [55, 65] in Figure 4B for
p0 = 20. The reason is that these realizations of the flow field have a larger southern
gyre, and the said region experiences strong currents in the southern and south-eastern
directions (see Figure A1 in Appendix A). On the other hand, the agent’s policy is to move
in the opposite direction towards the target, hence resulting in small loops or sharp turns.
Such loops in trajectories are typical of low-speed agents that get advected by eddies and
gyres [3]. In real operations, we could analyze a series of time-energy operating curves to
obtain the Pareto-optimal operating region (in this case α ∈ [0.1, 0.3]). Then, an AUV can be
operated at a suitable operating point in this region as per other operational requirements.

4.3. Shipping Channel Crossing Problem

Third, we demonstrate a shipping channel crossing problem. The shipping channel
is the purple rectangular region in the domain, which is continuously used by ships to
traverse across the grid (Figure 6). The agent must avoid possible collisions with these ships
and safely cross the shipping channel to reach the target location while optimizing time and
energy consumption. We consider a time-energy problem as the focus is on demonstration
of our computational algorithm in a busy ship channel crossing application. However, we
can just as easily consider scenarios where the agent also collects a scalar field along the
way to optimize for its net-energy consumption. Here, the dynamic obstacles (shown in
thin striped horizontal rectangles) represent two queues of ships continuously moving
through the channel. Ships in the upper and lower queues move eastwards and westwards,

J. Mar. Sci. Eng. 2022, 10, 533 12 of 18

respectively. While the size spatio-temporal grid is still 100× 100× 120, the dimensional
scales for this “shipping channel crossing” problem have been reduced to demonstrate the
working of our planner in more complex and realistic scenarios. 1 non-dimensional unit of
space is 50 m, and time is 30 s. The maximum speed of the AUV is considered to be 3 m/s,
and the maximum flow velocity is 3 m/s (refer to Figure 2A for the spatial distribution of
the flow speeds). The velocity of the ships is 8 m/s (15.5) knots, which is typical of large
carrier ships. The shape of the obstacles (16 × 2 units) is also derived from typical carrier
ship dimensions, which are 400 m × 50 m, and some buffer accounting for AUV safety
and uncertainties in ship positions. The horizontal gap between two successive ships is
d = 15 units and remains constant. The distance between the two queues is eight units.
The agent’s mission starts at xs = (40, 15) and the target location is x f = (40, 85).

Figure 6. Schematic of the shipping channel crossing problem: The purple region is the shipping chan-
nel that ships use for traversing across the domain. Thin horizontal striped boxes represent the ships
(obstacles). The ships in the top and bottom queues move eastwards and westwards, respectively.

Figure 7A–C show the temporal evolution of trajectory distributions that were obtained
by executing the optimal policies for α = 0, α = 0.4 and α = 1 , respectively. Here, the agent
can move at two possible speeds—3 m/s or 1.5 m/s. Similar to the description in Section 4.1,
when α = 0 (Figure 7A), the optimal policy is purely a time-optimal policy. Hence, the agent
typically takes high-speed actions to reach the target location, consequently consuming
more energy. When α = 1 (Figure 7C), the optimal policy is purely an energy-optimal
policy, where the agent typically takes low-speed actions and utilizes the flow to reach
the target location, resulting in more curved trajectories. When α = 0.4 (Figure 7B), the
trajectories show an intermediate behavior as the optimal policy optimizes a weighted
combination of both objectives. Please note that the timestamps of the snapshots for the
three sub-figures are different for better visualization of the evolving path distributions,
but the velocity field is the same.

A common feature of this application is that the agent efficiently utilizes the gaps in the
queues of the ships to cross the shipping channel. Consequently, the trajectory distribution
breaks into multiple thin bands based on the agent’s crossing these gaps across different
realizations of the velocity field. The optimal policies also make the agent wait behind or
move opposite a nearby ship to pass through the next possible gap quickly. This behavior
can be observed in regions like X ∈ [45, 55], Y ∈ [45, 48] in Figure 7B,C. We refer the reader
to Table A1 in Appendix A for the videos of the same for better visualization.

