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Abstract: The paper is devoted to further development of an accelerated method for simulation of the
two-dimensional surface waves at infinite depth with the use of a two-dimensional model derived
with simplifications of the three-dimensional equations for potential periodic deep-water waves. A
3D full wave model (FWM) is based on a numerical solution of a 3D Poisson equation written in the
surface-fitted coordinates for a nonlinear component of the velocity potential. For sufficient vertical
resolution used for the Poisson equation, the 3D model provides very high accuracy. The simplified
model is based on the 2D Poisson equation written for a free surface. This exact equation contains
both the first and second derivatives of the velocity potential, i.e., it is unclosed. The analysis of
the accurate solutions for the 3D velocity potential obtained with the 3D model shows that those
variables are linearly connected to each other. This property allows us to obtain a 2D equation for the
first derivative of the velocity potential (i.e., vertical velocity on surface), which gives the closed 2D
formulation for a 3D problem of two-dimensional waves. The previously developed scheme was
not universal since the parameters of the closure scheme had to be adjusted to the specific setting.
The current paper offers a new formulation of a closing scheme based on the integral parameters of
wave field. The method of closing the equations, as well as the numerical parameters, were chosen
on the basis of the multiple numerical experiments with the full nonlinear wave model (FWM) and
selection of a suitable closing scheme. That is why the given model can be called Heuristic Wave
Model (HWM). The connection between the first and second variables is not precise; hence, the
method as a whole cannot be exact. However, the derived 2D model is able to reproduce different
statistical characteristics of the 2D wave field with good accuracy. The main advantage of the model
developed is its high performance exceeding that of 3D model by about two decimal orders.

Keywords: phase-resolving wave modeling; reduction in 3D wave problem to 2D; wave development;
wave spectrum; wind input; dissipation

1. Introduction

A brief review of different 3D numerical methods developed for investigation of
wave processes is given in [1]. Among the most advanced approaches, the following
methods should be mentioned: (1) the Boundary Integral Method [2–4]; (2) a grid model
designed at Technical University of Denmark (see [5]); (3) a High-Order Spectral (HOS)
model developed at Ecole Centrale Nantes, LHEEA Laboratory [6]. A 3D model for
direct simulation of periodic waves combining Fourier transform method with the finite-
difference approximation in vertical for Poisson’s equation was suggested in [7] (see also [8]).
The last model (we call it “Full Wave Model”, FWM) was used for simulation of wave field
development under the action of the wind [9]. In the current paper, FWM for infinite depth
is used as a basic model for building up a simplified model that allows for obtaining similar
results at a much lower cost.

The main drawback of the 3D phase-resolving models is their low performance because
all of them, one way or other, reproduce the vertical structure of wave field on the basis
of a 3D equation for the velocity potential. For example, a model [1] with a resolution of
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512× 513 modes (2048× 1024 knots) and just 10 vertical levels used for the simulation
of wave field development over 1,200,000 time steps was running in one medium speed
processor for about 45 full days. However, especially at the stage of development, the model
should be run hundreds of times for validation of schemes and tuning of the parameters.
Instead, just several relatively short runs before a long numerical experiment mentioned
above were conducted. This is obviously not enough.

It is well known that most of the computer time for a 3D model is spent calculating
the 3D structure of the velocity potential. It is necessary to emphasize that the 3D solution
is used for calculation of the vertical velocity w on a surface only. Unlike the 2D conformal
model, a simple method of calculation of w for a 3D case is not known. In the current
paper, a new method of approach to the problem is suggested. The method is based on
separation of the velocity potential ϕ into the linear ϕ and nonlinear ϕ̃ components and on
consideration of Poisson’s equation for the nonlinear component on a surface. This exact
equation contains both the first

(
ϕ̃ζ = w̃

)
and second

(
ϕ̃ζζ = w̃ζ

)
derivatives, which means

that the formulation of the entire problem is not closed. However, the multiple numerical
calculations with an accurate 3D model [9] showed that the vertical profiles of a nonlinear
component of the velocity potential ϕ̃ have quite a universal simple structure, which allows
the suggestion that w̃ and w̃ζ can be closely connected. It was shown in (10) that dependence
of w̃ on w̃ζ is very close to the linear one, but the coefficients in such connection depend
on external integral parameters of the wave field. In the current paper, a new connection
between w̃ and w̃ζ with the coefficients depending on nondimensional parameters is tested.
This suggestion turned out to be reliable enough to formulate the entire model that can
realistically simulate wave dynamics in a broad range of external parameters.

Note that parameterization was made based on numerical experiments with 3D. FWM
for infinite depth; hence, the 2-D model is suitable only for the case of infinite depth.

2. Derivation of a Simplified 2D Wave Model (HWM) for 2D Waves

The equations are written in the non-stationary surface-following non-orthogonal
coordinate system:

ξ = x, ϑ = y, ζ = z− η (ξ, ϑ, τ), τ = t (1)

where η(x, y, t) = η(ξ, ϑ, τ) is a moving periodic wave surface defined by Fourier series

η(ξ, ϑ, τ) = ∑
−Mx<k<Mx

∑
−My<l<My

hk,l(τ)Θk,l (2)

where k and l are the components of the vector wave number k, hk,l (τ) are Fourier ampli-
tudes for elevations η (ξ, ϑ, τ), Mx and My are the numbers of modes in the directions ξ
and ϑ, respectively, whereas Θk,l are the Fourier basic functions represented as a matrix:

Θkl =


cos (kξ + lϑ) 1 ≤ k ≤ Mx, −My ≤ l < My

cos (lϑ) k = 0, 0 ≤ l ≤ My
sin (lϑ) k = 0, −My ≤ l ≤ −1

sin (kξ + lϑ) −Mx ≤ k ≤ −1, −My ≤ l < My

(3)

The surface conditions for potential waves in a system of coordinates (1) at ζ = 0 take
the following form:

ητ = −ηξ ϕξ − ηϑ ϕϑ +
(

1 + η2
ξ + η2

ϑ

)
ϕς (4)

ϕτ = −1
2

(
ϕ2

ξ + ϕ2
ϑ −

(
1 + η2

ξ + η2
ϑ

)
ϕ2

ζ

)
− η − p (5)

where ϕ is the velocity potential. Laplace equation for ϕ at ζ ≤ 0 turns into the Poisson
equation

ϕξξ + ϕϑϑ + ϕζζ = Υ(ϕ), (6)



J. Mar. Sci. Eng. 2022, 10, 410 3 of 25

where Υ is the operator:

Υ( ) = 2ηξ( )ξζ + 2ηϑ( )ϑζ +
(
ηξξ + ηϑϑ

)
( )ζ −

(
η2

ξ + η2
ϑ

)
( )ζζ . (7)

Strictly speaking, Equations (4)–(6) should be solved jointly, but since the Fourier

amplitudes |h|k,l(τ) =
(

h2
k,l + h2

−k,−l

)1/2
for elevation and |ϕ|k,l(τ) =

(
ϕ2

k,l + ϕ2
−k,−l

)1/2

for the surface velocity potential change slowly, some sort of time-splitting scheme is
used: Equations (4) and (5) are used as evolutionary equations for η and ϕ, whereas
Equations (6) and (7) are used to satisfy the continuity conditions. It is accepted that in
the process of the solution of Equation (7) the coefficients depending on η are constants.
Introducing the correction of η and ϕ s with Equations (4) and (5) in the course of solution
does not provide any advantages.

