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Abstract: The increase in partial pressure of CO2 in the oceans directly affects the productivity and
survival of coastal industries and ecosystems. For marine aquaculture, the decreased alkalinity of
seawater results in reduced availability of carbonates for marine organisms to build their shells,
leading to decreased aquaculture quality and productivity. The industry has been implementing
recirculating aquaculture systems (RASs) to reduce CO2 in feedwaters, but recent interest in ocean-
based CO2 capture has led to additional strategies that may be relevant. The new methods in addition
to CO2 removal offer capture options for enhanced aquaculture sustainability. Here, we review and
compare early-stage and commercially available technologies for deacidification of seawater and their
suitability for aquaculture. Most methods considered rely on a voltage-induced pH swing to shift
the carbonate/bicarbonate equilibrium toward the release of CO2, with subsequent capture of the
released CO2 as a gas or as solid mineral carbonates. The modular design and distributed deployment
potential of these systems offers promise, but current demonstrations are limited to bench scale,
highlighting the need for sustained research and development before they can be implemented for
marine aquaculture.

Keywords: CO2 removal; aquaculture; mCDR

1. Introduction

Anthropogenic greenhouse gas (GHG) emissions continue to alter the global climate.
As it stands, CO2 contributes the most toward the rise in global temperature when com-
pared to any other GHG. Since the end of the preindustrial age (1750), levels of CO2 in the
atmosphere have risen by 47% [1], and, even within just the last decade, levels have risen
by 1.4% per year on average [2].Unfortunately, much of the global society is still reliant on
carbon-based fossil fuels, and, to keep the rise in global temperature under the 1.5 ◦C goal
set by the Paris Climate Agreement, a transition to carbon-neutral energy sources must be
made quickly, but meeting this audacious goal will also require the simultaneous devel-
opment of negative-emission technologies (NETs) and the implementation of progressive
policies, regulations, and incentive structures for rapid technology adoption [3].

Significant attention and resources have been devoted to terrestrial NETs, with several
strategies developed and demonstrated at varying scales, ranging from age-old afforesta-
tion/reforestation [4,5] to hybrid bioenergy with carbon capture and storage (BECCS) [6,7]
and modular direct air capture (DAC) technologies [8,9]. While the widespread adoption
of afforestation and BECCS is limited by competing land-use challenges, the use of DAC is
limited due to high cost. Most importantly, while these strategies address CO2 emissions,
they fail to tap into the planet’s largest CO2 sink—the oceans.

1.1. CO2 in the Ocean

The oceans absorb about 33% of all anthropogenic CO2 emissions. When compared in
equivalent units, bulk CO2 in air and ocean environments is about 720 Gt and 38,400 Gt,
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respectively [10]. The higher average CO2 concentration and significant CO2 reserves in
global oceans offer an opportunity for ocean-based climate solutions. CO2 absorbed by
the oceans is converted to carbonic acid and subsequently H+ and bicarbonate, which
decreases the saturation state of calcium carbonate and results in reduced availability of
carbonates for marine organisms to build their shells, leading to decreased productivity and
quality of aquaculture [11]. Ocean acidification also has direct impacts on coastal ecosystem,
communities, and marine-based economies [12–14]. Hence, ocean-based carbon-capture
solutions not only offer opportunities to utilize a concentrated CO2 source for high-impact
NETs, but are also a means to address anthropogenic ocean acidification [15].

Once absorbed by the ocean, CO2 changes forms, as seen in Equations (1)–(3).

CO2(g) + H2O ↔ H2CO3 (1)

H2CO3 ↔ HCO−3 + H+ (2)

HCO−3 ↔ CO2−
3 + H+ (3)

All the forms of CO2 including HCO3
− and CO3

2− are in equilibrium with each other;
however, slight changes in pH, temperature, and salinity affect the relative concentrations
of those carbon species. At the pH of seawater (pH 8), approximately 0.5% of the total
carbon dioxide, [CO2]T, exists as dissolved CO2 gas, while 88.5% exists as HCO3

− and
11% exists as CO3

2− [16]. It is known that lowering the pH (increasing [H+]) to a value
less than 6 changes equilibrium conditions to favor the production of CO2 gas [17], while
raising the pH greater than 8.5 favors the formation of CO3

2− [18]. Manipulating this
carbonate/bicarbonate equilibrium is central to the operation of many ocean CO2 capture
technologies.