We also demonstrate the shipping channel crossing problem with an agent capable of
moving with three possible speeds—zero-speed, cruising speed (1.5 m/s), and maximum
speed (3 m/s). Figure 8 shows a distribution of full trajectories for α = 0, α = 0.4, and α = 1
for this case. A noticeable difference can be seen for α = 1 (energy-optimal planning) when
compared to Figure 7C due to the agent’s use of the zero-speed action to conserve energy
for its minimization. We have assumed a known initial position of the queue of ships for
this scenario for clarity and visualization. However, we can easily extend the problem to
one with uncertain initial positions similar to our demonstration in Section 4.2 and analyze

J. Mar. Sci. Eng. 2022, 10, 533 13 of 18

corresponding operating curves. Moreover, we note that extending the action space is a
trivial task for our planner and requires a simple change in the configuration file.

Figure 7. Time evolution of trajectory distribution obtained by following the optimal policy for
different α values for the “shipping channel crossing” mission: (A) α = 0, equivalent to time optimal
planning; (B) α = 0.4, intermediate behavior between α = 0 and α = 1; (C) α = 1, equivalent to
energy optimal planning.

Figure 8. Shipping channel mission with an agent capable of executing an additional zero-speed
action: Distribution of final trajectories by following the optimal policy for α = 0, α = 0.4 and α = 1
for the shipping channel mission. Here the agent is capable of an additional zero-speed action.

4.4. Computational Efficiency

Our GPU-accelerated planner computes a set of optimal policies based on the forecast
of the stochastic, dynamic velocity, and scalar fields as done in [4,10,19] in a fraction of the
time compared to sequential MDP-based methods of similar problem sizes [4,38]. The above
applications were run on a NVIDIA RTX 8000 GPU. The average total computation time for

J. Mar. Sci. Eng. 2022, 10, 533 14 of 18

each value of α is around 1 min. Similar problems with a larger state space 200× 200× 200
take an average total time of 4 min per MDP. This is orders of magnitude smaller than
conventional solvers (e.g., [4]). Thus, we may compute an optimal operating curve within a
few hours on a single GPU. Further, as the solution of each MDP is independent of the other,
we may use multi-GPU systems to solve multiple MDPs in parallel and achieve an even
smaller overall computation time. It is to be noted that though larger grid sizes lead to larger
compute times, the speed-up compared to its sequential counterpart remains the same, as
evident in Figure 8 of [19]. Moreover, using more complicated velocity or energy fields
or complex-shaped obstacles does not affect the computational time or speed-up, as these
are simply inputs to the planner in the form of matrices and independent of the algorithm.
Another advantage is that multiple operating curves, as demonstrated in (Section 4.2), can
be computed within a few hours. This allows us to update our environment model with the
latest information on the velocity and scalar fields available up to the day of the mission
itself. Consequently, it enables us to compute more accurate policies, which would be
impossible using conventional sequential algorithms that could take weeks.

4.5. Discussion and Future Extension

Among the set of optimal policies computed by our planner, each policy offers a
trade-off between the two objectives, which is visible in the optimal operating curve. The
AUV operator must choose one of the policies for mission operation based on his needs
and experience. The agent traverses the environment by executing the chosen optimal
policy (open-loop control), without taking measurements from the environment. As part of
our future work, we plan to extend the algorithm for onboard routing through periodic re-
planning (closed-loop control), which would require measurements of the observed velocity
field through sensors like ADCP and solar/wind sensors to measure the solar/wind field.