Equations (4)–(7) are written in a non-dimensional form by using the following scales:
length L, where 2πL is a dimensional period in a horizontal direction; time (L/g)1/2 (g is
the acceleration of gravity) and the velocity potential L3/2g1/2. The pressure is normalized
by water density so that the pressure scale is Lg. Equations (4)–(6) are self-similar to
transformation with respect to L. The dimensional size of the domain is 2πL× 2πLMy/Mx.
All of the results presented in this paper are nondimensional.

It is suggested in [7] that it is convenient to represent the velocity potential as a sum
of two components: an analytical (‘linear’) component ϕ and an arbitrary (‘non-linear’)
component ϕ̃:

ϕ = ϕ + ϕ̃. (8)

The analytical component ϕ satisfies Laplace equation:

ϕξξ + ϕϑϑ + ϕζζ = 0, (9)

with the known solution:

ϕ(ξ, ϑ, ζ, τ) = ∑
k,l

ϕk,l(τ) exp(kζ)Θk,l , (10)

where k =
(
k2 + l2)1/2, ϕk,l are Fourier coefficients for the surface potential ϕ at ζ = 0.

The 3D solution of (9) satisfies the following boundary conditions for the surface and at
infinite depth:

ς = 0 : ϕ0 = ϕ
ς→ −∞ : ϕζ → 0 (11)

The presentation (8) is not used for solution of evolutionary Equations (4) and (5),
because it does not provide any noticeable improvements of accuracy and speed of
the calculations.

The nonlinear component satisfies an equation:

ϕ̃ξξ + ϕ̃ϑϑ + ϕ̃ζζ = Υ(ϕ), (12)

Note that the full potential ϕ on the surface is used as a boundary condition for a linear
component, so, a nonlinear component ϕ̃ on the surface is equal to 0. Thus, Equation (12) is
solved with the boundary conditions:

ς = 0 : ϕ̃ = 0
ς→ −∞ : ϕ̃ζ → 0.

(13)

Hence, on the surface ζ = 0 Equation (12) takes the form:

ϕ̃ζζ = Υ(ϕ̃) +Υ(ϕ) (14)
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The derivatives of a linear component ϕ in (7) are calculated analytically. A method of
solution combines a 2D Fourier transform method in the ‘horizontal surfaces’ and a second-
order finite-difference approximation on the stretched staggered vertical grid providing
high accuracy in the vicinity of the surface. An Equation (12) in FWM is solved as Poisson
equations with iterations over the right-hand side by the TDMA method [10] with the
prescribed accuracy. The number of iterations depends on a maximum of the local surface
steepness, and for high steepness it does not exceed three.

A 3D model described above is potentially exact. Its only drawback is a low speed
of performance. Below is a scheme that at a cost of minor loss of accuracy provides a
significantly higher speed of calculation.

Since ϕ̃(0) = 0, an Equation (12) for the velocity potential at ζ = 0 takes the form:

w̃ζ = 2(ηξ wξ + 2ηϑwϑ) + ∆ηw− swζ . (15)

Here, the symbols ∆ = ()ξξ + ()ϑϑ and s = η2
ξ + η2

ϑ are used. It is remarkable that an
Equation (15) is exact. From Equation (14) it follows that

w̃ζ = 2ηξ

(
wξ + w̃ξ

)
+ 2ηϑ(wϑ + w̃ϑ) + ∆η(w + w̃)− s

(
wζ + w̃ζ

)
, (16)

hence, Equation (15) can be represented as follows:

(1 + s)w̃ζ = 2
(
ηξ w̃ξ + ηϑw̃ϑ

)
+ ∆ηw̃ + r, (17)

where the term r depends only on a linear component ϕ:

r = 2
(
ηξ wξ + ηϑwϑ

)
+ ∆ηw− swζ (18)

which is calculated analytically using Fourier presentation (10) by the formulas:

w(ξ, ϑ, ζ) = ∑
k,l

kϕk,l exp(kζ)Θk,l , (19)

wζ(ξ, ϑ, ζ) = ∑
k,l

k2 ϕk,l exp(kζ)Θk,l (20)

wξ(ξ, ϑ, ζ) = −∑
k,l

kkϕ−k,−l exp(kζ)Θk,l , (21)

wϑ(ξ, ϑ, ζ) = −∑
k,l

lkϕ−k,−l exp(kζ)Θk,l (22)

The presence of w̃ζ in Equation (17) makes the system of equations unclosed. Previ-
ously, the author regarded a surface condition (17) as a means of validation of the numerical
scheme for the 3D Full Wave Model (FWM) based on a numerical solution of an equation for
the velocity potential (see example of such calculation in [8]). This validation is not trivial
since wζ is not a direct product of the Poisson equation solution. The finite-difference deriva-
tives w̃ = ϕ̃ζ and w̃ζ = ϕ̃ζζ after solution of the 3D equation for a nonlinear component of
the velocity potential were calculated as follows:

w̃ = ϕ̃ζ(ζ = 0) = D−1
(

ζ2
2 ϕ̃1 − ζ2

1 ϕ̃2

)
, (23)

w̃ζ = ϕ̃ ζζ(ζ = 0) = 2D−1(−ζ 2 ϕ̃1 + ζ 1 ϕ̃2). (24)

Here, D = ζ1ζ2
2 − ζ2ζ2

1, ζi is depth where ϕi is located, ζ0 = 0, the thickness of layer
∆i = ζi − ζi+1 grows exponentially with depth ζ: ∆i+1 = γ∆i, whereas the value of ∆0 is

calculated from the condition
i=L−1

∑
i=0

∆i = H where L is the number of levels, and H = 4π/kp

is depth of the domain (kp is a wave number of a mode with the largest amplitude).
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Since a relation (17) formally follows from the Poisson equation, the agreement be-
tween these values characterizes accuracy of the simplified scheme. The agreement cannot
be very precise since the variables w̃ζ and w̃ are not a direct product of the solution, and
they are calculated by the approximations (23) and (24) following the solution of the Poisson
equation. Moreover, the approximations for solution of the Poisson equation and calcu-
lation (23) and (24) are different. However, the calculations of w̃ζ on the basis of Poisson
Equation (12) with the approximations (23) and (24) and calculations by a surface condition
(17) showed a very good agreement (see Figure 1 in [9]), which prompted us to carry out
further analysis of Equation (18).

