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Abstract: Underwater gliders are widely used in oceanic observation, which are driven by a hy-
draulic buoyancy regulating system and a movable mass. Better motion performance can help us
to accomplish observation tasks better. Therefore, a command filtered adaptive algorithm with a
detailed system dynamic model is proposed for underwater gliders in this paper. The dynamic model
considers seawater density variation, temperature variation and hull deformation according to dive
depth. The hydraulic pump model and the movable mass dynamic are also taken into account. An
adaptive nonlinear control strategy based on backstepping technique is developed to compensate
the uncertainties and disturbances in the control system. To deal with the command saturation and
calculation of derivatives in the backstepping process, command filtered method is employed. The
stability of the whole system is proved through the Lyapunov theory. Comparative simulations
are conducted to verify the effectiveness of the proposed controller. The results demonstrate that
the proposed algorithm can improve the motion control performance for underwater gliders under
uncertainties and disturbances.

Keywords: underwater glider; system dynamic model; adaptive control; command filtered method

1. Introduction

Underwater gliders are widely used in oceanic exploration, because of their long-
range, low-energy consumption, and low-cost characteristics [1,2]. Underwater gliders are
generally driven by a hydraulic buoyancy regulating system and a movable mass. The
hydraulic buoyancy regulating system consists of a hydraulic pump, an inner bladder, an
external bladder, and several hydraulic valves. Underwater gliders control the hydraulic
oil volume in the external bladder to adjust the buoyancy. Meanwhile, underwater glid-
ers regulate the posture through changing the linear position and rotation angle of the
movable mass.

Accurate motion tracking control of underwater gliders is required to complete differ-
ent oceanic survey tasks. Precise attitude and velocity of underwater gliders could help
collect detailed data of desired profiles, such as thermocline [3,4]. In addition, virtual
mooring is an effective way to extend the duration of underwater gliders [5,6], which
makes long-term oceanic phenomenon monitoring possible.

As an accurate mathematical model makes high performance control much easier, it is
necessary to take all important influences into consideration. Underwater gliders, especially
deep-sea underwater gliders, suffer from pressure variation, seawater density variation,
temperature variation and hull deformation. Wang et al. [7] obtained the net buoyancy
of autonomous underwater gliders through combing finite element method and density
change with the water depth. A nonlinear dynamic model considering seawater pressure,
temperature, and density, and the deformation of the pressure hull of the underwater
glider was proposed by Gao et al. [8]. Yang et al. [9] established a dynamic model for
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deep-sea hybrid-driven underwater gliders considering hull deformation and seawater
density variation, and proposed a buoyancy compensation scheme. Wang et al. [10]
presented a dual-buoyancy-driven mechanism for a full ocean depth glider, and derived a
dynamic model considering the influences of environment. Zhou et al. [11] developed a
mathematical model of deep-sea gliders with hybrid buoyancy regulating system, which
took hull deformation and seawater density variation into consideration. Researchers have
considered the essential factors that influence underwater gliders. However, established
models are only used to derive the gliding states, which have not been applied in the
motion control process. Therefore, it is important to design controllers for underwater
gliders with the help of the established accurate models. In addition, to make a more
reliable model, the dynamic of actuators, i.e., the hydraulic pump model and the movable
mass dynamic, should be considered.

To improve the motion control performance of underwater gliders, many researchers
have done lots of work. Leonard and Graver [12] derived a nonlinear dynamic model of a
nominal glider, and designed a model-based LQR (linear quadratic regulator) to control
the vertical motion. Abraham and Yi [13] presented a model predictive control (MPC)
design for buoyancy propelled autonomous underwater glider to compensate disturbances,
which was confirmed by comparison to the PID controller. Song et al. [14] developed a
dynamic surface decoupling control (DSDC) algorithm based on the active disturbance
rejection control (ADRC) for an underwater glider, which reduced overshoot and settling
time. Zhou et al. [15] proposed designated area persistent monitoring strategies for hybrid
underwater profilers, which was verified by simulations and sea trials. Adaptive robust
sliding mode control of an underwater glider with input constraints for virtual mooring
was proposed by Zhou et al. [16], which incorporated model uncertainties, environmental
disturbances and limited dynamic range of actuators. Jeong et al. [17] applied the machine
learning algorithm to the navigation of the underwater glider. Wang et al. [18] designed a
vertical profile diving and floating motion controller for underwater gliders based on fuzzy
adaptive LADRC algorithm, which allowed the glider to dive to a predetermined depth
precisely or float at a specific depth.

However, it is still a great challenge to obtain high motion tracking performance of
underwater gliders, due to the strong parametric uncertainties, model uncertainties and
disturbances. Model compensation [19] based control is one of the most feasible approaches,
which requires an accurate model to capture the system’s nonlinearities and uncertainties.
Adaptive control [19–26] can improve control systems’ dynamic performance and static
precision through online approximation and compensation. Sliding mode control [27–29]
can compensate the model uncertainties and disturbances. In general, underwater gliders
are driven by a hydraulic buoyancy regulating system and a movable mass. The motion
dynamic of underwater gliders is low, which may cause command saturation in the back-
stepping process of controller design. Meanwhile, the calculation of derivatives must be
taken into consideration, because of the existing model uncertainties and disturbances.
Command filter [30,31] is an effective technique to deal with command saturation and
calculation of derivatives in the backstepping process.

To achieve better motion control performance and maneuverability of underwater
gliders, a detailed system dynamic model is developed for controller design and simulation.
The model considers not only the environment influence, e.g., seawater density variation,
temperature variation and hull deformation according to dive depth, but also the dynamic
model of system actuators, i.e., the hydraulic pump model and the movable mass dynamic,
which could provide a more accurate simulation model, and help obtain high control
performance through model compensation. Command filtered method is synthesized with
backstepping technique to handle the low dynamic of underwater gliders. Adaptive control
is employed to compensate the uncertainties and disturbances in the system.

This paper is organized as follow. Firstly, a detailed nonlinear mathematical model
of the underwater glider is derived. Secondly, a nonlinear adaptive controller based on
command filtered algorithm and backstepping method is designed. Next, the stability
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of the overall control system is proved through Lyapunov theory. Finally, comparative
simulations are conducted to verify the effectiveness of the proposed controller. In addition,
the nomenclature of this paper is provided in the Nomenclature.

2. Problem Formulation

There are two main operation patterns of underwater gliders, i.e., zigzag motion and
spiraling motion. Zigzag motion is in the vertical plane. Virtual mooring could be simplified
into a first stage three-dimensional movement and a second stage vertical movement, to
improve the reliability in the practice use. So, this paper focuses on the vertical motion
control of underwater gliders. The velocity and its direction are of significant importance
for high performance ocean exploration.