The focus of this work is on the methodological development of a fast and exact
algorithm for efficient planning of multi-objective missions for a single agent. We plan
to conduct experiments with a physical AUV(or USV) in the future, similar to our earlier
experiments to test our previously developed level-set based solution [42]. It is to be noted
that we can extend our proposed algorithm for multi-agent planning by (i) including the
coordinates of all the robots in the MDP’s state definition, (ii) defining the reward function
as per the mission requirements of the multi-robot system. However, the size of the state
space increases exponentially with the number of robots, which require new CUDA kernels
to be written and can be taken up as future work.

5. Conclusions

We developed a multi-objective planner for optimal path planning of autonomous
agents in stochastic dynamic flows. The multi-objective problem was converted into a
single-objective MDP by scalarizing the one-step rewards with the weight α. We used our
end-to-end GPU accelerated planner to efficiently build the MDP by computing the state
transition probabilities, the expected scalarized one-step rewards and optimal policies for
multiple values of α . Then we obtained a time vs energy (or time vs net-energy) operating
curve in a fraction of the time required to solve just one MDP by traditional solvers. We
demonstrated three multi-objective problems. In the first, we minimize the expected travel
time and net-energy consumption of a surface vehicle collecting solar energy. In the second,
we minimize the travel time and energy consumption of an AUV while considering an
unknown initial positions of the obstacles. In the third, we minimize the expected travel
time and energy consumption of an AUV crossing a shipping channel. We demonstrate that
our planner is capable of computing optimal operating curves quickly for large realistic grid
sizes. This allows us to plan paths for AUVs in real-time to use the most recent environment
forecast data. Even though we emphasized an idealized flow field scenario, the algorithm
works with any complex flow fields and the compute time only depends on the grid size.
For future work, we plan to use our multi-objective planner for more complex missions,
pursuit-evasion games, and on-board routing. Our results can serve as a benchmark for

J. Mar. Sci. Eng. 2022, 10, 533 15 of 18

POMDPs, MOMDPs, and RL algorithms (with or without GPU acceleration). They can also
serve as a benchmark for heuristic-based algorithms like NSGA II for optimal planning
in stochastic dynamic environments. A major issue of explainable AI is explaining why
approximate and heuristic algorithms such as RL or NSGA II compute whatever paths
they compute. Our results can serve as the solution those algorithms must achieve, thereby
improving their explainability.

Author Contributions: R.C. and D.S. conceived the presented idea. R.C., A.N. and D.S. developed
the methodology. R.C. and A.N. wrote the software. Formal analysis was done by R.C., A.N. surveyed
relevant literature, performed all simulations and investigated potential use-cases. D.S. provided
flow field data. R.C. and D.S. wrote the manuscript with support from A.N. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Prime Minister’s Research Fellowship (PMRF) for
supporting the graduate studies of R.C. We also acknowledge the partial support received for the
present work from INSPIRE Faculty Award, Arcot Ramachandran Young Investigator Award and an
internal grant of IISc.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation, to any qualified researcher.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process
CMDP Constrained Markov Decision Process
MOMDP Multi-Objective Markov Decision Process
RL Reinforcement Learning
GPU Graphical Processing Unit
CUDA Compute Unified Device Architecture
DO Dynamically Orthogonal
QG Quasi-Geostrophic
STM State Transition Matrix
ADCP Acoustic Doppler Current Profiler

Appendix A

To help visualize dynamically evolving trajectories presented in the paper we have
provided corresponding videos for the figures on youtube and the links are provided in
Table A1.

Table A1. Figures with trajectories and links to corresponding videos.