1.2. Ocean Acidification Impacts on Marine Aquaculture

In addition to the broader impacts of ocean-based CO2 removal, there are direct ecosys-
tem and economic benefits from ocean deacidification. Coastal industries, particularly
marine aquaculture, are highly sensitive to ocean CO2 levels and pH changes, which can
lower the saturation state of aragonite, a crystalline form of calcium carbonate that many
organisms use to build their shells [19,20]. Marine aquaculture production largely consists
of bivalve mollusks such as oysters, clams, and mussels, as well as salmon and shrimp [21].
Shellfish, a general term used to describe aquatic shelled mollusks and crustaceans used for
food, are directly impacted by the reduced availability of aragonite to build shells, leading
to decreased aquaculture quality and productivity.

In 2007, Whiskey Creek Shellfish Hatchery near Tillamook, Oregon experienced a
large die-off of oyster larvae after exposure to low-pH seawater [22]. Similar events have
cost the US shellfish aquaculture industry approximately 110 million USD annually [23–25].
Beyond the aquaculture industry, ocean acidification also impacts the income of coastal
communities that rely on tourism surrounding coral reefs [21,26–30]. On a global scale,
an annual economic loss of 97–301 billion USD (in 2014) is estimated to result from ocean
acidification [31].

Although localized parameters such as ocean current, water temperature, and alkalin-
ity play a role in the rate and extent of acidification, the overall trend of decreasing pH has
been seen almost everywhere in the world [32–36]. Studies have clearly demonstrated the
link between CO2 levels and aquaculture quality and productivity, as shown in Figure 1 [37].
As a result, hatcheries have developed mitigation strategies to minimize uncertainty and
to better protect their assets. With consistent monitoring and early detection, localized
buffering, site and breeding selectivity, and nutritional enhancements, the aquaculture
industry has been able to curtail some of the effects of ocean acidification [38]; however,
those methods only offer temporary relief. Capturing CO2 from the ocean, often referred to
as marine carbon dioxide removal (mCDR) could allow for ocean-based climate solutions
while simultaneously addressing ocean acidification. Furthermore, when mCDR methods
are applied in existing coastal industries such as algal cultivation [39,40] or coastal infras-
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tructure [41,42], a clear economic incentive to deploy ocean-based climate solutions can be
established.
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Figure 1. Impacts of increasing ocean CO2 levels on clams. Figure reprinted from [37] with permission
from the Proceedings of the National Academy of Sciences of the United States of America. (A) Image
of full individual larvae under specified CO2 level. (B) A magnification of the outermost shell of
individuals under specified CO2 level.

2. Marine Carbon Dioxide Removal Methods

Various mCDR strategies (Figure 2) have been considered, ranging from artificial
upwelling and ocean alkalinity enhancement to seaweed cultivation and electrochemical
CO2 stripping [43]. However, given that all of the approaches are in the early stages of
development and the scarcity field demonstrations to date, their estimated potential for
impact is highly variable, and the risks associated with large-scale implementation are not
known [43,44]. The benefits and suitability of these techniques also depend on the local
industry (onshore vs. offshore), ecosystem, and competing resource needs.

Given considerations of fish health and food safety, chemical alkalinity enhancement
of feedwaters resulting in CaCO3 precipitation (i.e., calcium depletion) seems nonideal.
On the other hand, for seaweed cultivation, despite being a chemical input-free carbon
capture strategy, the spatiotemporal pH changes generated are not known. Furthermore,
aquaculture facilities may need additional resources to grow and manage seaweed, making
it less attractive. Hence, several promising mCDR strategies may not be suitable for
deacidification of aquaculture feedwaters.

Specific to marine aquaculture, which is expected to significantly grow by 2050 [45],
coupling with modular mCDR systems that can be easily added to existing seawater
intake at the facilities would be preferrable. Additionally, systems that can be operated
using renewable energy and with minimal chemical inputs would allow for sustainable
seafood production. Considering these factors, here, we review technologies suitable for
deacidifying feedwaters for coastal aquaculture.
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Figure 2. Strategies for ocean CO2 removal. Credit: National Academies of Sciences, Engineering, and
Medicine. 2021. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration.
https://doi.org/10.17226/26278 (accessed on 9 February 2022). Reproduced with permission from
the National Academy of Sciences, courtesy of the National Academies Press, Washington, DC, USA.