Inertial-referenced frame (IRF) E0-ik and body-referenced frame (BRF) e0-e1e3 are
always used to describe the motion of underwater vehicles. As shown in Figure 1, in
IRF, the k-axis is oriented in the same direction as gravity; in BRF, the e1-axis coincides
with the longitudinal axis of the underwater glider, the e3-axis is orthogonal to e1-axis and
pointing to the bottom. Motion equation of underwater gliders in the vertical plane could
be obtained,

ẋ = u cos θ + w sin θ

ż = −u sin θ + w cos θ

θ̇ = q

(1)

where x, z are the position of the underwater glider in the vertical plane according to IRF,
of which x denotes the horizontal movement distance and z denotes the dive depth. θ is
the pitch angle, u and w are the velocity in BRF, q is the pitch angular velocity. The velocity
and pitch angle of underwater gliders in vertical plane are shown in Figure 1.
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Figure 1. Velocity and pitch angle of underwater gliders in vertical plane. (a) Submerging process;
(b) Floating process.

According to previous works [16], a decoupled motion dynamics of underwater gliders
in the vertical plane can be developed,

q̇ =
1

I f2

[(
M f3 − M f1 + KM

)
uw − (mbg − ∆Be)rb cos θ

− mpg
(
rp cos θ + Rp sin θ

)
+
(
KM0 + Kqq

)
u2 + dq

]
u̇ =

1
M f1

[
−KD0 u2 + KL0 uw + ∆Bb sin θ + du

]
ẇ =

1
M f3

[
−KL0 u2 −

(
KL + KD0

)
uw − ∆Bb cos θ + dw

]
(2)

where M f1 and M f3 are the added mass, I f2 is the added moment of inertial, KM, KM0 , Kq,
KD0 , KL and KL0 are hydrodynamic coefficients of underwater gliders, mb is the change
value of the oil mass in the external bladder, mp is the value of the movable mass, rb is the
distance between the external bladder and the center of gravity (CG), rp is the distance
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between the movable mass and CG, Rp is the rotational radius of the movable mass, ∆Be is
the buoyancy change value with respect to the hydraulic buoyancy regulating system, ∆Bb
is the total change value of buoyancy, g is the gravitational acceleration, dq, du and dw are
disturbances and lumped model uncertainties in the motion dynamics respectively.

The total change value of buoyancy could be described as

∆Bb = ∆Be − ∆Bh (3)

where ∆Bh is the buoyancy change value generated by the pressure hull of underwater
gilders.

The hull volume will be compressed owing to the seawater pressure. The seawater
density variation and the temperature variation also affect the buoyancy generated by
pressure hull. The relationship can be expressed as

∆Bh = ρsea(z)Vh0[κt(T0 − T(z)) + κhρsea(z)gz] (4)

where ρsea(z) is the seawater density at the depth z, Vh0 is the volume of the pressure hull
in the air, κt and κh are the influence coefficients of temperature and seawater pressure re-
spectively, T0 and T(z) are temperatures of seawater at sea surface and depth z respectively,
which are also can be measured by a temperature sensor.

According to previous works [11], the seawater density and temperature of South
China Sea can be approximated as

ρsea(z) = ρsea(0) + 1.7806 ln(1 + 0.0478z) + 0.0035z (5)

where ρsea(0) is the seawater density at sea surface.

T(z) = T0/(az + 1) (6)

where a is the coefficient of temperature variation.
The buoyancy produced by the hydraulic buoyancy regulating system can be written as

∆Be = ρsea(z)gVoil (7)

where Voil is the volume of the displaced hydraulic oil. Voil =
∫

Qdt, which also can be
measured by a cable linear displacement sensor. Q is the flow rate to the external bladder, t
is the operating time of the pump.

Therefore, mb can be represented by Voil

mb = ρoilVoil (8)

where ρoil is the hydraulic oil density.
The dynamics of the hydraulic pump [10,32,33] is considered to provide a more

accurate system model,

Q = Dn − CtP(z) (9)

where D is the displacement of the hydraulic pump, n is rational speed of the electrical
motor, that drives the hydraulic pump. Ct is the coefficient of the total internal leakage.
P(z) is the seawater pressure at depth z, and P(z) = ρsea(z)gz, which also can be measured
with a pressure sensor.

The dynamics of the electrical motor speed can be neglected, because the dynamics of
the desired motion is significantly lower than the dynamics of the electrical motor. There-
fore, it is assumed that the control voltage applied to the electrical motor is proportional to
the rotational speed, as

n = κpU1 (10)
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where κp is a positive constant and U1 is the control input voltage of the electrical motor.
However, the dynamics of the movable mass is not so high, which has to be considered,

ṙp = − 1
τrp

rp +
κrp

τrp

U2 (11)

where τrp and κrp are the time constant and the gain of the linear displacement dynamics
of the movable mass respectively, U2 is the control input voltage. In addition, rp can be
measured with an encoder.

The following equilibrium equation of underwater gliders in the vertical plane [16]
can be obtained,

αs =
1
2

− KL
KD

tan ξs +

√(
KL
KD

tan ξs

)2
− 4

KD

(
KD0 + KL0 tan ξs

)
θs = ξs + αs

us = Vs cos αs

ws = Vs sin αs

(12)

where s subindex stands for the equilibrium states, of which αs is the attack angle, ξs is
the gliding angle, θs is the pitch angle, us and ws are the velocity in BRF, Vs is the velocity
in IRF.

As αs is usually very small [22], ws is very small compared to us. Therefore, only the
velocity u and the pitch angle θ are taken in consideration of vertical plane motion control.
It will not cause a big influence in a short time.

For simplification, define a set of parameters as η = [η1, η2, η3, η4, η5, η6], and
η1 = M f3 − M f1 + KM, η2 = KM0 , η3 = Kq, η4 = KD0 , η5 = KL0 , η6 = KL + KD0 .

So, (2) can be expressed as

q̇ =
1

I f2

[
η1uw + η2u2 + η3qu2 − (mbg − ∆Be)rb cos θ − mpg

(
rp cos θ + Rp sin θ

)
+ dq

]
u̇ =

1
M f1

[
−η4u2 + η5uw + ∆Bb sin θ + du

]
ẇ =

1
M f3

[
−η5u2 − η6uw − ∆Bb cos θ + dw

] (13)

Remark 1. For simplicity, assuming that the underwater glider initially has neutral buoyancy and
balanced moment on the sea surface. The center of gravity (CG) in (2) means the initial center of
gravity of the whole underwater gilder on the sea surface, which is considered unchangeable. In
fact, the actual center of gravity may change, when the hydraulic pump and movable mass work.
However, the correctness of (2) holds, no matter which rotational axis is chosen.