Figure Number URL

Figure 3A https://youtu.be/wn7VoLGuDl0, accessed on 4 April 2022
Figure 3B https://youtu.be/9QTuTSBzg3Y, accessed on 4 April 2022
Figure 3C https://youtu.be/Da4mIU691A8, accessed on 4 April 2022
Figure 4B https://youtu.be/3V_GnrsOVaA, accessed on 4 April 2022
Figure 4C https://youtu.be/hX6Qmm2WSJ4, accessed on 4 April 2022
Figure 7A https://youtu.be/9bmKnY0LE5c, accessed on 4 April 2022
Figure 7B https://youtu.be/MTUUQaHrxJc, accessed on 4 April 2022
Figure 7C https://youtu.be/ZMv-31RTyvY, accessed on 4 April 2022

https://youtu.be/wn7VoLGuDl0
https://youtu.be/9QTuTSBzg3Y
https://youtu.be/Da4mIU691A8
https://youtu.be/3V_GnrsOVaA
https://youtu.be/hX6Qmm2WSJ4
https://youtu.be/9bmKnY0LE5c
https://youtu.be/MTUUQaHrxJc
https://youtu.be/ZMv-31RTyvY

J. Mar. Sci. Eng. 2022, 10, 533 16 of 18

In all the figures in the main text we have shown trajectories overlaid on a given real-
ization of the stochastic dynamic velocity field since it is impossible to show all realizations
simultaneously. In Figure A1, we exclusively show another realization which was referred
to in Section 4.2. The highlighted region inside the pink box is where the agent experiences
currents flowing in the southern and south-eastern directions.

Figure A1. Another realization of the stochastic velocity field: The streamlines and background
correspond to a different realization of the stochastic velocity field.

Appendix B

Briefly, the stochastic double gyre flow field is defined by the following equations [17].

∇ · V̄ = 0 , (A1)

∂V̄
∂t

=
1

Re
∇2V̄−∇ · (V̄V̄)− Cµmµn∇ · (ṼmṼn)− f k̂× V̄−∇ p̃ + αø , (A2)

dµi
dt

= µm

〈
1

Re
∇2Ṽm −∇ · (ṼmV̄)−∇ · (V̄Ṽm)−∇ p̃− f k̂× Ṽm, Ṽi

〉
(A3)

− (µmµn − Cµmµn)
〈
∇ · (ṼmṼn), Ṽi

〉
∇ · Ṽi = 0 (A4)

∂Ṽi

∂t
= QV

i − 〈QV
i , Ṽk〉Ṽk (A5)

where QV
i = 1

Re∇2Ṽi −∇ · (ṼiV̄)−∇ · (V̄Ṽi)−∇ p̃i − C−1
µiµj

Mµjµmµn∇ · (ũmũm)

Here V̄ is the DO mean, Ṽ are DO modes, µi are the DO coefficients, p is the pressure,
ø is the wind stress, and C is the correlation matrix of the DO coefficients. The mean and all
the modes are spatio-temporal fields. The indices i, k, m, n denote the DO modes and span
from 1 to the dimension of the subspace. Repeated indices indicate summation according
to Einstein’s notation. 〈•, •〉 denotes the spatial inner product. The values of the constants

are as follows: f = βy, β = 1000, Re = 1000, α = 1000, ø =
[
− 1

2π cos2πy, 0
]T

. See [17] for
further details.

References
1. Sherman, J.; Davis, R.; Owens, W.; Valdes, J. The autonomous underwater glider “Spray”. IEEE J. Ocean. Eng. 2001, 26, 437–446.
2. Bellingham, J.G.; Rajan, K. Robotics in remote and hostile environments. Science 2007, 318, 1098–1102.
3. Subramani, D.N.; Haley, P.J., Jr.; Lermusiaux, P.F.J. Energy-optimal Path Planning in the Coastal Ocean. JGR Oceans 2017,

122, 3981–4003.

J. Mar. Sci. Eng. 2022, 10, 533 17 of 18

4. Kularatne, D.; Hajieghrary, H.; Hsieh, M.A. Optimal Path Planning in Time-Varying Flows with Forecasting Uncertainties. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
pp. 1–8.

5. Pereira, A.A.; Binney, J.; Hollinger, G.A.; Sukhatme, G.S. Risk-aware Path Planning for Autonomous Underwater Vehicles using
Predictive Ocean Models. J. Field Robot. 2013, 30, 741–762.