It was found that variables w̃ and w̃ζ turned out to be well connected to each other.
Firstly, the simplest linear hypothesis was tested:

w̃ = A0 + A1w̃ζ (25)

where A0 and A1 are constants. This dependence was considered in [11] with the use of
the 3D FWM model (described in [1,7–9]) that calculates the 3D structure of the velocity
potential as well as 2D fields of w̃ and w̃ζ . The dependence between w̃ and w̃ζ can be
studied in Fourier space as well as in a physical space. The results obtained in Fourier space
turned out to be far less certain than in a physical space, i.e., the dependence between the
Fourier coefficients for w̃ and w̃ζ showed considerable scatter. In our opinion, it happens
because the medium and high wave numbers of Fourier amplitudes are generally unstable,
whereas the verticals structure of a physical layer involved in orbital movement is universal
because it is composed of a large number of modes.

The calculations performed in [11] were repeated here at a higher grid resolution
2048× 1024 and a number of vertical levels equal to 50. The dispersion of surface eleva-
tion σ, as well as the integral steepness s, variate in the ranges (0.033 < σ < 0.066) and
(0.02 < s < 0.20), respectively. The fields included 1.7·108 pairs of values w̃ and w̃ζ . The
statistical connection between those variables is shown in Figure 1. It is important to
underline that dependence (25) is valid for the entire wave field, i.e., the parameters A0
and A1 are close to constants. Otherwise, the whole approach based on a hypothesis (25)
might be incorrect.

The data used for analysis included the 3D velocity potential fields ϕ̃(ξ, ϑ, ζ, τ) and
the values of w̃ and w̃ζ calculated by (23); the values of w̃ζ calculated by a relation (17) and
some other characteristics (see below). Since a high value of γ = 1.25 for generation of
vertical grid was used, the accuracy of calculation of the derivatives (23) and (24) was very
high. The comparison with the analytical values of the derivatives shows that the errors of
approximation (23) and (24) do not exceed 10−10.

The surface values of w̃ and w̃ζ are defined by an asymptotic behavior of a nonlinear
component of the velocity potential ϕ̃ at ζ → 0 . Hence, the connection between them can
be found in the close vicinity of ζ = 0.

A dimensional form of (25) is

W = L(A0 + A1)Wζ , (26)

where W and Wζ are dimensional analogues of w̃ and w̃ζ , whereas L is the external scale
of the problem. Formally, for any specific wave field which is more or less horizontally
homogeneous, the dependence (25) is correct at appropriate choice of coefficients. However,
the problem is that for different wave fields (for example, for different stages of wave field
development) the variability of those coefficients can be significant. It happens because
the scaling with external scale L does not reflect the internal properties of wave field. To
provide a more universal approximation, it is necessary to introduce the scaling in terms of
integral characteristics of a given wave field with no use of L.
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Figure 1. Dependence of a nonlinear component of vertical velocity w̃ (vertical axis) on a vertical
derivative ϕ̃ζζ = w̃ζ . The thick line is the averaged over all points values; thin lines show dispersion.
Both are calculated by averaging by bins of size 0.01. The dashed line shows the probability distri-
bution for wζ normalized by a maximum of probability. Value w̃ζ = −0.02 corresponds to the zero
probability; w̃ζ = 0.02 corresponds to the probability equal to 1.

For evaluation of connection between w̃ and wζ , ten thousand short-term numerical ex-
periments with FWM were performed. The Fourier resolution is equal to (257× 257) modes;
the number of levels for solution of Poisson equation equals 30, whereas a stretching co-
efficient γ = 1.25. The initial conditions for elevation were calculated on the basis of
JONSWAP spectrum [12] for the inverse wave age U/cp = 1(U is wind velocity, cp is the
phase velocity in peak of spectrum). The calculations were carried out for different values
of peak wave numbers in the range 10 ≤ kp ≤ 100. The data collected are characterized by
the nondimensional dispersion of elevation

σ =
(
(η − η)2

)1/2
, (27)

in the range (0.003 < σ < 0.0075) and by steepness

st =

(
∑
k,l

k2Sk,l

)1/2

(28)

in the range (0.05 < st < 0.15) and by dispersion of Laplacian Λ = ∆η

σL =

((
Λ−Λ

)2
)1/2

(29)

in the range (6 < σL < 12). The calculations performed with such wide variations of
integral parameters showed that the values A variate in the range (0.0010 < A < 0.0065),
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whereas the dependence of w on wζ is not linear as assumed in [11]. Hence, the problem is
reduced to finding the dependence

A =
w
wζ

= f (σ, σL, st . . .) (30)

In fact, several additional parameters were tested, whereas σ (Equation (27)) and σL
(Equation (29)) only turned out to be well connected with the ratio w/wζ .

For generalization of the linear dependence (25) it is necessary to choose at least two
parameters with a dimension of length taking into account internal characteristics of a
wave field type (27)–(29). Finally, the best results were obtained in the following form

A = F(µ), (31)

where µ is a parameter
µ = σ σL, (32)

and function F is approximated by a formula

F =
d0µ + d1

µ + d2
, (33)

where d0 = 0.535, d1 = 0.0414, d2 = 0.00321 The function F(µ) is shown in Figure 2.

Figure 2. Dependence of a nondimensional variable F = A/σ on a nondimensional parameter
µ = σ σL (grey points). Solid line corresponds to the approximation (32).

An approximation (33) is also correct for dimensional variables, because it is indepen-
dent of the external scale L. The form of relation (31) and (32) and the constants in (33)
were found on the basis of numerous numerical experiments with FWM (Equations (4)–(6))
and empirical selection of nondimensional variables, as well as functions and numerical
parameters. That is why such simplified model is called the Heuristic Wave model (HWM).