Remark 2. dq, du, dw are disturbances and lumped model uncertainties in the motion dynamics.
The model uncertainties in the inner loops, such as ∆Bh, mb, are also considered in dq, du, dw.

Remark 3. The dive depth z of the underwater glider can be measured by a depth gauge. Therefore,
ż can be calculated by differentiating z. The pitch angle θ could be measured with a gyroscope.
However, the velocity u and w have to be measured with a DVL (Doppler velocity log).

3. Controller Design

The control objective is to make u and θ follow the desired velocity ud and pitch
angle θd as close as possible, which could improve the operation performance in both
vertical motion and virtual mooring. A command filtered adaptive algorithm based on
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backstepping procedure is proposed to compensate uncertainties and disturbances, and
deal with the command saturation and calculation of derivatives.

Before the controller design, we have the following assumption.

Assumption 1. The desired velocity ud, pitch angle θd and their derivatives u̇d, θ̇d, θ̈d are bounded.
Only the motion in vertical plane is considered in this paper. As the dynamics of the underwater
glider is low, it is possible to design a smooth velocity and pitch angle command and keep their
derivatives exist.

Step 1:
This step concentrates on designing a desired buoyancy to make the velocity tracking

error as small as possible, and designing an expected linear displacement of the movable
mass to make the pitch angle tracking error as small as possible.
Step 1.1:

Defining the velocity tracking error as

ũ = u − ud (14)

According to Assumption 1, differentiating (14) and noting (13),

˙̃u =u̇ − u̇d

=
1

M f1

[
−η4u2 + η5uw + ∆Be sin θ − ∆Bh sin θ + du

]
− u̇d

(15)

A virtual control input ∆B0
e for ∆Be is designed as

∆B0
e =

1
sin θ

[
η̂4u2 − η̂5uw + ∆Bh sin θ − d̂u + M f1(u̇d − c1ũ)

]
− χ2 (16)

where η̂4, η̂5 and d̂u are the estimations of η4, η5 and du, c1 is a positive constant, χ2 is an
extra corrector term, which will be designed later. η̃4, η̃5 and d̃u are the estimation errors,
which are defined as η̃4 = η4 − η̂4, η̃5 = η5 − η̂5, d̃u = du − d̂u.

A second-order filter with coefficients ωn1 and ξ1 showed in Figure 2 is applied on the
virtual input ∆B0

e to handle the command saturation and calculation of derivatives. The
filtered output corresponding to ∆B0

e is ∆B∗
e .

2

1

1 1
2

n

n

w

x w

2

1

1 1
2

n

n

w

x w 1 1
2

n
x w
1 1

2
n

x w
1

s

1

s

1

s

1

s

0

e
BD

SM1 SR1

*

e
BD *

e

*

e
BD

Figure 2. Schematic diagram of the command filter strategy applied on ∆B0
e .

The following errors are defined,

∆B̃e = ∆Be − ∆B∗
e

∆B̄e = ∆B̃e − χ2

ū = ũ − χ1

(17)

where χ1 is an extra corrector term, and is defined as χ̇1 = −c1χ1 +
sin θ
M f1

(
∆B∗

e − ∆B0
e
)
.

From (14) and (17), we can get

˙̄u = ˙̃u − χ̇1 = u̇ − u̇d − χ̇1

=
1

M f1

[
−η̃4u2 + η̃5uw + d̃u

]
− c1ū +

sin θ

M f1

∆B̄e
(18)
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Define a following Lyapunov function

V1 =
1
2

k11ū2 +
1
2

k12η̃2
4 +

1
2

k13η̃2
5 +

1
2

k14d̃2
u (19)

where k11, k12, k13 and k14 are positive constants.
The adaption law is chosen as

˙̂η4 =
−k11

M f1 k12
u2ū

˙̂η5 =
k11

M f1 k13
uwū

˙̂du =
k11

M f1 k14
ū

(20)

Based on (18) and (20), the time derivative of V1 is

V̇1 = −c1k11ū2 +
k11

M f1

ū∆B̄e sin θ (21)

Step 1.2:
Meanwhile, define the pitch angle tracking error as

θ̃ = θ − θd (22)

A sliding surface s is designed as

s = ˙̃θ + λθ̃ (23)

where λ is a positive constant. Since making θ̃ small or converge to zero is equivalent to
making s small or converge to zero, the rest of the design will focus on making s as small
as possible.

According to Assumption 1, differentiating (23) and noting (13), (22), yielding the
dynamics of s,

ṡ = ¨̃θ + λ ˙̃θ

=
1

I f2

[
η1uw + η2u2 + η3qu2 − (mbg − ∆Be)rb cos θ

− mpg
(
rp cos θ + Rp sin θ

)
+ dq

]
+ λq − λθ̇d − θ̈d

(24)

A virtual control input r0
p for rp is designed as

r0
p =

1
mpg cos θ

[
η̂1uw + η̂2u2 + η̂3qu2 − (mbg − ∆Be)rb cos θ − mpgRp sin θ + d̂q

+ I f2

(
λq − λθ̇d − θ̈d − c3s

)]
− χ4

(25)

where η̂1, η̂2, η̂3 and d̂q are the estimations of η1, η2, η3 and dq, c3 is a positive constant, χ4
is an extra corrector term, which will be designed later. η̃1, η̃2, η̃3 and d̃q are the estimation
errors, which are defined as η̃1 = η1 − η̂1, η̃2 = η2 − η̂2, η̃3 = η3 − η̂3, d̃q = dq − d̂q.

A filter with same structure showed in Figure 2 but different parameters ωn2 and ξ2,
is applied on the virtual input r0

p. In addition, r∗p is the filtered output.
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Define the following errors

s̄ = s − χ3

r̃p = rp − r∗p
r̄p = r̃p − χ4

(26)

where χ3 is an extra corrector term, and is defined as χ̇3 = −c3χ3 − 1
I f2

mpg cos θ
(

r∗p − r0
p

)
.

