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Abstract: Most of the standards available for the assessment of the failure pressure of corroded
pipelines are limited in their ability to assess complex loadings, and their estimations are conservative.
To overcome this research gap, this study employed an artificial neural network (ANN) model trained
with data obtained using the finite element method (FEM) to develop an assessment equation to
predict the failure pressure of a corroded pipeline with a single corrosion defect. A finite element
analysis (FEA) of medium-toughness pipelines (API 5L X65) subjected to combined loads of internal
pressure and longitudinal compressive stress was carried out. The results from the FEA with various
corrosion geometric parameters and loads were used as the training dataset for the ANN. After the
ANN was trained, its performance was evaluated, and its weights and biases were obtained for the
development of a corrosion assessment equation. The prediction from the newly developed equation
has a good correlation value, R2 of 0.9998, with percentage errors ranging from −1.16% to 1.78%,
when compared with the FEA results. When compared with the failure pressure estimates based
on the Det Norske Veritas (DNV-RP-F101) guidelines, the standard was more conservative in its
prediction than the assessment equation developed in this study.

Keywords: failure pressure prediction; artificial neural network; finite element method; single
corrosion defect; combined loadings; corroded pipeline

1. Introduction

Pipelines are essential components in the continuous supply of natural gas from gas
wells to refinery plants and storage facilities. The residual strength assessment of corroded
pipelines is an indispensable part of maintaining continuous operation while protecting
the environment. Corrosion reduces the wall thickness of pipelines, thereby weakening
their strength due to the concentration of stress in the corrosion region [1]. Real corrosion
in pipelines often takes the form of irregular geometric shapes, as shown in Figure 1. The
complex shapes of corrosion defects discontinue the cylindrical symmetry of pipes, thereby
affecting their structural strength [2]. As real corrosion defects are complex and difficult to
model and assess due to their asymmetries, they are often simplified into regular shapes,
such as parabolic and rectangular shapes.

Numerous assessment standards for evaluating the residual strength of corroded
pipelines, such as American Society of Mechanical Engineers (ASME) B31G and Modified
B31G, RSTRENG Effective Area, PCORRC, and DNV RP-F101, are widely practiced in the
oil and gas industry, to inspect and maintain the operation of pipelines. However, most of
these assessment standards are limited to corroded pipelines with a single defect, subjected
to internal pressure only. DNV-RP-F101 is the most comprehensive standard out of them,
which allows for the assessment of corroded pipelines subjected to combined loadings
of internal pressure and longitudinal compressive stress. In subsea or geologically active
regions, external loadings, such as external pressure and longitudinal stresses, should be
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considered. Longitudinal stresses are generally caused by soil movement, the free span of
pipelines over seabed depressions or elevations, and large temperature variation between
the content of pipelines and their surroundings. Longitudinal compressive stress causes
buckling and wrinkling failure, which in turn reduces the residual strength of corroded
pipelines when they are subjected to combined loadings [3–5].
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Both experimental and numerical studies have been carried out to understand the
failure of pipelines subjected to the combined loadings of internal pressure and longitu-
dinal stress. Bjørnøy et. al (2000) carried out full-scale burst tests on twelve American
Petroleum Institute (API) 5L-X52-grade steel pipelines with artificially created corrosion
defects as part of the development of DNV RP-F101 assessment standards for corroded
pipelines [6]. Their work revealed the significant effects of the bending moment and axial
compressive stress on the residual strength of pressurized corroded pipelines, especially
those with deep corrosion defects. Bjørnøy et al.’s work was supported by findings from
Chauhan et al. (2009)’s work on high strength pipelines and Halima and Sreekanta (2017)’s
studies on X46 corroded steel pipelines [7,8].

Of all the established corrosion assessment standards, DNV RP-F101 is the most
comprehensive, as it is the only one that can be used to assess single-defect corroded
pipelines subjected to internal pressure and longitudinal compressive stress. However,
DNV RP-F101 is conservative in its assessment due to the assumptions and simplifications
it involves. Meanwhile, numerical methods have proven to be better than the established
standards for assessing the residual strength of corroded pipelines [9]. Numerical methods,
such as the finite element method (FEM), were widely employed to verify and validate the
failure behaviour and failure pressure of corroded pipelines [10–13]. They are especially
useful for parametric studies with varying corrosion geometries, which would otherwise be
too costly to be carried out experimentally. Despite the advantages of FEM, the numerical
method is computationally expensive. Comprehensive parametric studies of varying
corrosion defect geometry through FEM can be time intensive.

A few studies have used the results from the FEA to develop analytical solutions
that can be deployed as quickly as standards and codes while retaining the accuracy of
FEM. Buckingham’s π theorem has been used to develop closed-form expression using the
results of a parametric study on corroded pipelines with single defects subjected to internal
pressure [14,15]. Arumugam et al. (2020) used the theorem to develop new corrosion
assessment equations for the failure of single-defect pipes when they are subjected to
combined loadings of axial compressive stress and internal pressure [16]. The equations
predicted the failure pressure with good margins of error (less than 10%).

With the adoption of machine learning, such as artificial neural networks (ANNs),
as prediction tools, a handful of studies have used ANN to predict the failure pressure of
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corroded pipelines. The ANN models developed from these studies are modeled after a
data-driven machine learning framework. The dataset used to train these ANN models
was derived from results from experimental work, such as the full-scale burst testing of
corroded pipelines, and results from numerical analyses using FEM. Table 1 shows the
literature that used ANN in combination with FEA results to predict the failure pressure of
corroded pipelines.

Table 1. Literature on ANN application using FEA dataset to predict failure pressure of corroded
pipeline.

Source Corrosion Type Loads Material ANN Architecture

Silva et al. [17]
Interacting defects
(longitudinally and

circumferentially aligned)
Internal pressure X52

Feedforward neural network
with backpropagation

learning algorithm. (2-3-1).

Xu et al. [18]

Single and interacting
defects (longitudinally
and circumferentially

aligned)

Internal pressure X80
Feedforward neural network

with backpropagation
learning algorithm. (4-5-1).