The two-dimensional model, which is presumably able to replace the full 3D model,
(4), (5), and (12), looks as follows:

ητ = −ηξ ϕξ − ηϑ ϕϑ + (1 + s)w, (34)
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ϕτ = −1
2

(
ϕ2

ξ + ϕ2
ϑ − (1 + s)w2

)
− η − p (35)

w̃ =
A
(
2
(
ηξ wξ + ηϑwϑ

)
+ ∆ηw− swζ

)
1 + s

. (36)

Note that the right-hand side of Equation (36) contains full vertical velocity w = w + w̃
as well as a linear component of vertical velocity w. An equation is represented in a form
that is convenient for iterations. The iterations were performed until the next condition
was reached.

max
∣∣∣w̃i − Ri−1

∣∣∣ < 10−7, (37)

where R is the right-hand side of Equation (36), whereas i is the number of iterations. In the
majority of cases, the number of iterations was equal to two and never exceeded four. Note
that fulfilment of condition (37) can be regulated by an appropriate choice of parameters in
the breaking algorithm (see below).

A comparison of function F calculated in the course of simulation by FWM with the
results of calculations by Formula (33) is given in Figure 3. The agreement between these
functions is quite satisfactory: a correlation coefficient between the model values Fm and
those calculated by Equations (31)–(33) is equal to 0.989, the root-mean-square difference
between them equal to 0.014.

Figure 3. Comparison of function Fm calculated in the course of simulation by FWM with the results
of calculation of Fc by Equations (31)–(33) (grey dots). The thick line is calculated by averaging by
bins of size 0.01.

In fact, the research described in this paper was initiated due to the fact discovered
in the first version of the model [11]. It was found that a nonlinear component of vertical
velocity w̃ (which is normally taken from solution of the Poisson equation) is a small value
as compared with a full component w. However, the evolutionary Equations (34) and (35)
contain a full component w = w + w̃ only. It is illustrated in Figure 4 by comparison of the
cumulative probability both for the full component w and the nonlinear components w̃ (in
Figure 4 they are marked as wt and wn, respectively). On the average, w̃ is by one decimal
order smaller than w. The main idea of the current approach is to replace the cumbersome
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algorithm for calculation of the vertical velocity equation ϕ̃ with a simple 2D Equation (36).
Such trick reduces the total 3D problem to the 2D one, which saves us from the endless
problems associated with solving Poisson equations numerically, as well as from any other
ways of reproduction of 3D structure of the velocity potential. It allows us to create a model
running much faster than the 3D model.

Figure 4. Cumulative probability of a full vertical velocity component w (marked by wt) and a
nonlinear component of vertical velocity w̃ (wn).

The most convincing is the comparison of two independent methods of calculation of
vertical velocity w, i.e., a method based on solution of Poisson Equation (12) (marked as
wm) and another one—based on the surface condition (36) and Equations (31)–(33) (marked
as wc). That comparison is given in Figure 5. The number of pairs of wm and wc used is
2 · 109. The root-mean-square difference between wm and wc is equal to 0.0017.

The question is how well these simplified equations reproduce wave dynamics.
A simplified model is developed on the basis of the ‘exact’ model, both models having

a similar structure and a set of parameters. The evolutionary equations of both models
(4), (5), (34) and (35) are essentially the same. The difference between the models is
determined by the simplified calculation of small nonlinear correction to the full vertical
velocity introduced by Equations (31) and (33). A straightforward way of validation of the
simplified model is performing the runs with the identical setting and initial conditions. A
simple case of a quasi-stationary regime was considered.

The similarity of the models can be illustrated by difference D(t) (t is time)

D(t) =
(

σ2
f + σ2

a

)−1(
η

f
i,j − ηa

i,j

)2
(38)

and a correlation coefficient C(t) between the fields of elevation generated by a full model

C(t) =
(

σ2
f σ2

a

)−1/2
η f ηa (39)

where σf and σa are dispersions of the fields η f and ηa; the over-line denotes the averaging
over the entire field. The right hand-sides of (38), (39) are calculated with the time interval
equal to 100∆t. The evolution of D and C given in Figure 6 shows that the fields preserve
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their closeness well up to t = 100 (10,000 time steps). Such a result turned out to be
quite unexpected because such a close agreement was observed for large wave fields
composed of thousands of nonstationary and dispersing Fourier modes. The comparison
of FWM with a simplified model was also made in [11], Figure 5. Both models used the
spectral resolution of 129× 129 Fourier modes and 512× 256 knots. In the initial conditions
JONSWAP spectrum with the peak wave number kp = 30 is assigned. It was obtained that
the evolution of a correlation coefficient and a root-mean-square difference between the
elevation fields was quite similar to those shown in Figure 6. Figure 6 proves that both
models launched with the same boundary conditions produce a similar development for
hundreds of wave peak periods. The advantage of a new scheme (Equations (31)–(33)) is
its applicability to a wide range of external parameters.

Figure 5. Comparison of full vertical velocity wm calculated by FWM with the same velocity wc

calculated by Equations (31)–(33). Thick line corresponds to the averaged dependence, whereas thin
lines show the dispersion. Both are calculated by averaging by bins of size 0.001. Dashed curve
shows the probability distribution for w normalized by a maximum value of the probability.

The same comparison was made for FWM and HWM with a zero nonlinear correction
to the vertical velocity w̃, i.e., using no Equation (36). The run was quite stable but an agree-
ment between FWM and such fastest version of a simplified model was observed at a two-
or three-times shorter period. Essentially, it is not clear what is more responsible for the non-
linearity: either the presence of nonlinear terms in the evolutionary Equations (34) and (35),
or introducing a nonlinear correction to the vertical velocity through the exact Equation (12)
or a simplified algorithm ((31)–(33) and (36)).
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Figure 6. Evolution of a correlation coefficient C(t) and the root-mean-square difference D(t) between
the elevation fields η calculated by HWM and FWM with the same initial conditions.

3. An Example of Simulation of the Wave Field Development on the Basis of HFM

The comparison of the long-term simulations performed with FWM and HWM was
made in a previous publication [11]. That comparison proves that the accelerated and full
models give the results quite similar to each other. The statistical characteristics of the
solution were particularly well reproduced.

In the current work the calculations were performed with HWM model with the
initiated algorithms for input and dissipation of energy. The algorithms for calculation of
those terms are described in detail in [1,7–9]. The last minor modification of an algorithm
for breaking is carried out in [10]. Those algorithms are not described in the current paper.