Combing (24) and (26) yields

˙̄s =ṡ − χ̇3

=
1

I f2

[
η̃1uw + η̃2u2 + η̃3qu2 + d̃q

]
− c3 s̄ − 1

I f2

mpgr̄p cos θ
(27)

Define a following Lyapunov function

V3 =
1
2

k31 s̄2 +
1
2

k32η̃2
1 +

1
2

k33η̃2
2 +

1
2

k34η̃2
3 +

1
2

k35d̃2
q (28)

where k31, k32, k33, k34 and k35 are positive constants.
A following adaption law is designed

˙̂η1 =
k31

I f2 k32
uws̄

˙̂η2 =
k31

I f2 k33
u2 s̄

˙̂η3 =
k31

I f2 k34
qu2 s̄

˙̂dq =
k31

I f2 k35
s̄

(29)

Considering (27) and (29), the time derivative of V3 can be calculated as

V̇3 = −c3k31 s̄2 − k31

I f2

mpgs̄r̄p cos θ (30)

Step 2:
This step focuses on the control inputs of the inner loop, which designs the control

inputs of the electrical motor and movable mass.
Step 2.1:

According to (7) and (17), we can get

∆ ˙̃Be = ∆Ḃe − ∆Ḃ∗
e

= ρsea(z)gV̇oil − ∆Ḃ∗
e

= ρsea(z)gQ − ∆Ḃ∗
e

(31)

So, the desired input Q0 can be determined as

Q0 =
1

ρsea(z)g

[
∆Ḃ∗

e − c2∆B̃e −
k11

M f1 k2
ū sin θ

]
(32)

And, the extra term χ2 is designed as

χ̇2 = −c2χ2 + ρsea(z)g
(

Q − Q0
)

(33)
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where c2 is a positive constant. In addition, Q is determined by applying a similar filter
with coefficients ωn3 and ξ3 showed in Figure 2 on Q0.

Therefore, we can get

∆ ˙̄Be = ∆ ˙̃Be − χ̇2 = −c2∆B̄e −
k11

M f1 k2
ū sin θ (34)

Define a following Lyapunov function

V2 = V1 +
1
2

k2∆B̄2
e (35)

where k2 is a positive constant.
Taking (21) and (34) into consideration, the time derivative of V2 is given by

V̇2 = −c1k11ū2 − c2k2∆B̄2
e (36)

In addition, based on (9), (10), the control input of the electric motor could be deter-
mined as

U1 =
1

Dκp
[Q + Ctρsea(z)gz] (37)

Step 2.2:
According to (11) and (26), the dynamics of ˙̃rp can be expressed as

˙̃rp = ṙp − ṙ∗p

= − 1
τrp

rp +
κrp

τrp
U2 − ṙ∗p

(38)

Thus, the desired input U0
2 can be designed as

U0
2 =

τrp

κrp

(
1

τrp
rp + ṙ∗p − c4r̃p +

k31

I f2 k4
mpgs̄ cos θ

)
(39)

The extra term χ4 could be also decided as

χ̇4 = −c4χ4 +
κrp

τrp

(
U2 − U0

2

)
(40)

where c4 is a positive constant. In addition, U2 is determined by applying a similar filter
with coefficients ωn4 and ξ4 showed in Figure 2 on U0

2 .
So, the time derivative of r̄p can be calculated

˙̄rp = ˙̃rp − χ̇4

= −c4r̄p +
k31

I f2 k4
mpgs̄ cos θ

(41)

Define a following Lyapunov function

V4 = V3 +
1
2

k4r̄2
p (42)

where k4 is a positive constant.
Considering (30) and (41), the time derivative of V4 is given by

V̇4 = −c3k31 s̄2 − c4k4r̄2
p (43)
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Finally, define a following Lyapunov function

V = V2 + V4 (44)

Combing (36) and (43), it could be easily obtained

V̇ = −c1k11ū2 − c2k2∆B̄2
e − c3k31 s̄2 − c4k4r̄2

p (45)

Therefore, V̇ ≤ 0, the stability of the control system has been proved. Figure 3
demonstrates the schematic diagram of the proposed command filtered adaptive control
(CFAC) algorithm for underwater gliders.
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Figure 3. Schematic diagram of the proposed CFAC strategy.

Remark 4. Extra corrector terms χ1, χ2, χ3, χ4 are the differences between the expected system
errors and redefined errors with command filters, i.e., χ1 = ũ − ū, χ2 = ∆B̃e − ∆B̄e, χ3 = s − s̄,
χ4 = r̃p − r̄p. χi (i = 1, 2, 3, 4) is defined as the first-order filter output of the command filter
error. The design process is based on Lyapunov functions, which should make the differentiations of
Lyapunov functions negative definite.

Remark 5. The parameters in Lyapunov functions, i.e., k11, k12, k13, k14, k2, k31, k32, k33, k34, k35
and k4 decide the convergence rate of the corresponding error. Their values should be determined
based on simulation results.

4. Simulation and Discussion

Simulations based on three controllers are conducted to verify the effectiveness of the
developed control strategy. The first was the proportional-integral-differential controller
(PID), i.e., U1 = sgn(ud)(KP1ũ + KI1

∫
ũdt + KD1

dũ
dt ), U2 = KP2θ̃ + KI2

∫
θ̃dt + KD1

dθ̃
dt ,

where sgn(•) is the signum function. The second was the nonlinear controller without
parameter adaption and command filter (NC), i.e., k11 = 0, k31 = 0, ∆B∗

e = ∆B0
e , r∗p = r0

p,
Q = Q0, U2 = U0

2 , and χ1 = 0, χ2 = 0, χ3 = 0, χ4 = 0. The third was the proposed
CFAC strategy. The parameters of the underwater glider and seawater used for controller
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design and simulation are shown in Table 1. The control parameters of the aforementioned
controllers are listed in Tables 2 and 3 respectively. The simulations are implemented in
MATLAB Simulink with a control rate of 100 Hz.

Table 1. Parameters of the underwater glider and seawater.

Parameter Value Unit

mp 11 kg
g 9.8 m/s2

rb 0.075 m
rp [−0.05, 0.05] m
Rp 0.014 m

ρsea(0) 1021.7 kg/m3

T0 30 ◦C
a 0.0042 m−1

Vh0 0.06523 m3

Voil [−500, 500] mL
κt 2.31 × 10−6 (◦C)−1

κh 1.46 × 10−10 m2/kg
D 4.5 × 10−8 m3/r
Ct 4 × 10−15 m3/(s · Pa)
κp 5 r/(s · V)
τrp 2 s
κrp 0.005 m/V

M f 1, M f 3 1.48, 65.92 kg
I f 2 7.88 kg · m2

KM, KM0 −65.84, 0.28 kg
Kq −205.64 kg · s

KD0 7.19 kg/m
KL, KL0 440.99,−0.36 kg/m

U1 [−10, 10] V
U2 [−10, 10] V

Table 2. Parameters of CFAC.