3. Technologies for CO2 Removal from Aquaculture Feedwaters

CO2 removal methods suitable for deacidification of marine aquaculture feedwaters,
both commercially available technologies and methods in early stages of development,
are described below. These methods can be broadly classified into physical (trickling
filter), chemical (ion exchange), and electrochemical (bipolar membrane electrodialysis and
electrolytic cation exchange) approaches, and we include a comparison of the methods in
terms of cost, efficiency, and ease of implementation later in the review.

3.1. Trickling Filter and Recirculation Aquaculture Systems

Recirculating aquaculture systems (RASs) were first developed in the 1950s [46,47]
and have been in use for the past 40 years [48]. Not only are they a viable option for the
onshore production of fish such as salmon, seabass, cod, catfish, eel, and perch [49,50], but
they also represent a commercially proven method for removing CO2 from water under
certain conditions. In general, RAS is a method in which fish are grown in a closed-loop set
of tanks where water is recycled, and the addition/removal of nutrients/toxins is heavily
controlled by different types of filters. As a result, oxygen concentration in the water
decreases over time due to respiration, while CO2 and nitrogen concentrations increase.
Elevated levels of CO2 in the water are highly toxic to fish; thus, its cost-effective removal is
very important [51,52]. In an open system such as a net-pen or flow-through, the depletion
of O2 and buildup of CO2/N are nonissues because the water is constantly being replaced
by the surrounding environment. Within RASs, the trickling filter (TF) is designed to
provide aeration and some CO2 removal. In a TF, water is pumped to the top of the filter,
where gravity pulls the water down through the filter medium (Figure 3) [53]. The medium
can be unstructured/structured polyethylene [54], wood wool/sawdust [55], constructed
wetland [56], or other materials that break up the flow of water. Aeration of the water in

https://doi.org/10.17226/26278
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combination with an air stream in the direction opposite to the flow of water (caused by a
fan) allows CO2 to diffuse from the water to the surrounding air. It is then usually pumped
outside away from the facility. In 2020, Karimi et al. tested the ability of a Bionet-filled
trickling filter to remove CO2 under different gas-to-liquid ratios (GLRs) [54]. They found
that a GLR of 5:1 was the most cost-effective setup for their RAS, decreasing the [CO2]
from 7.2 to 5.1 mg/L. A similar result was reported by Summerfelt et al. in 2003, where
they stated that a GLR over 5:1 only led to marginally better CO2 removal [57]. While
RASs offer a relatively simple physical method for the reduction of dissolved CO2 in water,
they only remove CO2 from water when the relative concentration is higher in the water
than the surrounding air. Albeit simple and commercially available, the implementation of
large-scale TF and RAS to remove CO2 from ocean water will also require subsequent CO2
capture strategies in order to be environmentally sustainable.
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3.2. Ion-Exchange Resins

Ion-exchange resins (IER) are widely used in water treatment and in industrial pro-
cesses. The resins are sold as anion- and cation-exchange types. While anion-exchange
resins can be used to directly capture CO2 as bicarbonate ions, cation-exchange resins can
be used to indirectly capture CO2 by altering the seawater pH and altering the carbon-
ate/bicarbonate equilibrium [58]. Both resin types need to be regenerated upon saturation
using chemical solutions (acid, base, salt solution). In case of the anion-exchange resins,
the significantly higher concentrations of chloride ions (240×) in seawater compared to
bicarbonate make them impractical to use. The measured CO2 capture capacity of an anion-
exchange resin in Key West seawater was just 0.07 mg/g of resin, making it impractical for
large-scale applications [59]. Although IERs may be suitable for land-based, near-coastal
applications, the need for a strong base (NaOH) for regeneration makes them less practical.
Similarly, the use of cation-exchange resins to acidify seawater showed a low capacity of
∼0.32 mg of CO2/g of resin [60], and they require either deionized water or strong acid
(HCl) for regeneration, making use at scale less economical. However, IERs for carbon
capture may be an option in the future if electrical resin regeneration either directly via
water splitting or indirectly via electrochemical onsite acid/base generation from seawater
and renewable energy is used. Given the limited promise of IER at this stage, the method is
not discussed further in this review.