Lu and Liang [19] Single defects Internal pressure and axial
compressive load X62, X70, X80 Not specified (4-6-6-1)

Khalajestani et al. [20] Single defects on elbow Internal pressure Low- and mid-strength
pipe

Feedforward neural network
with Levenberg-Marquardt
backpropagation learning

algorithm (7-7-14-1)

Khalajestani and
Bahaari [21]

Interacting defects on
elbow Internal pressure Low- and mid-strength

pipe

Feedforward neural network
with Levenberg-Marquardt
backpropagation learning

algorithm (8-9-15-1)

However, the ANN from the studies does not provide the ease of use as a closed-
form expression. Tohidi and Sharifi (2016) developed closed-form expression from their
ANN to predict the load-carrying capacity of locally corroded steel plate girder ends [22].
Kumar et al. (2021) developed assessment equations for high-strength pipelines with single
defects subjected to axial load and internal pressure using ANN and FEA results, while
Lo et al. (2021) developed assessment equations for mid-strength pipelines with longi-
tudinally interacting defects subjected to longitudinal compressive stress and internal
pressure using ANN and FEA results [23,24]. Their assessment equations showed accurate
predictions with errors of less than 10%.

The objective of this paper is to employ ANNs together with the FEM to develop an
analytical solution that predicts the failure pressure of corroded mid-strength pipelines
with varying single-corrosion-defect geometries subjected to combined loads of internal
pressure and longitudinal compressive stress. This paper addresses the conservatism of
the standards and codes that are conventionally used to assess corroded pipelines while
maintaining the accuracy of the FEA without intensive computation, using an analytical
solution developed from ANNs.

2. Materials and Methods

This study uses FEM as a basis for developing a new corrosion assessment equation
for steel pipelines with single corrosion defects subjected to both internal pressure and lon-
gitudinal compressive stress. The FEM was validated before generating a database of FEA
results from selected corrosion geometric parameters and load application. Development
of ANNs depends on the dataset used for training; therefore, the ANN model must be
tailored to suit the shape (number of features and labels) and size (number of observations)
of input dataset. The performance of the trained ANN model was evaluated before its
weights and biases were used as a basis for the corrosion assessment equation.
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2.1. Finite Element Method

The FEM from T. Arumugam (2020) is reproduced in this paper, with API 5L X65
grade steel pipeline as the material of the study using ANSYS (16.1) Mechanical ANSYS
Parametric Design Language (APDL) [16]. The pipe model in this parametric study has
an external diameter of De = 300 mm, a wall thickness of t = 10 mm, and a length
of L = 2000 mm. The complex profile of a real corrosion defect is often idealized into
simple shapes, such as rectangular, elliptical, and parabolic in FEM for ease of assessment.
The corrosion defect of the model used is rectangular, with varying defect depths, defect
lengths, and defect widths, as shown in Table 2. Conventional assessment standards
often recommend modeling rectangular defects to assess corroded pipelines for additional
levels of conservatism [25]. it is recommended to model a pipe end cap for application of
longitudinal compression load, to reduce error between simulation and test results [11].
The varying longitudinal compressive stress is distributed equally onto the end cap, as
shown in Table 2.

Table 2. Parameters of corrosion defect geometries and external load.

Defect Depth Defect Length Defect Width Longitudinal Compressive Stress

d/t d (mm) l/D l (mm) w/t w (mm) σc/σy σc (MPa)

0.2 2 0.2 60 2 20 0.2 92.8
0.4 4 0.4 120 6 60 0.4 185.6
0.5 5 0.8 240 10 100 0.5 232.0
0.6 6 1.2 360 14 140 0.6 278.4
0.8 8 1.8 540 18 180 0.8 371.2

1.0 464.0

The symmetry of the rectangular corrosion defect and cylindrical pipe model can be
exploited to reduce the computational time in the FEM. It is only necessary to model a
quarter model, with appropriate application of boundary conditions, such as loads and
constraints, to produce the same outcome as a full model. The dimension of the quarter-
pipe model is illustrated in Figure 2, with annotation of its dimension and the areas where
the boundary conditions were applied. The internal load (internal pressure) was applied on
the internal surface areas of the pipe and the external load (longitudinal compressive stress)
was applied on the surface of the end cap, as shown in Figure 3. Timesteps were used to
apply the loads incrementally, through ramped loading in ANSYS. For cases of internal load
only, the internal pressure was applied in the first and only timestep. For cases of internal
load and external load, longitudinal compressive stress was applied incrementally in the
first timestep. The internal pressure was applied incrementally in the second timestep,
while external load of previous timestep was maintained.
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Figure 3. Loads applied on the pipe model.

The elements of the pipe body were meshed with hexahedral SOLID185 element
in ANSYS. There were eight nodes in the element with three degrees of freedom in x, y,
and z directions. The pipe end cap was meshed with higher-order element, SOLID186,
which has 20 nodes. The element can tolerate the boundary curvature of pipe end cap
without losing accuracy. Solid elements are preferred over shell elements when modeling
pipe with corrosion defect. The British Standards Institution recommended at least two-
to-four layers of elements to be meshed over the thickness of the pipe for accurate FEM;
therefore, six layers of elements were modeled in this study [26]. Multi-point constraint was
used to prevent unwanted rigid motion of pipe model when external load of longitudinal
compressive stress was applied [16,27,28]. Three nodes near the end cap region and far
away from corrosion defect were constrained in all directions, as denoted with triangle
symbols in Figure 4. Preliminary analysis showed negligible difference between number
of constrained nodes and their position (only in the region at the end of the pipe model,
circled) with solution convergence.

A mesh convergence study was performed to identify the optimum mesh layers and
computational time with reasonable solution accuracy (less than 10% percentage difference
from burst test’s failure pressure). The results were tabulated in Table 3. According to the
study, the optimum number of layers across the thickness of pipe was three elements. The
region of interest was designated with high density of elements. A smaller element size
was selected for the region of interest at the corrosion defect. The element size of the pipe
model increased gradually when transitioning away from the corrosion defect, as depicted
in Figure 3, to halve simulation time without sacrificing solution accuracy.

The Newton–Raphson (NR) method was applied for the static non-linear structural
analysis, due to the non-linearity of the API 5L X65 grade steel pipe. Datapoints from the
non-linear true stress–strain curve of the pipe (in Figure 5) were used for the SOLID185
elements in ANSYS and shown in Table 4.
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Table 3. Results of mesh convergence study.

No. of Element Layers Normalized Failure Pressure, Pf/Pi

1 0.53
2 0.57
3 0.59
4 0.59
5 0.59
6 0.59

Table 4. Datapoints of X65 true stress–strain inputted into ANSYS.