The model uses 257× 257 Fourier modes or 1024× 512 knots. The number of degrees
of freedom (a minimum number of Fourier coefficients for elevation η and the surface
velocity potential ϕ) is 264,196. In the initial conditions the JONSWAP spectrum [12] with a
peak wave number kp = 100 and the angle distribution proportional to (sch(ψ))256 was
assigned. It corresponds to nearly unidirected waves with very small energy. Note that
the details of the initial conditions assigned at sufficiently high wave numbers are not
important, since the model quickly develops its own wave spectrum.

The model, as well as FWM, is supplied with a developed system of algorithms for
monitoring the solution and recording many functions in a spectral and grid form. The
most important were the spectra of elevation and different terms describing input and
dissipation of energy. An exact expression for total kinetic energy of wave motion Ek in the
surface-following coordinates (1) can be represented in terms of surface variables ϕ and
w = ϕζ :

Ek = 0.5
(
(1 + s)ϕ w + 2

(
ηξ ϕ ϕξ + ηϑ ϕ ϕϑ

)
+ ∆η ϕ2

)
(40)

where a single bar denotes the averaging over the ξ and ϑ coordinates. A relation (40) is eas-
ily derived with a use of Poisson Equation (7) and an expression for kinetic energy written
in the coordinates (1). The total potential energy Ep is simply calculated by the formula

Ep = 0.5η2, (41)

An equation of the integral energy E = Ep + Ek evolution can be represented in the
following form:

dE
dt

= I + Db + Dt + N (42)

where I is the integral input of energy from wind; Db is a rate of energy dissipation due to
wave breaking; Dt is a rate of energy dissipation due to filtration of the high-wave number
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modes (‘tail dissipation’); N is the integral effect of the nonlinear interactions described
by the right-hand side of the equations when the surface pressure p is equal to zero. The
differential forms for calculation of energy transformations can be, in principle, derived
from Equations (4)–(6), but here a more convenient and simple method is applied. Different
rates of the integral energy transformations can be calculated in the process of integration.
For example, the value of I is calculated by the following relation:

I =
1
δt

(
Et+δt − Et

)
, (43)

where Et+δt is the integral energy of a wave field obtained after one time step with the
right hand-side of Equation (35) containing only the surface pressure. This method is also
applicable to the calculation of 1D spectra (i.e., the averaged over lateral wave number or
along the direction in the polar coordinates) of different characteristics (see [1]).

An evolution of integral characteristics as a function of time t (expressed in the number
of peak wave period tp = 2π

(
kp
)−1/2 in the initial conditions) is given in Figure 7. The

fastest change of all the characteristics occurs in the first 400tp until the moment when the
breaking dissipation Db (curve 2) starts to develop. The input energy I (curve 1) remains
nearly constant starting from t = 1000. The total balance I + Db + Dt (curve 4) gradually
decreases but it does not turn into zero, and the total energy E (curve 4) continues to grow.
Curve (5) describes an evolution of the spectrum-weighted wave number ks:

ks =

(∫
kSdkdl∫
Sdkdl

)1/2

(44)

It is a more convenient characteristic of the position of the spectrum because it changes
in time smoothly. Over the time of integration, ks decreases from the value ks = 120 to
ks = 20.

The nonlinear transformation of spectrum described by the right hand-sides of Equa-
tions (34) and (35) always produces the output of energy outside the computational domain
in Fourier space. This process can be treated as dissipation. In our opinion, to keep the
whole process under control, it is reasonable to maintain the total energy in the adiabatic
part of the problem, governed by the initial Equations (4)–(6) with no input energy and
dissipation. It can be performed by correction of all Fourier coefficients for the potential fk,l
and elevation hk,l :

f ′k,l = λ f ′k,l , h′k,l = λh′k,l , (45)

where a coefficient λ is calculated by the formula

λ =
(
E( f , h)/E

(
f ′, h′

))1/2, (46)

where E is full energy calculated by a set of the coefficients ( f , h) before a time step and by
( f ′, h′)—after a time step. The correction (45) and (46) is performed at each time step before
calculating and adding the input and dissipation terms. A typical value of the coefficient λ
is 1± 10−6. It is important that the correction (45) and (46) eliminates not only the loss of
energy due to energy outflow from the computational domain but also due to the errors
of approximations. A typical value of integral dissipation of this type was by around
2 decimal orders smaller than other energy transformation effects. Finally, the integral
effect of nonlinear interactions was equal to zero (a thin straight line in Figure 8).
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Figure 7. An evolution of integral characteristics): 1—a rate of the input energy 107 I); 2—a rate of
energy loss due to the breaking 107Db; 3—a rate of energy loss due to the tail dissipation 107Db;
4—the balance of energy 107(I + Db + Dt

)
; 5 is the weighted peak wave number (multiplied by

10−3); Equation (44); 6—the potential energy (multiplied by 107). A thin straight line demonstrates a
zero integral effect of the nonlinear interactions.

Additional integral characteristics are shown in Figure 8 where the computed values as
a function of fetch F. are compared with the same values calculated with a use of JONSWAP
approximation [12]. Since the periodic variables are used, there is no other alternative but
to assume that the fetch is a distance passed by a peak of the wave spectrum:

F(t) =
∫ t

0
cpdt (47)

The dependence of F on t can be obtained with a use of JONSWAP approximations:

F = 3.34·10−3t3/2 (48)

The dependences (47) calculated by HWM and Eqauation (48) are shown in Figure 8 by
thick and thin curves, respectively. As seen, these curves are quite close to each other. The
dependence of peak frequency (defined as the frequency in a maximum of wave spectrum)
is shown by curves 2. A dashed thick curve is calculated with the HWM model, and a thin
curve corresponds to the dependence following from JONSWAP approximation:

ωp = 29.8F−1/3 (49)
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Opposite to Equation (44), the frequency ωp is a point value. Due to the irregularity
of the 2D wave spectrum, the peak frequency changes in time not monotonically but in
jumps, and sometimes ωp even moves back, i.e., to higher wave numbers. This is why the
dependence ω(F) looks distorted. In Figure 8 this curve is smoothed. However, an agree-
ment with the experimental dependence is quite obvious. The JONSWAP approximation
of dependence of energy Ep on fetch F is linear:

Ep = 1.34·10−7F (50)

This dependence is shown in Figure 8 by a dotted line 3, whereas the dependence
calculated by EWM is shown by thick dots. Those dependences agree with each other only
at early stages of wave development. Evidently, an approximation (50) cannot be correct
for a long fetch because it does not take into account the saturation of the spectrum. The
more reasonable form is:

Ep = f
(
Ωp
)

F, (51)

where f is a function of the inverse wave age Ωp = U/cp (U is wind velocity).