3.3. Bipolar Membrane Electrodialysis

A bipolar membrane electrodialysis (BPMED) unit is made up of multiple membrane
layers stacked between an anode and cathode. When adequate energy is supplied to the
unit, water at the surface of the bipolar membrane (an ion-exchange membrane made
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up of a cation- and an anion-exchange layer) dissociates into H+ and OH− ions. The
movement of the ions is dictated by the applied potential, causing cations to move in the
direction of the cathode and anions to move toward the anode. This and the order of
the cation-exchange membranes (CEMs) and anion-exchange membranes (AEMs) create
alternating streams of acidic and basic solutions (Figure 4a). Within the acidified water
(pH 4), the low pH shifts the CO2–carbonate equilibrium to favor the formation of CO2.
Membrane contactors after the BPMED unit then strip the dissolved CO2 from the water
(Figure 4b) before the basified and acidified streams are eventually recombined for disposal.
Waste stream neutralization is critical to ensure that water is safe for local ecosystems in
terms of pH and alkalinity before being discharged back into the ocean. Early prototypes
demonstrated low efficiency due to the formation of CO2 bubbles on the surfaces of the
membranes leading to reduced effective surface area and, consequently, lower ion transport.
However, the issue has since been overcome by placing the unit under higher pressure to
minimize the formation of gas bubbles [61]. Higher operating pressures (6 atm vs. 1.5 atm)
resulted in a 29% decrease in CO2 desorption energy (471 kJ/mol CO2 to 333 kJ/mol
CO2) from a carbonate solution. However, it is important to note that this configuration
relies heavily on the movement of HCO3

− and CO3
2− across AEMs in the membrane

stack. Relative to dissolved inorganic carbon (DIC) concentrations in natural seawater, Cl−

concentrations are significant (~200×). Thus, if high-pressure BPMED is used with natural
seawater, the efficiency is expected to drop considerably as most of the energy would be
used to carry Cl− across the membranes instead of CO2 carrying HCO3

− or CO3
2−. As

a comparison, conventional BPMED technology relies on the movement of H+ and OH−

across the membrane stack to lower or raise the pH of natural seawater.
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Figure 4. Figure reprinted from [62]. Copyright (2020) Nature Communications. Licensed under
Creative Commons Attribution 4.0 International Public License. (a) Schematic drawing of seawater
in a BPMED cell. (b) Process flow diagram of experimental setup for CO2 extraction from seawater.

CO2 capture by BPMED via acidification allows for the extraction of gaseous CO2,
which can be concentrated and permanently captured when used as a strengthener in ce-
ment [41], or recycled when used in the production of chemicals (urea, methanol, formalde-
hyde) [63], or as a feedstock for algae cultivation [64]. Various BPMED prototypes have
been designed and tested using synthetic seawater, which operate on the same fundamental
principles, but differ in membrane configuration and electrolyte solutions, leading to differ-
ent energy efficiencies for CO2 removal, ranging from 155.4 kJ/mol CO2 [62] to 242 kJ/mol
CO2 [18]. Alternatively, CO2 capture by BPMED via basification relies on precipitating
CaCO3 minerals, which have various uses as a cement precursor, filler in plastics, and
ingredient in dietary supplements [65–67]. Zhao et al. exploited this phenomenon, utilizing
BPMED and induced crystallization to perform mineralization and CO2 adsorption from
synthetic seawater [68]. Similarly, de Lannoy et al. studied CaCO3 precipitation facilitated
through their BPMED unit [18]. They found, however, that the pH must be held within
the narrow range of 9.3 to 9.6 to avoid precipitation of Mg(OH)2 that dominates when pH
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is greater than 9.6, rendering the process useless in its ability to capture carbon. When
compared to CO2 extraction driven by acidification, the process of basification would not
require vacuum pumps or membrane contactors to capture CO2, allowing for lower overall
capital, operational, and maintenance costs [69]. Although BPMED (both acidification and
basification) offers an elegant solution to ocean deacidification, the technology is in its
very early stages. The pathway has not yet been tested in an ocean environment; instead,
only synthetic seawater and brine solutions in the lab have been used. Thus, the technol-
ogy performance in harsh marine conditions is unknown. Both methods rely heavily on
membranes which are expensive and highly susceptible to fouling/scaling [70]. Specific to
basification, there is limited research beyond preliminary bench-scale experiments, and the
impact of replacing Ca2+ by Na+ in the waste returned to the coastal environment is not
known. Most importantly, carbonate mineral precipitation, forming CaCO3, diminishes the
levels of free Ca2+ that are locally available for marine calcifiers to build strong shells [71]
and, hence, not suitable for marine aquaculture applications.