No. True Stress (MPa) True Strain No. True Stress (MPa) True Strain

1 0 0 17 817.28 0.5491
2 465.43 0.0022 18 826.72 0.5910
3 479.87 0.0272 19 836.43 0.6328
4 507.37 0.0461 20 845.72 0.6747
5 548.38 0.0671 21 853.38 0.7166
6 615.55 0.0938 22 861.04 0.7585
7 648.26 0.1301 23 868.01 0.8004
8 678.35 0.1720 24 875.26 0.8422
9 702.41 0.2139 25 882.24 0.8841
10 722.93 0.2558 26 888.80 0.9260
11 741.39 0.2977 27 895.23 0.9679
12 756.43 0.3396 28 900.97 1.0098
13 770.51 0.3815 29 907.26 1.0516
14 783.78 0.4234 30 912.87 1.0935
15 794.99 0.4653 31 919.02 1.1354
16 806.61 0.5072 32 923.28 1.1677
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Figure 5. True stress–strain curves of X65 steel pipe [29].

The pipe end cap was considered as a rigid body, as its purpose was to transfer
longitudinal stress onto the pipe body. To prevent deformation of the end cap when a
large load was applied on it, a high stiffness was used. Table 5 summarizes the mechanical
properties of the pipe body and end cap.

Table 5. Mechanical properties of API 5L X65 steel pipe.

Pipe Body
(API 5L X65)

Pipe End Cap
(Rigid Body)

Modulus of Elasticity, E 210 GPa 210 TPa
Poisson’s ratio, v 0.3 0.3
Yield Strength, σy 464 MPa -

Ultimate tensile strength, σu 563 MPa -
True ultimate tensile strength, σu∗ 629 MPa -

The failure criterion adopted for this FEM was based on the work by Choi et al. on
the limit load development of corroded X65 gas pipelines [30]. The failure mechanism is
dictated by plastic collapse of steel pipe, which occurs when the von Mises stress reaches
the reference stress (ultimate tensile strength) across the entire wall thickness, as shown
by red contour in Figure 6. In Choi et al.’s work, their reference stress was 80% of the
material’s ultimate strength for rectangular-shaped defects and 90% of ultimate strength
for elliptical-shaped defects. This paper employed the true ultimate tensile strength (UTS)
of X65 grade steel pipe as the reference stress because true UTS provides more accurate
results [16,18]. The corresponding applied internal pressure is the failure pressure when
the failure criterion is fulfilled.
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2.2. Finite Element Method Validation

The FEM was validated with results from full-scale burst tests. Results from full-scale
burst test by Kim et al. [31] and Ma et al. [32] were used for validation of FEM on single
corrosion defect subjected to internal pressure only. Kim et al. performed their burst test on
corroded X65 pipe with a 762 mm outer diameter, 17.5 mm wall thickness, and 2.3 m length
pipe specimen enclosed with end caps at pipe ends. Ma et al. compiled results of full-scale
burst tests for different grades of corroded pipe, from X42 to X100. The dimensions of X65
pipe in Ma et al.’s dataset is the same as those of the corroded pipes in Kim et al.’s study.
Specimens LD and LF were chosen from Kim et al.’s work and No. 61, No. 62, and No. 63
were chosen from Ma et al.’s work for FEM validation, due to their variety of corrosion
defect length and corrosion defect depth, respectively. The geometric properties of single
corrosion defects chosen for FEM validation are tabulated in Table 6.

Table 6. Dimension of corrosion defects and applied longitudinal compressive stress of selected
specimens for FEM validation.

Specimen d (mm) l (mm) w (mm) σc (MPa)

Validation for internal pressure only.

LD 8.75 50.00 50.00 -
LF 8.75 100.00 50.00 -

No. 61 4.40 200.00 600.00 -
No. 62 8.80 200.00 600.00 -
No. 63 13.10 200.00 600.00 -

Validation for internal pressure and longitudinal compressive stress.

Test 5 3.09 162.00 30.90 48.00
Test 6 3.09 162.00 30.90 84.00

The FEM on corroded pipe subjected to both internal pressure and longitudinal com-
pressive stress was validated with results of full-scale burst tests performed by
Bjørnøy et al. [6]. The burst tests were conducted on X52 steel pipes with a single corrosion
defect on the pipe body with 324-millimeter outer diameter, 10.3-millimeter wall thickness,
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and 1.0-meter length. Only the material property of the FE models was replaced with API
5L X52 grade steel, while the meshing and boundary conditions remained the same. The
parameters of the selected burst tests are shown in Table 6.

The burst tests were modeled with previously proposed FEM framework and material
properties were incorporated in elements of the FE model. The results from the FEA are
tabulated in Table 7. The difference between failure pressure on burst tests and failure
pressure in FEA prediction was relatively small, with a maximum absolute percentage
difference of 3.67%.

Table 7. Failure pressure from burst tests compared with failure pressure predicted in FEA.

Specimen Failure Pressure from
Burst Tests (MPa)

Failure Pressure
Predicted in FEA (MPa)

Absolute Percentage
Difference (%)

Validation for internal pressure only.

LD 19.80 20.1 1.50
LF 15.00 15.50 3.67

No. 61 24.11 23.70 1.70
No. 62 21.76 21.30 2.11
No. 63 17.15 17.10 0.29

Validation for internal pressure and longitudinal compressive stress.

Test 5 28.60 29.20 2.10
Test 6 28.70 29.60 3.14

2.3. Machine Learning and Artificial Neural Network

Machine learning (ML) is a general method of extracting patterns and trends using
modern computing [33]. The technique makes predictions or decisions based on given
datasets through programmed algorithms. Different ML techniques are used to solve
different types of problem, such as regression and classification problems [34]. Predicting
failure pressure to assess fitness-of-service of a corroded pipeline is a regression problem.
A regression problem is when the desired output is a continuous value, such as failure
pressure. Artificial neural networks (ANNs) are a ML technique that is best suited to
solving regression problems because of their ability to characterize complex nonlinear
relationships in a given dataset [33]. There are different approaches to the application of
ML to problems, namely supervised learning, unsupervised learning, and reinforcement
learning. The difference between these approaches depends on the level of information
given to the computer to learn. In supervised learning, the computer is given most of the
available data, which include the input with labeled target output to be trained on. The
computer and ML algorithm then map the relationship between input and target output
and perform predictions based on the given dataset. Supervised learning is employed.
Feed-forward neural network (FFNN) architecture comprising an input layer, hidden
layer(s), and an output layer, was selected for this study. When multiple neurons are linked
with each other in layers, an artificial neural network is formed. ANNs are based on the
universal approximation theory, which states that a simple neural network can approximate
continuous functions of given inputs. In this work, ANN algorithm was developed using
the results of an FE analysis to derive a new empirical formula for better prediction of
residual strength of corroded pipelines subjected to combined loadings.