Figure 8. An evolution of integral characteristics calculated with HWM (thick curves) and JONSWAP
approximation [12]: 1—dependence of fetch 10−4F (horizontal axis, Equation (47)) expressed in
terms of the initial peak wave length, on time 10−4t (vertical axis, Equation (48)) expressed in the
periods of the initial peak wave period; 2—dependence of the peak frequency 10−2ωp on fetch 10−4F’
3—dependence of the potential wave energy 105Ep on fetch 10−4F.

In general, the results presented in Figures 7 and 8 prove that an evolution of integral
characteristics is reproduced satisfactorily.
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The HWM also reproduces well the probability of the nondimensional surface eleva-
tion ηn = η/Hs. The height of large waves predicted by HWM is somewhat bigger than
that predicted by FWM [9] due to a larger total steepness of wave field and because the
integration time was much longer. It is interesting to note that normalization of surface
elevation by the significant wave height is so efficient that the probability distribution for
the nondimensional surface elevation P(ηn) turns out to be nearly universal, i.e., it does
not depend on wave energy and just slightly depends on total wave steepness. Curves
in Figure 9 are calculated over 3.1·108 points; hence, it is not surprising that they are very
smooth. In reality, the statistics of surface elevation shows very large scatter. The probability
of the trough-to-crest height was calculated by a method of moving windows (see [13,14]).
Each grey curve in Figure 10 is calculated over individual wave field containing 524.288
points. The total number of curves is 594. As seen, the probability for different wave fields
variates in a broad range: many of them do not contain ‘freak’ waves with the height
of ηtc > 2 at all, whereas in many cases their height can exceed such a high value as
ηtc = 2.5 and even reach a value ηtc = 3. This is why prediction of extreme waves for
practical purposes is senseless with no indication of confidence intervals or distribution of
probability for each value of ηtc.

Figure 9. Distribution of the probability of the nondimensional surface elevation calculated by HWM
(thick curve) and FWM (thin curve).

Figure 11 demonstrates statistical characteristics of positive and negative elevations as
a function of the trough-to-crest height. As seen, the crest height Zc grows with the increase
in total height Ztc faster than the trough depth, which can be explained by nonlinearity of
the process. Figure 11 shows that on the average the trough-to-crest height Ztc/Hs = 2 cor-
responds to the crest height Zc/Hs = 1.3 and the trough depth Zt = 0.7. The dependences
between those characteristics can be approximated by the formulas:

Z̃c = 0.006 + 0.4162Z̃tc + 0.111Z̃2
tc

Z̃t = 0.006− 0.5838Z̃tc + 0.111Z̃2
tc

(52)

where tilde denotes normalization by the significant wave height Hs. Note that the first
and third coefficients in approximation (52) coincide, which proves high quality of the
ensemble. A dashed curve corresponds to the same data obtained with FWM [10]. The
difference between the new and old data is growing for large values of Z̃c. The old data
contain 41.677 points, whereas a new array contains 1.264.441 points.
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Figure 10. The cumulative probability of the nondimensional wave trough-to-crest height Ztc/Hs.
Grey curves are calculated for each individual 2D wave field with the dimensions of 1024× 512 knots.
Thick curve is the averaged probability over all 594 fields.

Figure 11. Dependence of the crest height Zc/Hs (top section) and the trough depth Zt/Hs (bottom
section) on the total wave height Ztc/Hs. Solid curves show the quadratic approximation of the point
data, whereas a dashed curve represents the same approximations obtained in [9].

In a linear wave field (i.e., superposition of linear modes with random phases), the
probabilities of crest height and trough depths are identical, but the probability of the
trough-to-crest height is close to that for the nonlinear waves in a wave field with the
same energy. This fact reliably proved with extensive calculations using the accurate two-



J. Mar. Sci. Eng. 2022, 10, 410 17 of 25

dimensional and three-dimensional models [13–15], has not been explained yet. This fact
seems to be directly related to the physics of extreme waves. The nonlinearity manifests
itself in vertical asymmetry of waves, but not in the probability of full height.

The next three figures show the 2D spectra obtained by averaging over six consecutive
periods of length t = 1000 (about 1600 initial peak period). Each spectrum is calculated
by averaging 100 spectra transformed into the polar coordinates (θ, k). The surface ele-
vation spectra S(θ, k) are given in Figure 12. The colors correspond to different values of
log10(S/Sm) where Sm is a maximum of the last of the six spectra. A minimum value (black
color) corresponds to the values less than 10−4Sm. It is seen that the spectrum grows and
approaches the point k = 0. Despite the severe averaging, the spectra look highly irregular.
They contain multiple peaks and holes (well seen in panels 5 and 6). The discussion of this
effect is given in [7,13].

Figure 12. The 2D wave spectra averaged over six consecutive periods, each with length t = 2000.
All the spectra are normalized by a maximum of the last spectrum. Black color corresponds to zero.

The spectra of the energy input shown in Figure 13 calculated similar to wave spectrum
are much wider than the wave spectrum, because the input of energy decreases with growth
of wave number slower than the wave spectrum. It happens because β-function (see [16])
depends on wave number quadratically. For large fetches the areas of negative wind input
in low wave numbers (i.e., a flux of energy from fast wave modes to wind) usually arise,
but it cannot be shown in the given figures.
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Figure 13. The 2D spectra of the energy input averaged over six consecutive periods, each with
length t = 2000. All the spectra are normalized by a maximum of the last spectrum. Black color
corresponds to zero.

The spectra of total dissipation rate equal to the sum of breaking and tail dissipation,
are shown in Figure 14. A maximum of dissipation always falls on a maximum of wave
spectrum. However, dissipation, as well as the input energy, occurs everywhere including
the spectral tail. Here, as in all our previous calculations, we did not reproduce an adiabatic
regime at the spectral tail, which excludes any possibility to draw analogy to Kolmogorov’s
spectrum. The attenuation of energy in the spectral tail depends on a shape of entire
spectrum, as well as on wind velocity, wave age and other factors.