Parameter Value Parameter Value

c1 5 k33 0.01
c2 0.1 k34 0.001
c3 0.1 k35 0.01
c4 0.5 k4 100
λ 1 ωn1 10

k11 1 ξ1 1
k12 2 ωn2 20
k13 5 ξ2 1
k14 0.2 ωn3 5
k2 2 ξ3 1
k31 1 ωn4 30
k32 1 × 10−6 ξ4 1

Table 3. Parameters of PID.

Parameter Value Parameter Value

KP1 800 KP2 20
KI1 0 KI2 0.1
KD1 50 KD2 400

4.1. Case 1: Motion Control during Submerging in Vertical Plane

The submerging motion from sea surface to seabed in vertical plane is simulated. To
validate the effectiveness of parameter adaption and disturbance attenuation, the initial
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parameter values in the controllers are set different from the ones used in the underwater
glider model. In addition, disturbances are also applied in the glider model, which are
shown in (46).

dq =0.1 sin(0.02πt + π/6)

du =0.03 sin(0.02πt + π/3)

dw =0.1 sin(0.02πt + π/2)

(46)

Firstly, the desired velocity is variable, while the desired pitch angle is constant. The
tracking performance of velocity is shown in Figures 4 and 5. PID exhibits the largest
velocity tracking errors, and NC is a little better than PID. Comparing with NC and PID,
CFAC performs much better. Figures 6 and 7 show the pitch angle tracking performance.
NC demonstrates the largest tracking errors among three controllers. CFAC is better than
PID. The control inputs U1 and U2 are shown in Figures 8 and 9 respectively.

Then, the desired velocity is constant, while the desired pitch angle is variable. Based
on Figures 10–13, CFAC displays the best tracking performance both in velocity and pitch
angle. The control inputs U1 and U2 are shown in Figures 14 and 15 respectively.

It could be seen that nonlinear controller without parameter adaption may not achieve
a better result than the traditional PID controller. NC works based on accurate model
compensation. If parameters and disturbances in the model cannot be obtained precisely,
NC may not demonstrate a good performance. In the meanwhile, PID does not depend
on accurate model, and can obtain good results in a specific working condition. The
drawback of PID is that the control parameters in PID only guarantee some specific working
conditions. CFAC takes the advantages of adaptive control, which could attenuate the
influence of parameter variation and external disturbance.
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Figure 4. Velocity tracking performance in submerging motion with a variable velocity and constant
pitch angle command.
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Figure 5. Velocity tracking error in submerging motion with a variable velocity and constant pitch
angle command.
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Figure 6. Pitch angle tracking performance in submerging motion with a variable velocity and
constant pitch angle command.
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Figure 7. Pitch angle tracking error in submerging motion with a variable velocity and constant pitch
angle command.
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Figure 8. Control input U1 in submerging motion with a variable velocity and constant pitch
angle command.
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Figure 9. Control input U2 in submerging motion with a variable velocity and constant pitch angle
command.
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Figure 10. Velocity tracking performance in submerging motion with a constant velocity and variable
pitch angle command.
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Figure 11. Velocity tracking error in submerging motion with a constant velocity and variable pitch
angle command.
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Figure 12. Pitch angle tracking performance in submerging motion with a constant velocity and
variable pitch angle command.
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Figure 13. Pitch angle tracking error in submerging motion with a constant velocity and variable
pitch angle command.
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Figure 14. Control input U1 in submerging motion with a constant velocity and variable pitch angle
command.
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Figure 15. Control input U2 in submerging motion with a constant velocity and variable pitch angle
command.

4.2. Case 2: Motion Control during Floating in Vertical Plane

To validate the robustness of CFAC, the simulation of floating motion from seabed
to sea surface in vertical plane is also conducted. Same parameter initial values and
disturbances as Case 1 are applied. Firstly, the desired velocity is variable, while the desired
pitch angle is constant. The velocity tracking performance is shown in Figures 16 and 17.
The pitch angle tracking performance is shown in Figures 18 and 19. The control inputs U1
and U2 are shown in Figures 20 and 21 respectively.

Secondly, the desired velocity is constant, and the desired pitch angle is variable.
Figures 22–25 show the tracking performance. Similar as Case 1, CAFC achieves the best
tracking performance, comparing with NC and PID. PID demonstrates the worst pitch
angle tracking performance in Figures 24 and 25. Because the disturbance in the pitch angle
loop and influence of hydraulic buoyancy regulating system hinder PID achieve good pitch
angle tracking performance. The control inputs U1 and U2 are shown in Figures 26 and 27
respectively.
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Figure 16. Velocity tracking performance in floating motion with a variable velocity and constant
pitch angle command.
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Figure 17. Velocity tracking error in floating motion with a variable velocity and constant pitch
angle command.
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Figure 18. Pitch angle tracking performance in floating motion with a variable velocity and constant
pitch angle command.
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Figure 19. Pitch angle tracking error in floating motion with a variable velocity and constant pitch
angle command.
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Figure 20. Control input U1 in floating motion with a variable velocity and constant pitch
angle command.
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Figure 21. Control input U2 in floating motion with a variable velocity and constant pitch
angle command.
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Figure 22. Velocity tracking performance in floating motion with a constant velocity and variable
pitch angle command.
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Figure 23. Velocity tracking error in floating motion with a constant velocity and variable pitch
angle command.
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Figure 24. Pitch angle tracking performance in floating motion with a constant velocity and variable
pitch angle command.
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Figure 25. Pitch angle tracking error in floating motion with a constant velocity and variable pitch
angle command.
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Figure 26. Control input U1 in floating motion with a constant velocity and variable pitch
angle command.
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Figure 27. Control input U2 in floating motion with a constant velocity and variable pitch
angle command.

According to Case 1 and Case 2, CFAC shows its excellent motion control ability in both
submerging and floating process in vertical plane. The switch process between submerging
and floating process is not considered, because the switch process could be treated as an
open-loop control process with depth as the command. After the switch process, closed-
loop motion control can be executed again, which guarantees the completion of oceanic
observation tasks.

4.3. Case 3: Motion Control in Virtual Mooring

To explore the performance of CFAC further, simulation of virtual mooring in the
submerging process is conducted. Same parameter initial values and disturbances as
Case 1 are applied. The desired trajectories of velocity and pitch angle are described
in Figures 28 and 29. When the pitch angle θ approaches zero, ∆B0

e in (16) will become
infinite. In addition, the condition u >> w (u is much larger than w) will be no more
satisfied, if velocity u tends to zero. Therefore, the terminal of the desired trajectory is set
as ud = 0.03 m/s and θd = −0.08 rad, since low speed and small pitch angle will reduce
the impact during virtual mooring. Once the desired trajectory reaches the terminal, the
underwater glider will shift to open-loop buoyancy regulating and realize the final mooring.