Every neural network has unique architecture. The number of hidden layers and
number of hidden neurons of the network depend on the application of the neural network
and training data sample available. Therefore, a tailored ANN development framework
was needed for this study. The input and output of the ANN were obtained from the
solution of the FEA on corroded X65 pipeline. The data were then cleaned before being
feeding into the neural network. A neural network was created with a training algorithm
to train on the processed input and target output. The performance of ANN was measured
based on the error between predicted output and target output and improved by adjusting
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its hyperparameters appropriately. The framework to develop ANN algorithm to predict
failure pressure of corroded pipeline is illustrated as a flowchart in Figure 7.
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An iteration of the training process of the neural network is illustrated in Figure 8,
which is a part of the ANN development process flow shown in Figure 7. Typically, in
FFNN, inputs are propagated forward through randomly initialized weights to predict the
output. A cost function is employed to measure the performance of FFNN by quantifying
the error between the predicted output and expected output. Training algorithms, such
as backpropagation, are used to update the weights to minimize the cost function. The
Levenberg–Marquardt (LM) backpropagation algorithm was used to train FFNN. LM
algorithm performs more efficiently compared to other learning rules as it requires less
time and epochs for convergence because it uses a second-order convergence rate [35].
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After the ANN was trained, its performance was evaluated against part of dataset for
validation and testing purposes. The results from FEA were divided into train, validation,
and test sets, where the input and target output were randomly divided in the following
proportions: 80% for training, 10% for validation, and 10% for testing. Validation and
test sets were used to prevent overfitting, which is akin to over-training. As the network
began to overfit the datapoints, the error on the validation and test sets increased. The
performance of the ANN was evaluated through coefficient of determination (R2), mean
squared error (MSE), and mean absolute error (MAE).

R2 =

 ∑N
i=1(yi − yi)

(
ŷi − ŷi

)√
∑N

i=1(yi − yi)
2 ∑N

i=1
(
ŷi − ŷi

)2

 2

(1)

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (2)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3)

where ŷi and yi are the actual and predicted output values for the ith output, respectively.
ŷi and yi are the average of actual and predicted output, and N is the number of samples.
R2, or squared correlation coefficient, is the evaluation of goodness-of-fit for the predicted
value against actual value, where R2 value of 1.00 corresponds to perfect fit. The MSE is
the sum of squared difference between the predictions and actual values. The MAE is the
average absolute error between predictions and actual values, which measures the accuracy
of the predictions.

Generally, trial-and-error methods are employed to determine the number of hidden
layers, and number of hidden neurons. A handful of research studies tried to formulate a
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one-size-fits all equation to determine the optimum number of hidden neurons. Equation (4)
is one of the many equations to calculate number of hidden neurons [36]:

Nh =

(
4p2 + 3

)
(p2 − 8)

(4)

where Nh is the number of hidden neurons and p is the number of input variables of the
network. The calculated number of hidden neurons was used as reference point to prune
the hyperparameters of the neural network.

3. Results
3.1. Preliminary Finite Element Analysis

A preliminary study was performed to better understand the failure pressure trends in
different geometric parameters of a single corrosion defect. The geometry of the corrosion
defect was varied one factor at a time. The tests were prefixed with SDOFAT (Single defect:
One factor at a time). Table 8 details the defect geometric parameters, applied longitudinal
compressive stress, and DNV- and FEA-based failure pressure predictions. The preliminary
study included the investigation of the effect of the corrosion defect’s width, as past studies
were limited to the effect on the failure pressure of corroded pipelines that were subjected
to internal pressure only [37,38].

Table 8. FEA on corroded pipeline with single corrosion defect subjected to internal pressure and
longitudinal compressive stress, one factor at a time.

Test
Models Defect Parameters External

Load
Normalized Failure

Pressure

d/t l/D w/t σc/σy FEA DNV

SDOFAT1 0.2 0.8 10 - 0.82 0.75
SDOFAT2 0.4 0.8 10 - 0.68 0.61
SDOFAT3 0.5 0.8 10 - 0.59 0.53
SDOFAT4 0.6 0.8 10 - 0.49 0.45
SDOFAT5 0.8 0.8 10 - 0.28 0.25
SDOFAT6 0.5 0.2 10 - 0.77 0.75
SDOFAT7 0.5 0.4 10 - 0.68 0.63
SDOFAT8 0.5 1.2 10 - 0.55 0.50
SDOFAT9 0.5 1.8 10 - 0.53 0.47
SDOFAT10 0.5 0.8 2 - 0.57 0.53
SDOFAT11 0.5 0.8 6 - 0.60 0.53
SDOFAT12 0.5 0.8 14 - 0.58 0.53
SDOFAT13 0.5 0.8 18 - 0.57 0.53
SDOFAT14 0.2 0.8 10 0.5 0.75 0.75
SDOFAT15 0.4 0.8 10 0.5 0.64 0.55
SDOFAT16 0.5 0.8 10 0.5 0.56 0.45
SDOFAT17 0.6 0.8 10 0.5 0.46 0.35
SDOFAT18 0.8 0.8 10 0.5 0.26 0.16
SDOFAT19 0.5 0.2 10 0.5 0.69 0.75
SDOFAT20 0.5 0.4 10 0.5 0.62 0.58
SDOFAT21 0.5 1.2 10 0.5 0.53 0.40
SDOFAT22 0.5 1.8 10 0.5 0.52 0.38
SDOFAT23 0.5 0.8 2 0.5 0.56 0.45
SDOFAT24 0.5 0.8 6 0.5 0.57 0.45
SDOFAT25 0.5 0.8 14 0.5 0.54 0.44
SDOFAT26 0.5 0.8 18 0.5 0.53 0.44
SDOFAT27 0.5 0.8 10 0.2 0.58 0.53
SDOFAT28 0.5 0.8 10 0.4 0.57 0.52
SDOFAT29 0.5 0.8 10 0.6 0.53 0.38
SDOFAT30 0.5 0.8 10 0.7 0.46 0.31
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Table 8. Cont.