The process of downshifting is well seen in Figure 15 where the evolution of 1D
wave spectra (black curves) and the spectra of the nonlinear transformation rate (red
curves) in the vicinity of a peak averaged over three consequent periods, each of t = 2000
length, are given. All the spectra are calculated over 198 records of the two-dimensional
spectra transformed into the polar coordinates, summated over angles and represented as a
function of radius r = k. The locations of a wave spectrum maximum are indicated by thin
vertical lines. Note that the analysis of the spectra for a nonlinear transformation rate is
not simple, because the dispersion of reversible exchanges of energy between the modes is
much higher than the rate of residual irreversible interaction. The accuracy of calculations
grows with increase in spectral resolution. The recently launched calculations with HWF
using spectral resolution of 1027× 1027 modes gave the averaged spectral distribution
much smoother than that in Figure 15. In general, the spectra in Figure 15 agree with the
known regularities: the energy from a right slope of wave spectrum is transferred to the left
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slope, i.e., to longer waves. It qualitatively confirms Hasselmann’s theory [17] considering
the four-wave interactions. Opposite to that theory, actual interactions occur between
all the spectral modes within the scope of the Fourier transform method. Unfortunately,
the quantitative comparison with the theory is impossible since neither of the codes for
calculation of Hasselmann integral can operate with such a high number of modes as used
in phase-resolving models.

Figure 14. The 2D spectra of total dissipation averaged over six consecutive periods, each with length
t = 2000. All the spectra are normalized by a maximum of the last spectrum. Black color corresponds
to zero.

Most of the energy coming from wind to waves dissipates because of wave breaking.
A currently used parameterization method for wave breaking is based on a diffusion
algorithm with a variable coefficient of diffusion applied to both the elevation and surface
velocity potential. The breaking occurs when Laplacian of elevation ∆ = ηξξ + ηϑϑ becomes
smaller than the negative value ∆c (in the current model ∆c = −80). A diffusion coefficient
B is defined as follows:

B =

{
Cb
(
∆x2∆

)2 ∆ < ∆c

0 ∆ ≥ ∆c
, (53)

where ∆x is a horizontal step, and Cs = 0.02 is a coefficient. The parameters ∆c and Cb
are selected with consideration of a rate of growth of total energy. It is remarkable that
the integral rate of breaking dissipation is not too sensitive to the choice of parameters
because the effects of frequency of breaking (regulated by ∆c) compensate for the intensity
of breaking (depending on Cb). The rate of breaking seems to depend mostly on a rate of
the energy input: most of the energy should be removed to maintain the numerical stability
in the model, i.e., to prevent appearance of too sharp waves. Obviously, in a real wave field
similar effects occur: dissipation absorbs extra energy obtained from the wind. Though a
suggested algorithm seems very simple, the scheme performs all that is required.
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Figure 15. The 1D wave spectra multiplied by 105 (black curves) and the spectra of a nonlin-
ear transformation rate multiplied by 108 (red curves) in the vicinity of the inverse wave age:
1—U/cp = 1.50; 2—U/cp = 1.38; 3—U/cp = 1.20.

Note that some part of the released horizontal momentum and energy should be
transferred to horizontal motion (current). This effect cannot be taken into account in a
potential model. The energy released after breaking is partially dissipated and partially
distributed in space and between the wave modes, thus additionally contributing to the
nonlinear interactions. The effects of breaking are presented in Figure 16 where the number
of breaking cases (% of the total number of knots) and the integral rate of energy loss at
each time step are presented. As seen, both characteristics grow in time with the tendency
for stabilization by the end of a run.

At an early stage of the work on parameterization of breaking the attempts were
made to construct a scheme based on the geometrical and mechanical consideration with
direct calculations of the stability criterion, a detaching volume of water and the possible
consequences. Finally, we came to the conclusion that such a scheme would never work
properly or be sufficiently robust to be used at millions of grid point and time steps.
It is more reliable to adhere to the standard methods adopted in the geophysical fluid
mechanics.

The width of spectrum can be characterized by a function Ψ
(
ω/ωp

)
(see [18,19]).

Ψ =

∫
S(ω, ψ)|ψ|dωdψ∫

S(ω, ψ)dωdψ
(54)

where integrals have taken over the domain {(0 < ω < ωc), (−π/2 < ψ < π/2)}. The
wave spectra as the functions of frequency ω normalized by peak frequency ωp for the
same three periods shown in Figure 15 are given. As seen, the Ψ curves corresponding
to different wave ages are close to each other. All of them have a sharp maximum at the
frequencies below the spectral peak, as well as a well-pronounced minimum in the spectral
peak and a relatively slow growth above the spectral peak. The decrease in Ψ at high
frequencies is probably caused by the high-frequency dumping. The angle distribution
was investigated in [18,19]. The approximations of Ψ

(
ω/ωp

)
from the different sources
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collected in [20] show considerable scatter, but the general features are quite similar to
those shown in Figure 17.

Figure 16. Thin curve is an evolution of a number of breaking cases at each time step (% of the total
number of knots 524.288 in the elevation field); a dotted curve is a rate of the integral energy lost
(with a reverse sign) due to the breaking (multiplied by 106).

Figure 17. The wave spectra as functions of the nondimensional frequency ω/ωp, averaged over
three consecutive periods, each of t = 2000 length (black curves). The corresponding functions
Υ
(
ω/ωp

)
(Equation (53); ωp is a frequency in the spectral peak) (red curves).

An example of a simulated elevation field η normalized by the significant wave height
Hs is given in Figure 18. In the initial conditions, small unidirected waves at inverse wave
age U/cp were assigned. In Figure 18 we can see a developed three-dimensional field with
the energy by two decimal orders higher than that in the initial conditions, and the broad
angle distribution. Black dots mark the points where breaking occurs at a given time step.
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Figure 18. An example of an elevation field η normalized by the significant wave height Hs. Black
dots mark the points of wave breaking. A maximum of the normalized trough-to crest height in this
field is equal to 2.1. Horizontal axis corresponds to ξ and vertical axis—to ϑ.

4. Conclusions

The three-dimensional modeling of surface waves based on full nonlinear equations
is a powerful tool for the investigation of wave processes, development of the parame-
terization schemes for the phase-resolving and spectral models and direct simulation of
wave regimes in small basins. This type of modeling is rapidly developing. However, all
approaches have a common limitation, i.e., low computational efficiency. Working with
such models, even with modest resolution, turns into an endless waiting of the results.
This property of the models slows down their improvement, in particular, development of
the parameterization schemes for physical processes, since such work requires multiple
repetitions of the runs. Such schemes significantly depend on resolution of a model, which
limits the possibility of the research with low-resolution models.