6. Lermusiaux, P.F.J.; Haley, P.J., Jr.; Jana, S.; Gupta, A.; Kulkarni, C.S.; Mirabito, C.; Ali, W.H.; Subramani, D.N.; Dutt, A.; Lin, J.; et al.
Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian
Sea. Oceanography 2017, 30, 172–185. https://doi.org/10.5670/oceanog.2017.242.

7. Rathbun, D.; Kragelund, S.; Pongpunwattana, A.; Capozzi, B. An evolution based path planning algorithm for autonomous
motion of a UAV through uncertain environments. In Proceedings of the 21st Digital Avionics Systems Conference, Irvine, CA,
USA, 27–31 October 2002; Volume 2, pp. 8D2-1–8D2-12. https://doi.org/10.1109/DASC.2002.1052946.

8. Wang, T.; Le Maître, O.P.; Hoteit, I.; Knio, O.M. Path planning in uncertain flow fields using ensemble method. Ocean. Dyn. 2016,
66, 1231–1251.

9. Kewlani, G.; Ishigami, G.; Iagnemma, K. Stochastic mobility-based path planning in uncertain environments. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp.
1183–1189. https://doi.org/10.1109/IROS.2009.5354418.

10. Chowdhury, R.; Subramani, D.N. Physics-Driven Machine Learning for Time-Optimal Path Planning in Stochastic Dynamic
Flows. In Proceedings of the International Conference on Dynamic Data Driven Application Systems, Boston, MA, USA, 2–4
October 2020; Springer: Cham, Switzerland, 2020; pp. 293–301.

11. Anderlini, E.; Parker, G.G.; Thomas, G. Docking Control of an Autonomous Underwater Vehicle Using Reinforcement Learning.
Appl. Sci. 2019, 9, 3456. https://doi.org/10.3390/app9173456.

12. Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. Feasibility study of a constrained Dijkstra approach for optimal path
planning of an unmanned surface vehicle in a dynamic maritime environment. In Proceedings of the 2018 IEEE International
Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 117–122.
https://doi.org/10.1109/ICARSC.2018.8374170.

13. Wang, Z.; Xiang, X. Improved Astar Algorithm for Path Planning of Marine Robot. In Proceedings of the 2018 37th Chinese
Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 5410–5414. https://doi.org/10.23919/ChiCC.2018.8483946.

14. Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A constrained A* approach towards optimal path planning for an unmanned
surface vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Eng. 2018, 169, 187–201.
https://doi.org/10.1016/j.oceaneng.2018.09.016.

15. Ferguson, D.; Stentz, A. The Delayed D* Algorithm for Efficient Path Replanning. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2045–2050.https://doi.org/10.1109/ROBOT.2005.
1570414.

16. Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface
vehicles I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306.

17. Subramani, D.N.; Wei, Q.J.; Lermusiaux, P.F.J. Stochastic Time-Optimal Path-Planning in Uncertain, Strong, and Dynamic Flows.
CMAME 2018, 333, 218–237.

18. Subramani, D.N.; Lermusiaux, P.F.J. Energy-optimal Path Planning by Stochastic Dynamically Orthogonal Level-Set Optimization.
Ocean. Model. 2016, 100, 57–77.

19. Chowdhury, R.; Subramani, D. Optimal Path Planning of Autonomous Marine Vehicles in Stochastic Dynamic Ocean Flows
using a GPU-Accelerated Algorithm. arXiv 2021, arXiv:2109.00857.

20. Andersson, J. A Survey of Multiobjective Optimization in Engineering Design; Department of Mechanical Engineering, Linktjping
University: Linköping, Sweden, 2000.

21. Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004,
26, 369–395.

22. Stewart, R.H.; Palmer, T.S.; DuPont, B. A survey of multi-objective optimization methods and their applications for nuclear
scientists and engineers. Prog. Nucl. Energy 2021, 138, 103830.

23. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197.