Test
Models Defect Parameters External

Load
Normalized Failure

Pressure

d/t l/D w/t σc/σy FEA DNV

SDOFAT31 0.5 0.8 10 0.8 0.37 0.24
SDOFAT32 0.5 0.8 10 0.9 0.2 0.17
SDOFAT33 0.5 0.8 10 1 0.17 0.10
SDOFAT34 0.2 0.8 10 0.8 0.53 0.44
SDOFAT35 0.4 0.8 10 0.8 0.44 0.30
SDOFAT36 0.6 0.8 10 0.8 0.31 0.18
SDOFAT37 0.8 0.8 10 0.8 0.00 0.08
SDOFAT38 0.5 0.2 10 0.8 0.47 0.42
SDOFAT39 0.5 0.4 10 0.8 0.39 0.31
SDOFAT40 0.5 1.2 10 0.8 0.18 0.22
SDOFAT41 0.5 1.8 10 0.8 0.14 0.20
SDOFAT42 0.5 0.8 2 0.8 0.46 0.26
SDOFAT43 0.5 0.8 6 0.8 0.42 0.25
SDOFAT44 0.5 0.8 14 0.8 0.20 0.23
SDOFAT45 0.5 0.8 18 0.8 0.17 0.22

Figure 9 shows the trends in the effects of combined internal pressure and longitu-
dinal compressive stress on the failure pressure obtained from the FEA and DNV calcu-
lations of SDOFAT27 to SDOFAT33. Low longitudinal compressive stress (<0.4 σc/σy)
had a nominal effect on the failure pressure of the corroded pipe in both FEA and DNV.
Beyond 0.4 σc/σy, the detrimental effect of combined loads on failure pressure was ob-
servable in both trendlines. The failure pressure in the DNV trendline decreased lin-
early, whereas the failure pressure in the FEA trendline decreased exponentially and then
plateaued when the external load was over 0.9 σc/σy. The inverse sigmoid shape of the
FEA trendline can be explained by the change from elastic deformation to plastic defor-
mation. In elastic deformation, the mechanical work of the external load was converted
into elastic strain energy, and, consequently, decreased the failure pressure. By contrast, in
plastic deformation, the mechanical work was converted into other types of internal energy
absorbed by the steel, such as lattice distortion, dislocation movement, etc. [4]. Therefore,
the DNV corrosion assessment method is conservative in its predictions when used for
assessing the combined load of internal pressure and longitudinal compressive stress. The
mean average percentage difference between the FEA predictions and DNV predictions
was 31.33%.

The effect of corrosion defect depth on failure pressure when subjected to combined
loads is shown in Figure 10. Longitudinal compressive stresses (LCSs) of 0.5 σc/σy and
0.8 σc/σy were considered to investigate the effects of different external loads on top of
defect geometric changes on the failure pressure of X65 pipelines with single corrosion.
All the trendlines show the detrimental effects of corrosion defect depth on the failure
pressure of corroded pipelines subjected to internal pressure only, as well as on the internal
pressure and longitudinal compressive stress. The thinning of the pipe wall thickness
decreased the failure pressure, which can be attributed to the reduced ability to resist hoop
stress that developed from the internal pressure [1,39,40]. The failure pressure of the X65
FEA (IP + 0.8 LCS) was near zero when the defect depth was 0.8 d/t, due to buckling
failure. It is known that longitudinal compressive stress causes buckling failure, especially
in corroded pipelines [41] and higher-grade steel. High-toughness steels are more prone to
buckling failure due to lower critical compressive stress [42]. The DNV assessment method
underestimated the failure pressure when compared with the FEA, with the mean average
percentage difference for IP + 0.5 LCS trendlines being 27.04%.



J. Mar. Sci. Eng. 2022, 10, 476 14 of 24

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 26 
 

 

SDOFAT34 0.2 0.8 10 0.8 0.53 0.44 
SDOFAT35 0.4 0.8 10 0.8 0.44 0.30 
SDOFAT36 0.6 0.8 10 0.8 0.31 0.18 
SDOFAT37 0.8 0.8 10 0.8 0.00 0.08 
SDOFAT38 0.5 0.2 10 0.8 0.47 0.42 
SDOFAT39 0.5 0.4 10 0.8 0.39 0.31 
SDOFAT40 0.5 1.2 10 0.8 0.18 0.22 
SDOFAT41 0.5 1.8 10 0.8 0.14 0.20 
SDOFAT42 0.5 0.8 2 0.8 0.46 0.26 
SDOFAT43 0.5 0.8 6 0.8 0.42 0.25 
SDOFAT44 0.5 0.8 14 0.8 0.20 0.23 
SDOFAT45 0.5 0.8 18 0.8 0.17 0.22 

Figure 9 shows the trends in the effects of combined internal pressure and longitudi-
nal compressive stress on the failure pressure obtained from the FEA and DNV calcula-
tions of SDOFAT27 to SDOFAT33. Low longitudinal compressive stress (< 0.4 𝜎௖/𝜎௬) had 
a nominal effect on the failure pressure of the corroded pipe in both FEA and DNV. Be-
yond 0.4 𝜎௖/𝜎௬, the detrimental effect of combined loads on failure pressure was observ-
able in both trendlines. The failure pressure in the DNV trendline decreased linearly, 
whereas the failure pressure in the FEA trendline decreased exponentially and then plat-
eaued when the external load was over 0.9 𝜎௖/𝜎௬. The inverse sigmoid shape of the FEA 
trendline can be explained by the change from elastic deformation to plastic deformation. 
In elastic deformation, the mechanical work of the external load was converted into elastic 
strain energy, and, consequently, decreased the failure pressure. By contrast, in plastic 
deformation, the mechanical work was converted into other types of internal energy ab-
sorbed by the steel, such as lattice distortion, dislocation movement, etc. [4]. Therefore, 
the DNV corrosion assessment method is conservative in its predictions when used for 
assessing the combined load of internal pressure and longitudinal compressive stress. The 
mean average percentage difference between the FEA predictions and DNV predictions 
was 31.33%. 

 
Figure 9. FEA and DNV predictions of normalized failure pressure predictions versus normalized 
longitudinal compressive stress. 