J. Mar. Sci. Eng. 2022, 10, 531 19 of 24

Because noises always exist in the practical measurement, especially velocities, white noises
are imposed on the feedback of u, w and q in the simulation.

Figures 28 and 30 show the velocity tracking performance. The velocity tracking
errors of NC is larger than PID and CFAC. It can be seen that both the absolute value and
amplitude of tracking error are much larger in NC. The reason is not only the parameter
uncertainties and disturbances, but also the imposed measurement noises. However, in
the meantime, PID also achieves a good performance as CFAC. PID strategy is only based
on the feedback. The low dynamics of the hydraulic buoyancy regulating system and
velocity response can reduce the noises imposed on the feedback of u, w and q. In addition,
the parameter adaption of CFAC could not reach its best in a short working time. In
CFAC, adaptive strategy compensates the parameter uncertainties and disturbances, while
command filter attenuates the calculation explosion of derivatives caused by measurement
noises in the backstepping process. The pitch angle tracking performance is shown in
Figures 29 and 31. CFAC still holds the best tracking performance. The control inputs U1
varies acutely due to the imposed noises on feedback velocities as shown in Figure 32. U1
finally reaches its saturation 10V, that indicates a small velocity and pitch angle command
is beyond the ability of the underwater glider. Control input U2 is shown in Figure 33. U2
does not vary dramatically like U1, because the dynamics of pitch angle is lower than the
one of velocity.
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Figure 28. Velocity tracking performance in virtual mooring.
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Figure 29. Pitch angle tracking performance in virtual mooring.
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ũ
(m

/s
)

CFAC NC PID

Figure 30. Velocity tracking error in virtual mooring.
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Figure 31. Pitch angle tracking error in virtual mooring.

0 100 200 300 400

Time(s)

-10

-5

0

5

10

U
1
(V

)

Figure 32. Control input U1 in virtual mooring.
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Figure 33. Control input U2 in virtual mooring.

In CFAC, command filter deals with the command saturation and calculation of
derivatives in the underwater glider control system. Equation (45) guarantees that ū, ∆B̄e,
s̄ and r̄p will become zero asymptotically, which are different from the expected tracking
errors ũ, ∆B̃e, s̃ and r̃p. Since the dynamics of u and θ of the underwater glider is not
high based on (13), command filter can be applied to make CFAC work with a suitable
response time to avoid overshoot. Taking ũ for example, ũ = ū + χ1 based on (17), and
χ̇1 = −c1χ1 +

sin θ
M f1

(
∆B∗

e − ∆B0
e
)
, χ1 is the first-order filter output of sin θ

M f1

(
∆B∗

e − ∆B0
e
)
. ∆B∗

e

is the filter output of ∆B0
e through command filter in Figure 2. The error between ∆B∗

e and
∆B0

e could become small enough to make χ1 converge to zero, that is possible because
the dynamics of the underwater glider is not high. As a consequence, ũ will approach
zero, once ū and χ1 converge to zero. In a same way, ∆B̃e, s̃ and r̃p can be proved to
approach zero.

In practice use, ξi (i = 1, 2, 3, 4) in CFAC is chosen as 1, which is the critical damping
ratio of the second-order system and could avoid overshoot and oscillation during com-
mand filtering. ωni (i = 1, 2, 3, 4) is chosen based on the dynamics of the underwater glider
and desired trajectory. A large ωni may introduce the influence of measurement noises, and
cause overshoot and oscillation. A small ωni cannot eliminate the filter error and lead to
the final control error. Hence, a balance of ωni should be kept. Command saturation keeps
the calculated control command in a sound range, which is important for low dynamic
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systems, such as underwater gliders. Once command saturation works, the underwater
glider cannot track the desired trajectory. It means that the dynamics or amplitude of the
expected trajectory is beyond the response of controlled system.

5. Conclusions

This paper developed a detailed system mathematical model and a command filtered
adaptive control strategy for underwater gliders, whose system dynamics is low and work-
ing condition is complicated. It will help improve the maneuverability and motion tracking
performance in the oceanic observation tasks. Underwater gliders are driven by a hydraulic
buoyancy regulating system and a movable mass. A detailed system dynamic model is
proposed, which considers not only the influence of working environment, e.g., seawater
density variation, temperature variation and hull deformation according to dive depth, but
also the dynamic of system actuators, i.e., the hydraulic pump model and movable mass
dynamic. An adaptive nonlinear control algorithm based on backstepping technique is
proposed to compensate the uncertainties and disturbances. A command filtered method is
employed to deal with command saturation and calculation of derivatives in the backstep-
ping process. The stability of the whole system is proved through Lyapunov theory. Three
controllers are compared in simulations with different motion requirements. The results
demonstrate that CFAC has good velocity and pitch angle tracking performance under
parameter uncertainties and disturbances, which can help underwater gliders accomplish
observation tasks better. It could be learned that CFAC applies to low dynamic systems,
such as underwater gliders. Experimental validation should be implemented in the future
work.
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Nomenclature

BRF body-referenced frame
IRF inertial-referenced frame
CFAC command filtered adaptive control
CG center of gravity
NC nonlinear controller without parameter adaption and command filter
∆Bb total change value of buoyancy
∆Be buoyancy change value with respect to the hydraulic buoyancy regu-

lating system
∆B̃e buoyancy change error with respect to the hydraulic buoyancy regu-

lating system
∆B̄e redefined buoyancy change error with respect to the hydraulic

buoyancy regulating system
∆B0

e virtual control input for ∆Be
∆B∗

e filtered output corresponding to ∆B0
e

∆Bh buoyancy change value generated by the pressure hull
αs attack angle of the equilibrium
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η = [η1, η2, η3, η4, η5, η6] system parameter for adaption
η̂ = [η̂1, η̂2, η̂3, η̂4, η̂5, η̂6] estimation of η

θ pitch angle
θ̃ pitch angle tracking error
θd desired pitch angle
θs pitch angle of the equilibrium
κh influence coefficient of seawater pressure
κp electrical motor rotational speed gain
κrp gain of the linear displacement dynamics of the movable mass
κt influence coefficient of temperature
λ positive constant
ξs gliding angle of the equilibrium
ξi(i = 1, 2, 3, 4) damping ratio of command filter
ρoil hydraulic oil density
ρsea(0) seawater density at sea surface
ρsea(z) seawater density at depth z
τrp time constant of the linear displacement dynamics of the movable

mass
χi(i = 1, 2, 3, 4) extra corrector term
ωni(i = 1, 2, 3, 4) undamped natural frequency of command filter
Ct coefficient of the total internal leakage
D displacement of the hydraulic pump
I f2 added moment of inertial
KM, KM0 , Kq, KD0 , KL, KL0 hydrodynamic coefficient
M f1