24. Brownlee, J. Clever Algorithms: Nature-Inspired Programming Recipes; Lulu Press: Morrisville, NC, USA, 2011.
25. Roijers, D.M.; Vamplew, P.; Whiteson, S.; Dazeley, R. A survey of multi-objective sequential decision-making. J. Artif. Intell. Res.

2013, 48, 67–113.
26. Perny, P.; Weng, P. On finding compromise solutions in multiobjective Markov decision processes. In ECAI 2010; IOS Press:

Amsterdam, The Netherlands 2010; pp. 969–970.
27. Wray, K.H.; Zilberstein, S.; Mouaddib, A.I. Multi-objective MDPs with conditional lexicographic reward preferences. In

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
28. Geibel, P. Reinforcement learning for MDPs with constraints. In Proceedings of the European Conference on Machine Learning,

Berlin, Germany, 18–22 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 646–653.

J. Mar. Sci. Eng. 2022, 10, 533 18 of 18

29. Zaccone, R.; Ottaviani, E.; Figari, M.; Altosole, M. Ship voyage optimization for safe and energy-efficient navigation: A dynamic
programming approach. Ocean. Eng. 2018, 153, 215–224. https://doi.org/10.1016/j.oceaneng.2018.01.100.

30. White, C.C.; Kim, K.W. Solution procedures for vector criterion Markov Decision Processes. Large Scale Syst. 1980, 1, 129–140.
31. Lee, T.; Kim, Y.J. GPU-based motion planning under uncertainties using POMDP. In Proceedings of the 2013 IEEE International

Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 4576–4581.
32. Lee, T.; Kim, Y.J. Massively parallel motion planning algorithms under uncertainty using POMDP. Int. J. Robot. Res. 2016,

35, 928–942.
33. Spaan, M.T.; Vlassis, N. Perseus: Randomized point-based value iteration for POMDPs. J. Artif. Intell. Res. 2005, 24, 195–220.
34. Pineau, J.; Gordon, G.; Thrun, S. Anytime point-based approximations for large POMDPs. J. Artif. Intell. Res. 2006, 27, 335–380.
35. Shani, G.; Pineau, J.; Kaplow, R. A survey of point-based POMDP solvers. Auton. Agents -Multi-Agent Syst. 2013, 27, 1–51.
36. Wray, K.H.; Zilberstein, S. A parallel point-based POMDP algorithm leveraging GPUs. In Proceedings of the 2015 AAAI Fall

Symposium Series, Arlington, VA, USA, 12–14 November 2015.
37. Barrett, L.; Narayanan, S. Learning all optimal policies with multiple criteria. In Proceedings of the 25th International Conference

on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 41–47.
38. Rao, D.; Williams, S.B. Large-scale path planning for underwater gliders in ocean currents. In Proceedings of the Australasian

Conference on Robotics and Automation (ACRA), Sydney, Australia, 2–4 December 2009; pp. 2–4.
39. Fernández-Perdomo, E.; Cabrera-Gámez, J.; Hernández-Sosa, D.; Isern-González, J.; Domínguez-Brito, A.C.; Redondo, A.; Coca,

J.; Ramos, A.G.; Fanjul, E.Á.; García, M. Path planning for gliders using Regional Ocean Models: Application of Pinzón path
planner with the ESEOAT model and the RU27 trans-Atlantic flight data. In Proceedings of the OCEANS’10 IEEE SYDNEY,
Sydney, Australia, 24–27 May 2010; pp. 1–10.

40. Smith, R.N.; Chao, Y.; Li, P.P.; Caron, D.A.; Jones, B.H.; Sukhatme, G.S. Planning and implementing trajectories for autonomous
underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int. J. Robot. Res. 2010,
29, 1475–1497.

41. Al-Sabban, W.H.; Gonzalez, L.F.; Smith, R.N. Wind-energy based path planning for unmanned aerial vehicles using markov
decision processes. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6–10 May 2013; pp. 784–789.