Figure 9. FEA and DNV predictions of normalized failure pressure predictions versus normalized
longitudinal compressive stress.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 15 of 26 
 

 

The effect of corrosion defect depth on failure pressure when subjected to combined 
loads is shown in Figure 10. Longitudinal compressive stresses (LCSs) of 0.5 𝜎௖/𝜎௬ and 
0.8 𝜎௖/𝜎௬ were considered to investigate the effects of different external loads on top of 
defect geometric changes on the failure pressure of X65 pipelines with single corrosion. 
All the trendlines show the detrimental effects of corrosion defect depth on the failure 
pressure of corroded pipelines subjected to internal pressure only, as well as on the inter-
nal pressure and longitudinal compressive stress. The thinning of the pipe wall thickness 
decreased the failure pressure, which can be attributed to the reduced ability to resist hoop 
stress that developed from the internal pressure [1,39,40]. The failure pressure of the X65 
FEA (IP + 0.8 LCS) was near zero when the defect depth was 0.8 d/t, due to buckling fail-
ure. It is known that longitudinal compressive stress causes buckling failure, especially in 
corroded pipelines [41] and higher-grade steel. High-toughness steels are more prone to 
buckling failure due to lower critical compressive stress [42]. The DNV assessment 
method underestimated the failure pressure when compared with the FEA, with the mean 
average percentage difference for IP + 0.5 LCS trendlines being 27.04%. 

 
Figure 10. FEA and DNV predictions of normalized failure pressure predictions versus normalized 
defect depth with 0.5 and 0.7 normalized longitudinal compressive stress. 

Figure 11 shows the trends in the corrosion defect length against the failure pressure 
of the corroded pipeline subjected to combined load. An increase in the corrosion defect 
length reduced the failure pressure up until a critical point, when the normalized defect 
length was 1.2 l/D, beyond which the failure pressure stayed the same. The result was 
consistent with past research on for internal pressure only and combined loads [37,39]. 
The mean average percentage difference between the X65 FEA (IP + 0.5 LCS) predictions 
and the predictions from its DNV counterpart was 18.73%, which shows the conservative 
character of the estimations using the DNV assessment method. 
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Figure 11 shows the trends in the corrosion defect length against the failure pressure
of the corroded pipeline subjected to combined load. An increase in the corrosion defect
length reduced the failure pressure up until a critical point, when the normalized defect
length was 1.2 l/D, beyond which the failure pressure stayed the same. The result was
consistent with past research on for internal pressure only and combined loads [37,39].
The mean average percentage difference between the X65 FEA (IP + 0.5 LCS) predictions
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and the predictions from its DNV counterpart was 18.73%, which shows the conservative
character of the estimations using the DNV assessment method.
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Figure 11. FEA and DNV predictions of normalized failure pressure predictions versus normalized
defect length with 0.5 and 0.8 normalized longitudinal compressive stress.

The effect of the corrosion defect width on the failure pressure subjected to internal
pressure and longitudinal compressive stress is shown in Figure 12. The general trends
pointed to a slight decrease in the failure pressure when the corrosion defect width increased
in the circumferential direction, except for the trendline of X65 FEA (IP + 0.8 LCS). The
DNV assessment method underestimated the failure pressure when compared with the
FEA; the mean average percentage difference for the IP + 0.5 LCS trendlines was 23.6%.
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The application of longitudinal compressive stress further exacerbated the decrease in
failure pressure, as seen through the comparison of the X65 FEA (IP), X65 FEA (IP + 0.5 LCS),
and X65 FEA (IP + 0.8 LCS) trendlines. The difference between no longitudinal compressive
stress (LCS), 0.5 σc/σy, and 0.8 σc/σy is evident in all three figures. For a normalized defect
depth of 0.5 d/t, the normalized defect length of 0.8 l/D, and the normalized defect width
of 10 w/t, the percentage difference between the FEA results with no LCS and 0.8 σc/σy
is 37.29%, which is a larger difference in failure pressure compared with the percentage
difference between no LCS and 0.5 σc/σy (5.08%). This large difference in the decrease
in failure pressure over a small increment of LCS was due to the different rate of change,
as seen in Figure 7. The rate of change for the failure pressure in the beginning (0 to
0.4 σc/σy) was less than −0.09; at 0.5 σc/σy the rate of change was −0.27; and at 0.8 σc/σy
the rate of change was at its highest (−1.78). The X65 FEA (IP + 0.8 LCS) trendlines in
Figures 11 and 12 both show sudden decreases in failure pressure followed by plateaus
when the normalized defect length was 0.8 l/D and the normalized defect width was
10 w/t, respectively. Due to changes from elastic deformation to plastic deformation,
teetering near buckling failure, the decrease in failure pressure exhibits an inverse sigmoid-
shaped trend, as in Figure 9.

3.2. Further Finite Element Analysis

The preliminary study from the SDOFAT tests proved the conservatism of the DNV
assessment method in predicting the failure pressure of corroded pipes when subjected
to both internal pressure and longitudinal compressive stress. The previous analyses
gave insights into the selection of appropriate parametric bounds for the corrosion defect
geometry and longitudinal compressive stress. This study highlighted the significance of
the corrosion defect depth ranging from 0.2 d/t to 0.8 d/t. The defect length influenced the
failure pressure from 0.2 l/D to 1.2 l/D, until the critical defect length of 1.2 l/D, where the
failure pressure plateaued. On the other hand, the preliminary FEA showed that the defect
width had minimal influence on the failure pressure; the longitudinal compressive stress
ranged from 0.2 σc/σy to 0.7 σc/σy. Longitudinal compressive stresses beyond 0.8 σc/σy
were not considered, as the pipeline was at risk of buckling failure and would normally be
replaced or changed when the longitudinal compressive stress exceeded 0.6 σc/σy. Thus,
only longitudinal compressive stress ranging from 0.2 σc/σy to 0.7 σc/σy was considered in
further work and the defect width parameter was excluded from further FEAs. Table 9 lists
the failure pressure values from the FEA predictions of corrosion defect, with full factorial
defect geometries according to selected parametric bounds.