3.4. Electrolytic Cation Exchange

The electrolytic cation exchange module (E-CEM) was first reported in 2014 by Willauer
et al. [58,72–74]. The technology was designed primarily to generate fuels from seawater for
naval applications. The E-CEM itself is a three-compartment cell that sits between an anode
and cathode made of platinum-coated titanium (Figure 5). Between each compartment sits
a cation-exchange membrane (CEM) designed to facilitate proton and sodium ion transport
for pH gradient generation. To begin the process, filtered seawater and deionized (DI)
water generated using a reverse-osmosis system are pumped into the E-CEM, with filtered
seawater into the center compartment and DI water into the two electrode compartments.
On the surface of the anode, DI water is oxidized to generate H+ and O2, whereas water
is reduced to OH− and H2 at the cathode. Driven by the applied potential, the H+ ions
move across the first CEM into the seawater stream where they interact with the CO3

2−

and HCO3
− to form H2CO3 and, subsequently, dissolved CO2. At the same time, Na+

from the seawater in the center compartment moves through the second CEM and mixes
with the OH− to form NaOH. The acidified seawater and electrolyte solutions then go
through separate membrane contactors/vacuum strippers to remove the CO2 and H2 gases
before the solutions are discharged. E-CEM has been tested in different configurations
involving the presence/type of ion exchange resin in the compartment, the electrode com-
partment volume, and the endplate material. For example, removing the cation exchange
resin from the compartments improved process times to achieve necessary pH for CO2
release, while decreasing the electrode compartment volume lowered module resistances
by about 33%. By design, E-CEM minimizes inorganic membrane scaling by alternating
pH swings using symmetric electrodes that allow for polarity reversal. However, there
are several other challenges that remain, especially in terms of energy use and cost of
E-CEM for deacidification. The energy for deionization of seawater can be significant
and require considerable pretreatment that might add to overall process chemical use and
disposal; further membrane contactors are expensive, and E-CEM requires not one but
two contactors (for both CO2 and H2). Not using appropriately deionized water runs the
risk of E-CEM generating Cl2 gas and related oxidative byproducts harmful to fish while
not reliably capturing the combustible H2, which is a safety concern. Redesigning E-CEM
for operation with a closed-loop anolyte and catholyte with favorable redox voltages and
easy-to-handle byproducts may make it better suited for marine aquaculture applications.
E-CEM technology in its current configuration is not optimized for CO2 capture from
seawater, and if CO2 generation is the ultimate goal, decoupling the process from H2 and
O2 production may improve overall process efficiency.
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4. Comparison of Technologies

Technologies for CO2 removal from seawater are in their early stages of development,
with only one technology being successfully demonstrated in field settings. As a result, it is
important to note the benefits and drawbacks of the different approaches to recognize how
they can be tailored for marine aquaculture (Table 1).

Table 1. Summary of technologies for seawater deacidification by CO2 removal.

CO2 Removal
Method

Feedwater
Used Flow Rate CO2 Capture

Efficiency Product Energy Consumption Key
Reference

TF in RAS Freshwater,
seawater 100 L·min−1 CO not

captured CO2 (g) 26,000 kJ·kg−1 CO2
1100 kJ·mol−1 CO2

a [54]

BPMED
(via

acidification)

Synthetic
seawater,

Brine
2100 mL·min−1 80.8% CO2 (g) 390–640 kJ·mol−1 CO2 [75]

BPMED
(via basification)

Synthetic
seawater Not reported b Not reported CaCO3 (s) 546–896 kJ·mol−1 CO2

c [18]

BPMED
(via

acidification)
Synthetic
seawater 37 mL·min−1 71% CO2 (g)