,M f3 added mass
P(z) seawater pressure at depth z
Q flow rate to the external bladder
Q0 desired input of Q
Rp rotational radius of the movable mass
T0 temperature of seawater at sea surface
T(z) temperature of seawater at depth z
U1 control input voltage of the electrical motor
U2 control input voltage of the movable mass
U0

2 desired input of U2
V Lyapunov function
Vi(i = 1, 2, 3, 4) Lyapunov function
Vh0 volume of the pressure hull in the air
Voil volume of the displaced hydraulic oil
Vs total velocity of the equilibrium in IRF
a coefficient of temperature variation
ci(i = 1, 2, 3, 4) positive constant
dq disturbance and lumped model uncertainty in the q̇ dynamics
d̂q estimation of dq
du disturbance and lumped model uncertainty in the u̇ dynamics
d̂u estimation of du
dw disturbance and lumped model uncertainty in the ẇ dynamics
g gravitational acceleration
k11, k12, k13, k14, k2, k31,
k32, k33, k34, k35, k4

positive constants

mb change value of the oil mass in the external bladder
mp value of the movable mass
n rational speed of the electrical motor
rb distance between the external bladder and CG
rp distance between the movable mass and CG
r̃p distance error between the movable mass and CG
r̄p redefined distance error between the movable mass and CG
r0

p virtual control input for rp

r∗p filtered output corresponding to r0
p
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q pitch angle velocity
s sliding surface
s̄ redefined sliding surface
t operating time of the pump
u velocity in BRF (coincides with the longitudinal axis of the underwa-

ter glider)
ũ velocity tracking error in BRF (coincides with the longitudinal axis of

the underwater glider)
ū redefined velocity tracking error in BRF (coincides with the longitudi-

nal axis of the underwater glider)
ud desired velocity in BRF (coincides with the longitudinal axis of the

underwater glider)
us velocity of the equilibrium in BRF (coincides with the longitudinal

axis of the underwater glider)
w velocity in BRF (orthogonal to the longitudinal axis of the underwater

glider)
ws velocity of the equilibrium in BRF (orthogonal to the longitudinal axis

of the underwater glider)
x horizontal movement distance in IRF
z dive depth in IRF

References
1. Zhou, M.; Bachmayer, R.; de Young, B. Mapping the underside of an iceberg with a modified underwater glider. J. Field Robot.

2019, 36, 1102–1117. [CrossRef]
2. Li, S.; Zhang, F.; Wang, S.; Wang, Y.; Yang, S. Constructing the three-dimensional structure of an anticyclonic eddy with the

optimal configuration of an underwater glider network. Appl. Ocean Res. 2020, 95, 101893. [CrossRef]
3. Schultze, L.K.P.; Merckelbach, L.M.; Carpenter, J.R. Turbulence and Mixing in a Shallow Shelf Sea From Underwater Gliders. J.

Geophys. Res. Ocean. 2017, 122, 9092–9109. [CrossRef]
4. Han, G.J.; Zhou, Z.R.; Zhang, T.W.; Wang, H.; Liu, L.; Peng, Y.; Guizani, M. Ant-Colony-Based Complete-Coverage Path-Planning

Algorithm for Underwater Gliders in Ocean Areas With Thermoclines. IEEE Trans. Veh. Technol. 2020, 69, 8959–8971. [CrossRef]
5. Yang, C.; Peng, S.; Fan, S.; Zhang, S.; Wang, P.; Chen, Y. Study on docking guidance algorithm for hybrid underwater glider in

currents. Ocean Eng. 2016, 125, 170–181. [CrossRef]
6. Kan, T.; Mai, R.; Mercier, P.P.; Mi, C.C. Design and Analysis of a Three-Phase Wireless Charging System for Lightweight

Autonomous Underwater Vehicles. IEEE Trans. Power Electron. 2018, 33, 6622–6632. [CrossRef]
7. Wang, Y.; Wang, Y.; He, Z. Bouyancy compensation analysis of an autonomous underwater glider. In Proceedings of the 2011

International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August
2011; Volume 2, pp. 824–827.

8. Gao, L.; Li, B.; Gao, L. Physical Modeling for the Gradual Change of Pitch Angle of Underwater Glider in Sea Trial. IEEE J. Ocean.
Eng. 2018, 43, 905–912. [CrossRef]

9. Yang, Y.; Liu, Y.; Wang, Y.; Zhang, H.; Zhang, L. Dynamic modeling and motion control strategy for deep-sea hybrid-driven
underwater gliders considering hull deformation and seawater density variation. Ocean Eng. 2017, 143, 66–78. [CrossRef]

10. Wang, S.; Li, H.; Wang, Y.; Liu, Y.; Zhang, H.; Yang, S. Dynamic modeling and motion analysis for a dual-buoyancy-driven full
ocean depth glider. Ocean Eng. 2019, 187, 106163. [CrossRef]

11. Zhou, H.; Fu, J.; Liu, C.; Zeng, Z.; Yu, C.; Yao, B.; Lian, L. Dynamic modeling and endurance enhancement analysis of deep-sea
gliders with a hybrid buoyancy regulating system. Ocean Eng. 2020, 217, 108146. [CrossRef]

12. Leonard, N.E.; Graver, J.G. Model-based feedback control of autonomous underwater gliders. IEEE J. Ocean. Eng. 2001, 26,
633–645. [CrossRef]

13. Abraham, I.; Yi, J. Model predictive control of buoyancy propelled autonomous underwater glider. In Proceedings of the 2015
American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 1181–1186.

14. Song, D.; Guo, T.; Sun, W.; Jiang, Q.; Yang, H. Using an Active Disturbance Rejection Decoupling Control Algorithm to Improve
Operational Performance for Underwater Glider Applications. J. Coast. Res. 2018, 34, 724–737. [CrossRef]

15. Zhou, P.; Yang, C.; Wu, S.; Zhu, Y. Designated Area Persistent Monitoring Strategies for Hybrid Underwater Profilers. IEEE J.
Ocean. Eng. 2020, 45, 1322–1336. [CrossRef]

16. Zhou, H.; Wei, Z.; Zeng, Z.; Yu, C.; Yao, B.; Lian, L. Adaptive robust sliding mode control of autonomous underwater glider with
input constraints for persistent virtual mooring. Appl. Ocean Res. 2020, 95, 102027. [CrossRef]

17. Jeong, S.K.; Choi, H.S.; Ji, D.H.; Kim, J.Y.; Hong, S.M.; Cho, H.J. A Study on an Accurate Underwater Location of Hybrid
Underwater Gliders Using Machine Learning. J. Mar. Sci. Technol. 2020, 28, 7.