Table 9. FEA on corroded pipeline with single corrosion defect subjected to internal pressure and
longitudinal compressive stress.

d/t l/D σc/σy
0.2 0.4 0.5 0.6 0.7

0.2

0.2 0.88 0.85 0.79 0.74 0.61
0.4 0.85 0.82 0.77 0.70 0.59
0.6 0.84 0.79 0.75 0.68 0.56
0.8 0.83 0.78 0.74 0.66 0.54
1.2 0.81 0.77 0.73 0.65 0.53

0.4

0.2 0.80 0.76 0.71 0.67 0.59
0.4 0.75 0.71 0.68 0.62 0.54
0.6 0.70 0.68 0.65 0.61 0.53
0.8 0.68 0.66 0.64 0.60 0.52
1.2 0.65 0.63 0.62 0.59 0.52



J. Mar. Sci. Eng. 2022, 10, 476 17 of 24

Table 9. Cont.

d/t l/D σc/σy
0.2 0.4 0.5 0.6 0.7

0.5

0.2 0.77 0.73 0.69 0.64 0.56
0.4 0.67 0.65 0.62 0.58 0.50
0.6 0.61 0.60 0.58 0.54 0.47
0.8 0.58 0.57 0.56 0.53 0.46
1.2 0.55 0.54 0.53 0.52 0.46

0.6

0.2 0.72 0.69 0.66 0.61 0.53
0.4 0.59 0.57 0.55 0.52 0.45
0.6 0.53 0.51 0.49 0.47 0.41
0.8 0.49 0.47 0.46 0.45 0.40
1.2 0.45 0.45 0.44 0.43 0.39

0.8

0.2 0.58 0.56 0.55 0.52 0.44
0.4 0.39 0.37 0.36 0.34 0.28
0.6 0.32 0.30 0.29 0.28 0.24
0.8 0.28 0.27 0.26 0.25 0.22
1.2 0.25 0.24 0.24 0.23 0.21

3.3. Development of New Assessment Equation Using ANN

MathWorks MATLAB R2019b was used to develop the ANN model to predict the
failure pressure of the corroded pipeline with longitudinal interacting defects. The architec-
ture of the ANN was based on a feedforward neural network (FFNN) with a Levenberg–
Marquardt backpropagation training algorithm. The three inputs of the ANN model were
normalized corrosion defect depth, d/t, normalized corrosion defect length, l/D, and
normalized axial compressive stress, σc/σy. The target output with which the ANN model
was trained was the normalized failure pressure, Pf /Pi. The network had two hidden
layers, with five hidden neurons in each hidden layer. The number of hidden layers and
hidden neurons was pruned through trial and error to find the best-performing neural
network configuration. A hyperbolic tangent sigmoid transfer function was applied in both
hidden layers and a linear transfer function is applied in the output layer.

All 125 sets of data from the further FEA were used for the development of the ANN
model and to train the feedforward neural network created. The trained neural network
could be expressed in mathematical form to develop a new assessment method to predict
the failure pressure of the single-defect corroded pipeline subjected to axial compressive
stress. The input and output neurons were normalized d/t, l/D, σc/σy and Pf /Pi to be
in the range of −1 to 1. The normalization of the values, as expressed in Equation (5),
unified the values going into the neurons and ultimately improved the predictions of the
ANN model:

(y)n =
(ymax − ymin)(x− xmin)

(xmax − xmin)
+ ymin (5)

where y is the normalization value ranging from−1 to 1 and x is the denormalization value,
with ranges according to its dataset.

The ANN was made of interconnected input neurons, hidden neurons, and output
neurons as illustrated in Figure 13. The values of the links between the neurons were
weights that either amplified or dampened the input value. The value wi,x denotes weights
linking the input layer to hidden layer 1, h1,x. The value w1,x denotes weights linking h1,x
to hidden layer 2, h2,x. The value w2,x denotes weights linking the h2,x to output layer. The
biases (bx,x) are the constant non-zero values of hidden neurons that were then summed
with the product of inputs and weights. The result was then transferred through the transfer
function of the neuron as its output. Linear transfer functions were used in the neurons in
the input layer and output layer; hyperbolic-tangent sigmoid transfer functions were used
in the neurons in the hidden layers.
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The connections between the input, output, hidden neurons, and its weights and
biases can be expressed in the mathematical form of Equations (6)–(8). After training the
ANN with all the datasets, the weights and biases were adjusted for output predictions
with the lowest error. The weights and biases of the network were extracted and used in
Equations (6)–(8), and they are expressed as follows:

h1,1
h1,2
h1,3
h1,4
h1,5

 =


0.7632 −0.0274 −0.0574
−0.6316 −0.0695 1.0786
0.4025 −2.0078 −0.394
−0.4175 −1.0692 0.4495
−0.2339 −0.2975 −0.4053


 (d/t)n

(l/D)n(
σc/σy

)
n

+


−0.0301
−1.7023
−2.7257
−0.5119
−1.9501

 (6)


h2,1
h2,2
h2,3
h2,4
h2,5

 =


0.7682 0.496 −0.2244 0.2622 1.5642
0.9013 −0.0597 0.3389 0.8929 −1.4931
0.5611 −2.0144 0.7029 −0.7315 8.7401
0.3936 0.3176 −0.1817 0.0686 −0.1516
−0.9168 −0.1345 −0.3502 −0.7165 −0.6376




a(h1,1)
a(h1,2)
a(h1,3)
a(h1,4)
a(h1,5)

+


1.6792
−0.5094
5.7444
−0.6877
−1.5873

 (7)

[On] = f


[

9.6294 3.7833 −0.428 −20.4331 6.7248
]


a(h2,1)
a(h2,2)
a(h2,3)
a(h2,4)
a(h2,5)

+ [−10.4688]

 (8)
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where a(x) is hyperbolic tangent sigmoid transfer function

a(x) =
2

(1 + e−2x)− 1
or tan h(x) (9)

and f (x) is linear transfer function
f (x) = x (10)

Equations (6)–(8) were developed based on the dataset used to train the neural network.
Therefore, they are applicable for parameters within the range of the dataset. However, the
equations were shown to be flexible enough to assess the parameters near the range of the
dataset from which they were developed, when their performance was tested.

3.4. Development of New Assessment Equation Using ANN

The R2 value of the ANN-based corrosion assessment equation was 0.9998, which
showed a good correlation between the predictions from the new assessment equation
and the FEA results of the single-defect corroded pipe subjected to combined loads of
internal pressure and longitudinal compressive stress. When the equations’ predictions
were evaluated against the FEA results, the percentage error ranged from −1.16% to 1.78%,
with a standard deviation of 0.49. The percentage errors were within acceptable limits
(<5%) and the standard deviation of the new assessment equations was lower than in the
literature [16]. Figure 14 illustrates the performance of the new assessment equation in a
regression plot. The new assessment equations were very accurate, with MSE of 0.00000533
and MAE of 0.00191.
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Figure 14. Regression plot of normalized failure pressure predicted by the new assessment equations
against FEA results.
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By contrast, the R2 value of the DNV assessment method, when evaluated against the
FEA results, was 0.9383, with a standard deviation of 15.59. The error percentage between
the DNV predictions and the FEA results ranged from −56.03% to 10.56%. Figure 15
shows the regression plot of the DNV predictions and FEA results. The DNV assessment
method had a MSE of 0.00739 and MAE of 0.0717. The DNV assessment method tended
to be conservative in its prediction when the failure pressure was low, as observed in the
regression plot, with percentage differences up to −56.03%. Its standard deviation was
far higher than the new assessment equation, by 15.1, which shows the inaccuracy of the
DNV method. This conservatism leads to downtime and economic costs in the form of
premature maintenance and shutdowns of pipelines.
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Figure 15. Regression plot of normalized failure pressure predicted using DNV method against
FEA results.