0.98–5.82 kWh·kg−1

CO2
d 155.4 kJ·mol−1

CO2

[62]

BPMED
(with reactive
crystallization)

Synthetic
seawater 667 mL·min−1 50% CaCO3 (s) 0.89 kWh·kg−1 CO2

140 kJ·mol−1 CO2
[68]

E-CEM Natural
seawater 1900 mL·min−1 92% CO2 (g),

H2 (g)
22 kWh·kg−1 CO2

3500 kJ·mol−1 CO2
e [72]

a Value comes from heat loss of the system caused by water descending through trickling filter, causing release
of CO2, not including capture or system operation [54]. b No flow rate data available because testing was not
done within BPMED unit. c 40% more energy than acid process from [18]. d Range of values arise from colocation
with desalination plant vs. standalone setup at industrial scales. e Calculations performed for lowest-energy
configuration in [72]: average power = 265 W per 45 min cycle, 1 mol CO2 generated per mol H2, and a gas
generation rate of 0.006 mol·min−1 at 20 A·kJ·mol−1 calculation assumes a 1 h run time.

5. Summary and Future Outlook

RASs operate on the principle of high pCO2 in the water relative to the surrounding
air. Passage of the saturated water through an aerated trickling filter allows for the gas
to be continually removed from the water stream. RAS technology has already demon-
strated CO2 removal from fresh and seawater systems, and it is the most cost-effective
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deacidification approach for aquaculture; however, it is not designed to capture CO2. As
seen in Table 1, the energy consumption by RASs is high relative to other methods, which
is most likely caused by the need for temperature equilibration after evaporative cooling
within the trickling filter. Adding a membrane contactor would enable CO2 capture and
make RASs more sustainable, but membrane contactors are expensive and add energy and
maintenance costs [76]. Here, we note that the other methods included in Table 1 either do
not integrate pumping costs into the overall energy calculations or assume colocation with
a desalination plant to minimize pumping-related capital and operating expenses. Hence,
a direct comparison of RAS energy use to that of the other (emerging) technologies may
not be very meaningful.

Although achieved in different ways, electrochemical methods rely on a pH swing
(∆pH can be 2–6 units) to release CO2 by altering the carbonate/bicarbonate equilibrium.
BPMED creates H+ and OH− on the surface of the bipolar membrane due to an applied
voltage across the membrane stack. These ions then move through cation- and anion-
exchange membranes to create streams of acidic and basic seawater or brine from which
the CO2 can be extracted. E-CEM uses oxidation and reduction of water to generate H+,
which acidifies the input seawater while simultaneously producing H2 gas, which can also
be used as a fuel source. However, the process requires deionized water and multiple
membrane contactors, making it less practical compared to BPMED. If operated using
renewable energy, BPMED can offer a sustainable solution to deacidification with CO2
capture, by producing either gaseous CO2 (acidified approach) or solid CaCO3 (basified
approach). The CO2 produced can be used as a precursor for chemicals or as a feedstock
for algae growth. While capture via CaCO3 precipitation produces an easy-to-handle
solid product and eliminates the need for expensive membrane contactors, the process
decreases calcium availability in feedwater, thus negatively impacting aquaculture quality
and productivity [29,77,78].

In summary, current mCDR technologies that are suitable for deacidification of aqua-
culture feedwaters are in their very early stages of development and must improve energy
efficiency, enhance material durability in harsh marine conditions, and decrease compo-
nent costs to be viable for aquaculture applications. The lack of specialized infrastructure,
and the difficulty in accessing reliable and inexpensive sources of carbon-neutral energy
are additional considerations. A recent technoeconomic analysis by Eisaman et al. [69]
compared the cost of the BPMED-based method as a standalone operation vs. when it is
coupled to a desalination plant or a seawater-cooled powerplant, concluding that colocation
with a desalination facility to leverage existing infrastructure is key to making BPMED
cost-competitive. Although the technologies are in their early stages of development, their
modular design and distributed deployment potential offer a promising outlook. However,
significant research and development are required to take these technologies from lab
to market, and given the pressing need for sustainable deacidification solutions, making
the systems cost-effective in the near term may depend on the availability of government
subsidies or tax credits.
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