18. Wang, Z.G.; Yu, C.Y.; Li, M.J.; Yao, B.H.; Lian, L. Vertical Profile Diving and Floating Motion Control of the Underwater Glider
Based on Fuzzy Adaptive LADRC Algorithm. J. Mar. Sci. Eng. 2021, 9, 698. [CrossRef]

http://doi.org/10.1002/rob.21873
http://dx.doi.org/10.1016/j.apor.2019.101893
http://dx.doi.org/10.1002/2017JC012872
http://dx.doi.org/10.1109/TVT.2020.2998137
http://dx.doi.org/10.1016/j.oceaneng.2016.08.002
http://dx.doi.org/10.1109/TPEL.2017.2757015
http://dx.doi.org/10.1109/JOE.2017.2769918
http://dx.doi.org/10.1016/j.oceaneng.2017.07.047
http://dx.doi.org/10.1016/j.oceaneng.2019.106163
http://dx.doi.org/10.1016/j.oceaneng.2020.108146
http://dx.doi.org/10.1109/48.972106
http://dx.doi.org/10.2112/JCOASTRES-D-17-00006.1
http://dx.doi.org/10.1109/JOE.2019.2945071
http://dx.doi.org/10.1016/j.apor.2019.102027
http://dx.doi.org/10.3390/jmse9070698


J. Mar. Sci. Eng. 2022, 10, 531 24 of 24

19. Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991.
20. Yao, B.; Tomizuka, M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 1997, 33,

893–900. [CrossRef]
21. Zhang, M.J.; Chu, Z.Z. Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng.

2012, 45, 56–62. [CrossRef]
22. Cao, J.; Cao, J.; Zeng, Z.; Lian, L. Nonlinear multiple-input-multiple-output adaptive backstepping control of underwater glider

systems. Int. J. Adv. Robot. Syst. 2016, 13, 1729881416669484. [CrossRef]
23. Chen, Y.; Zhang, R.; Zhao, X.; Gao, J. Adaptive fuzzy inverse trajectory tracking control of underactuated underwater vehicle

with uncertainties. Ocean Eng. 2016, 121, 123–133. [CrossRef]
24. Cui, R.; Zhang, X.; Cui, D. Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities.

Ocean Eng. 2016, 123, 45–54. [CrossRef]
25. Lu, D.; Xiong, C.; Zeng, Z.; Lian, L. Adaptive Dynamic Surface Control for a Hybrid Aerial Underwater Vehicle With Parametric

Dynamics and Uncertainties. IEEE J. Ocean. Eng. 2020, 45, 740–758. [CrossRef]
26. Yu, C.; Xiang, X.; Wilson, P.A.; Zhang, Q. Guidance-Error-Based Robust Fuzzy Adaptive Control for Bottom Following of a

Flight-Style AUV With Saturated Actuator Dynamics. IEEE Trans. Cybern. 2020, 50, 1887–1899. [CrossRef] [PubMed]
27. Thanh, H.L.; Vu, M.T.; Mung, N.X.; Nguyen, N.P.; Phuong, N.T. Perturbation Observer-Based Robust Control Using a Multiple

Sliding Surfaces for Nonlinear Systems with Influences of Matched and Unmatched Uncertainties. Mathematics 2020, 8, 1371.
[CrossRef]

28. Vu, M.T.; Le, T.H.; Thanh, H.L.; Huynh, T.T.; Van, M.; Hoang, Q.D.; Do, T.D. Robust Position Control of an Over-actuated
Underwater Vehicle under Model Uncertainties and Ocean Current Effects Using Dynamic Sliding Mode Surface and Optimal
Allocation Control. Sensors 2021, 21, 747. [CrossRef] [PubMed]

29. Hu, C.; Wu, D.; Liao, Y.; Hu, X. Sliding mode control unified with the uncertainty and disturbance estimator for dynamically
positioned vessels subjected to uncertainties and unknown disturbances. Appl. Ocean Res. 2021, 109, 102564. [CrossRef]

30. Farrell, J.A.; Polycarpou, M.; Sharma, M.; Dong, W. Command filtered backstepping. IEEE Trans. Autom. Control 2009, 54,
1391–1395. [CrossRef]

31. Dong, W.; Farrell, J.A.; Polycarpou, M.M.; Djapic, V.; Sharma, M. Command filtered adaptive backstepping. IEEE Trans. Control
Syst. Technol. 2012, 20, 566–580. [CrossRef]

32. Wei, J.; Guo, K.; Fang, J.; Tian, Q. Nonlinear supply pressure control for a variable displacement axial piston pump. Proc. Inst.
Mech. Eng. Part I J. Syst. Control Eng. 2015, 229, 614–624. [CrossRef]

33. Li, M.; Shi, W.; Wei, J.; Fang, J.; Guo, K.; Zhang, Q. Parallel Velocity Control of an Electro-Hydraulic Actuator with Dual
Disturbance Observers. IEEE Access 2019, 7, 56631–56641. [CrossRef]

http://dx.doi.org/10.1016/S0005-1098(96)00222-1
http://dx.doi.org/10.1016/j.oceaneng.2012.02.004
http://dx.doi.org/10.1177/1729881416669484
http://dx.doi.org/10.1016/j.oceaneng.2016.05.034
http://dx.doi.org/10.1016/j.oceaneng.2016.06.041
http://dx.doi.org/10.1109/JOE.2019.2903742
http://dx.doi.org/10.1109/TCYB.2018.2890582
http://www.ncbi.nlm.nih.gov/pubmed/30668513
http://dx.doi.org/10.3390/math8081371
http://dx.doi.org/10.3390/s21030747
http://www.ncbi.nlm.nih.gov/pubmed/33499320
http://dx.doi.org/10.1016/j.apor.2021.102564
http://dx.doi.org/10.1109/TAC.2009.2015562
http://dx.doi.org/10.1109/TCST.2011.2121907
http://dx.doi.org/10.1177/0959651815577546
http://dx.doi.org/10.1109/ACCESS.2019.2911658

	Introduction
	Problem Formulation
	Controller Design
	Simulation and Discussion
	Case 1: Motion Control during Submerging in Vertical Plane
	Case 2: Motion Control during Floating in Vertical Plane
	Case 3: Motion Control in Virtual Mooring

	Conclusions
	References