42. Subramani, D.N.; Lermusiaux, P.F.J.; Haley, P.J., Jr.; Mirabito, C.; Jana, S.; Kulkarni, C.S.; Girard, A.; Wickman, D.; Edwards,
J.; Smith, J. Time-Optimal Path Planning: Real-Time Sea Exercises. In Proceedings of the Oceans ’17 MTS/IEEE Conference,
Aberdeen, UK, 19–22 June 2017. https://doi.org/10.1109/OCEANSE.2017.8084776.

43. Lolla, T.; Lermusiaux, P.F.J.; Ueckermann, M.P.; Haley, P.J., Jr. Time-Optimal Path Planning in Dynamic Flows using Level Set
Equations: Theory and Schemes. Ocean. Dyn. 2014, 64, 1373–1397.

44. Sapsis, T.P.; Lermusiaux, P.F.J. Dynamically orthogonal field equations for continuous stochastic dynamical systems. Phys. D
Nonlinear Phenom. 2009, 238, 2347–2360. https://doi.org/10.1016/j.physd.2009.09.017.

45. Ueckermann, M.P.; Lermusiaux, P.F.J.; Sapsis, T.P. Numerical schemes for dynamically orthogonal equations of stochastic fluid
and ocean flows. J. Comput. Phys. 2013, 233, 272–294. https://doi.org/10.1016/j.jcp.2012.08.041.

46. Subramani, D.N.; Lermusiaux, P.F.J. Risk-Optimal Path Planning in Stochastic Dynamic Environments. CMAME 2019, 353, 391–
415.

47. Lermusiaux, P.F.J.; Subramani, D.N.; Lin, J.; Kulkarni, C.S.; Gupta, A.; Dutt, A.; Lolla, T.; Haley, P.J., Jr.; Ali, W.H.;
Mirabito, C.; et al. A Future for Intelligent Autonomous Ocean Observing Systems. J. Mar. Res. 2017, 75, 765–813.
https://doi.org/10.1357/002224017823524035.

48. Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.; Duda, M.; Barker, D.; et al. A Description of
the Advanced Research WRF Model Version 4; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 2019.

49. Tolman, H. User Manual and System Documentation of WAVEWATCH III TM Version 3.14; Technical Report; MMAB: College Park,
MD, USA, 2009.

50. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
51. NVIDIA.; Vingelmann, P.; Fitzek, F.H. CUDA, Release: 10.2.89, 2020. Available online: https://developer.nvidia.com/cuda-toolkit

(accessed on 1 February 2022).
52. Sapio, A.; Bhattacharyya, S.S.; Wolf, M. Efficient solving of Markov decision processes on GPUs using parallelized sparse matrices.

In Proceedings of the 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP), Porto, Portugal,
10–12 October 2018; pp. 13–18.

53. Gangopadhyay, A. Introduction to Ocean Circulation and Modeling; CRC Press: Boca Raton, FL, USA, 2022.
54. Cushman-Roisin, B.; Beckers, J.M. Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects; Academic Press:

Cambridge, MA, USA, 2011.
55. Podder, T.K.; Sibenac, M.; Bellingham, J.G. Applications and Challenges of AUV Docking Systems Deployed for Long-Term Science

Missions; Monterey Bay Aquarium Research Institute: Moss Landing, CA, USA, 2019.

https://developer.nvidia.com/cuda-toolkit

	Introduction
	Problem Statement
	Prior Work

	Optimal Path Planning with MDPs
	Multi-Objective Planning
	Multi-Objective Reward Formulation
	GPU Accelerated Algorithm
	Operating Curves

	Applications
	Optimal Time and Net Energy Missions
	Optimal Time and Energy Missions with Unknown p0
	Shipping Channel Crossing Problem
	Computational Efficiency
	Discussion and Future Extension

	Conclusions
	Appendix A
	Appendix B
	References