To ensure the reliability of the new assessment equations, burst test results and a new,
unseen FEA dataset were used to validate the method and determine its performance.
Table 10 shows the burst tests used to validate the FEA previously and Table 11 includes
the parameters and FEA results of the 30 sets of unseen data. From Table 10, the absolute
difference between the failure pressure of burst tests and the predictions by new assessment
equations ranged from 0.23% to 33.13%. In Table 11, the new assessment equations are
accurate in their estimations of the normalized failure pressure with percentage differences
between the FEA and the new equations ranging from −3.66% to 5.34%.
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Table 10. Failure pressure from burst tests compared with failure pressure predicted by new assess-
ment equations.

Specimen Failure Pressure from
Burst Tests (MPa)

Failure Pressure
Predicted in FEA (MPa)

Absolute Percentage
Difference (%)

Validation for internal pressure only.

LD 19.80 19.97 0.86
LF 15.00 19.87 33.13

No. 61 24.11 25.43 5.47
No. 62 21.76 21.81 0.23
No. 63 17.15 16.37 4.55

Validation for internal pressure and longitudinal compressive stress.

Test 5 28.60 25.70 10.14
Test 6 28.70 25.70 10.45

Table 11. Normalized failure pressure prediction using FEA and prediction made by new assessment
equations on unseen dataset.

Defect Parameters External Load Normalized Failure Pressure Difference

d/t l/D σc/σy FEA New Equations %

0.1 0.3 0.3 0.8903 0.9283 4.27
0.1 0.3 0.6 0.7300 0.7513 2.91
0.1 0.7 0.3 0.8814 0.8590 −2.54
0.1 0.9 0.3 0.8725 0.8558 −1.92
0.2 0.5 0.32 0.8280 0.8283 0.04
0.2 0.7 0.45 0.7567 0.7689 1.61
0.2 1.15 0.3 0.7924 0.7969 0.57
0.2 1.15 0.6 0.6766 0.6518 −3.66
0.3 0.3 0.3 0.7924 0.8217 3.70
0.3 0.3 0.6 0.6499 0.6846 5.34

0.35 0.7 0.6 0.6232 0.6251 0.30
0.35 1.1 0.35 0.6855 0.6871 0.23
0.35 1.1 0.6 0.6143 0.6152 0.14
0.4 0.5 0.32 0.7122 0.7117 −0.7

0.45 0.7 0.6 0.5698 0.5710 0.22
0.45 1.1 0.6 0.5876 0.5910 0.58
0.55 0.3 0.6 0.5787 0.5841 0.94
0.55 0.5 0.35 0.5787 0.5891 1.80
0.55 1.15 0.6 0.4719 0.4757 0.82
0.7 0.5 0.25 0.4540 0.4453 −1.92
0.7 0.7 0.35 0.3917 0.3875 01.07
0.8 0.2 0.5 0.5609 0.5509 −1.78
0.8 0.3 0.35 0.4630 0.4525 −2.25
0.8 0.3 0.6 0.4184 0.4060 −2.98
0.8 0.7 0.25 0.2938 0.2929 −0.30
0.8 0.7 0.5 0.2760 0.2743 −0.62
0.8 0.7 0.6 0.2582 0.2634 2.01
0.8 1.1 0.25 0.2582 0.2539 −1.66
0.8 1.1 0.35 0.2493 0.2475 −0.71
0.8 1.1 0.5 0.2404 0.2419 0.63

The R2 value of the new assessment equations when tested against the unseen dataset
was 0.9954, which indicated a good correlation, as shown in Figure 16. The new assessment
equations had a MSE of 0.000207 and a MAE of 0.00982.
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Figure 16. Regression plot of normalized failure pressure predicted by the new assessment equations
against FEA results of unseen dataset.

3.5. Recommendations for New Corrosion Assessment Equation

ANNs rely heavily on the quality of input data to produce accurate and precise predic-
tions. Therefore, more inclusive FEAs could be designed to improve the robustness of the
new corrosion assessment equations. Nevertheless, the newly developed assessment equa-
tion was more accurate than the DNV, as it was based on an FEM that employs true UTS as
the failure criterion. The equation could be used in spreadsheets to predict accurate failure
pressure in a short time. However, it is advised to use the equation in conjunction with
established standards for corrosion assessment, as the ANN-based assessment equation is
based on the material properties, corrosion geometric parameters, and load applications
considered in this work. Comprehensive, risk-based integrity management that considers
all perspectives is recommended to ensure fitness-of-service.

4. Conclusions

A FEM was developed to simulate single-defect corrosion on a corroded pipeline to
predict the failure pressure when the pipeline was subjected to combined loads of internal
pressure and longitudinal compressive stress. The true stress–strain values and true UTS
of the pipe’s material properties were employed as the FEM failure criteria instead of
the engineering values. The FEM was validated by the results of burst tests from past
research. From the preliminary FEA study, the defect depth and defect length (up to a
critical level) had a significant influence on the failure pressure, while the defect width
only had a considerable effect on the failure pressure when the longitudinal compressive
stress was greater than 0.7 σc/σy. The appropriate ranges for the corrosion geometric
parameters and load applications were then chosen for further comprehensive FEAs. The
FEA results were used as an input database to train the ANN for the development of a new
assessment equation. The weights and biases of the network were extracted to develop
an ANN-based corrosion assessment equation, and its performance was compared with
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the DNV assessment method and validated with an unseen dataset. According to the
comparison, the predictions made with the DNV method were more conservative than
the predictions based on the new assessment equations. The predictions from the new
equations had an R2 value of 0.9998, with percentage errors ranging from −1.16% to 1.78%.
It is recommended to employ the newly developed assessment equation as a supplement
to established standards for the rigorous assessment of corroded pipelines subjected to
combined loads.
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