The current paper continues to develop a new approach to the phase-resolving mod-
eling of two-dimensional periodic wave fields at infinite depth. The basic concept of the
scheme follows from presentation of the velocity potential as a sum of the linear and non-
linear components suggested in [7]. The solution for a linear component is known; hence, a
nonlinear component should be calculated through Poisson equation with a zero-boundary
condition on the surface. It was observed in [10] that such approach offers a new way to
simplify the calculation by considering of 2D Poisson equation on the surface. The equation
that can be treated as additional exact surface condition contains both the first ϕζ and
second ϕζζ vertical derivatives of the potential. Thus, the system of equations remains
unclosed. It was empirically discovered that these variables are closely connected to each
other. The linear dependence between ϕζ and ϕζζ was checked in [10]. It was shown that
the use of such hypotheses leads to formulation of a closed system of equations.

In this paper, the above approach was improved by introducing a more flexible
dependence of a ratio ϕζ /ϕζζ on the nondimensional integral parameters of the wave field.
The comparison of full vertical velocity w = ϕζ calculated using a new method, with that
calculated by FWM, shows good agreement (Figure 5). The point-to-point comparison of
runs with HWM and FWM starting from the identical initial conditions proves that the
solutions agree over thousands of time steps (Figure 6). A long high-resolution run with
HWM revealed that a simplified model produces the statistical results similar to those
obtained with FWM [9]. The main advantage of the new approach is high computational
efficiency. The ratio of time spent for calculation with identical FWM and HWM variated in
the range of 50–100. This ratio depends on complexity of parameterization of physics and
volume/frequency of the processed and recorded information. Some acceleration can be
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reached by replacing a Runge–Kutta time integration scheme with a high accuracy one-step
scheme.

The model suggested is not mathematically precise since it is based on the empirical
(in computational sense) connection between the local variables, i.e., vertical velocity and
its vertical derivative. The fact that those variables are connected by an equation containing
horizontal derivatives indicates that the local connection cannot be exact. To discuss this
problem, it is necessary to answer a general question: what does the concept of precision
mean?

It should be noted that surface waves are often investigated on the basis of differ-
ent simplified equations such as a linearized Navier–Stokes equation, Korteweg de Vrie
equation, a linear and nonlinear Schrödinger (NLS) equation and others. No one actually
knows which real properties of sea waves are omitted in those models. In some simplified
approaches (e.g., in the models based on a nonlinear Schrödinger equation (see [21]), the
instability of high waves is missing; hence, the amplitudes of simulated waves can be
unrealistically large. In reality, an excessive growth of waves is prevented due to the
energy focusing and wave-breaking instability. The models based on the full potential
equations predict the probability distribution for large waves quite satisfactorily. The
main obstacle to a widespread use of the models based on complete equations is their low
computational efficiency. An approach suggested here eliminates this obstacle by excluding
reproduction of a three-dimensional flow structure. However, nothing prevents us from
using a combined model with the on-demand calculations of a three-dimensional field of
the velocity potential. A simplified model gives almost the same statistical results as a
full model. Essentially, the difference between the statistical results given by 3D and 2D
models are similar to those obtained with a 3D model initiated at different sets of random
phases. It is easy to see that the equations suggested above are completely similar to the full
equations, with one exception, i.e., a small non-linear correction to the total vertical velocity
is calculated not from a 3D Poisson Equation (12) but from a simple 2D Equation (17).
It can be added that a simplified model has a much simpler structure than FWM and is
easily programmed. It is known that in most cases the data on 3D velocity potential are not
required, but, if necessary, they can be easily obtained periodically in a process of model
run or by the post-processing using the restart records and the corresponding subroutines
adopted from 3D FWM.

It is obvious that an approach developed here is not fully precise. For example, it
cannot be applied for individual cases with a small number of modes, for example, for
simulation of a steep Stokes wave, as it was demonstrated for FWM in [7,9]. The 2D model
is intended for simulation of the statistically homogeneous multi-mode wave field.

To continue the discussion on the accuracy problem, it should be noted that the full 3D
adiabatic model is also inaccurate, because it is suitable for relatively short time intervals
only. Real waves receive energy from wind and dissipate. Currently, such processes are
poorly studied because they are evidently more complicated than the wave movement
itself. Therefore, neither of the models can be considered as fully adequate. Especially
for the followers of high accuracy it should be added that the full potential equations
are far from being accurate even for the waves with no input energy and breaking. Real
waves develop in a flow with the velocity shift, and they exchange energy with vortex
movements [22]. Therefore, they are better described by the Navier–Stokes equations. As
a result, we obtain a variety of problems associated with the turbulence. It may turn out
that the simplifications used in the construction of this model may be quite insignificant, as
compared with other disadvantages.

Certainly, there are many ways to improve the model, first of all, for example, testing of
alternative schemes for calculation of a nonlinear velocity component (Equations (31)–(33)).
The attempts were made to construct the closure scheme for a surface Poisson equation in
Fourier space. This way turned out to be unrealistic, since the local structure of the velocity
potential depends not only on Fourier variables but also on a local full elevation.
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The most evident advantage of a new model is the absence of calculation of the 3D
structure of the velocity potential, which increases the speed of calculations by around two
orders. This easily programmable model can be used to improve the physical components
of the model and the long-term simulations of a multimode wave field. The model can
be also used for acceleration of the calculations as a block of an exact 3D model (such as
FWM). This coupling provides the possibility of runtime tuning of the parameters of the
closure scheme for a surface Poisson equation.

The scope of practical applications of such model is quite wide. First of all, it should
be used for building up of parametrization of physical processes in spectral and phase-
resolving models. HWM, due to its high performance, can be used as a component of
wave prediction models (such as WAM or WAVEWATCH) for interpretation of spectral
information in terms of the phase-resolved wave field. A possible consecution of action is
as follows: the spectra calculated in the spectral model in the selected areas are used for
generation of the initial conditions in the wave number space; then the calculations up to the
stationary statistical regime with HWM are performed; finally, the statistical characteristics
of wave field including the probability distribution of wave height are calculated. The
input and dissipation terms can be included in such simulation. Note that such approach
allows calculating nonlinear interactions between all the modes based on full nonlinear
equations. Such scheme can significantly extend the output of spectral modeling.

It is comparatively easy to transform the scheme into a finite-difference form and
use the model for investigation of a wave regime in a specific geographical environment
with variable boundary conditions. Note that a numerical scheme for this model is much
closer to the local scheme than FWM, which makes convenient to carry out the parallel
computations. An investigation of applicability of a developed approach for the waves
above finite depth is underway.
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