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Abstract: In this study, the scattering of oblique water waves by multiple variable porous breakwaters
near a partially reflecting wall over uneven bottoms are investigated using the eigenfunction matching
method (EMM). In the solution procedure, the variable breakwaters and bottom profiles are sliced
into shelves separated steps and the solutions on the shelves are composed of eigenfunctions with
unknown coefficients representing the wave amplitudes. Using the conservations of mass and
momentum as well as the condition for the partially reflecting sidewall, a system of linear equations is
resulted that can be solved by a sparse-matrix solver. The proposed EMM is validated by comparing
its results with those in the literature. Then, the EMM is applied for studying oblique Bragg scattering
by periodic porous breakwaters near a partially reflecting wall over uneven bottoms. The constructive
and destructive Bragg scattering are discussed. Numerical results suggest that the partially reflecting
wall should be separated from the last breakwater by half wavelength of the periodic breakwaters to
migrate the wave force on the vertical wall.

Keywords: partially reflecting wall; porous breakwater; step approximation; eigenfunction matching
method; uneven bottom

1. Introduction

When considering the protection of harbors, wharfs, inlets, and shorelines from wave
attacks, porous structures are frequently used as they can further dissipate wave energy.
Therefore, the intensity of the wave energy on the shoreline decreases since only a small part
of the wave energy is transmitted to the nearshore. Furthermore, coastal erosion and the
corresponding coastal disasters are mitigated. Examples include seawalls, rubble-mound,
subaerial, and submerged porous breakwaters. In this article, the combined effects of the
partially reflecting vertical wall and multiple porous breakwaters on the coastal protection
are studied.

Theoretical study of the energy dissipation inside porous structures was initialized by
Sollitt and Cross [1], who evaluated the energy dissipation using the Lorentz’s theory of
equivalent work. Dalrymple, et al. [2] and Losada, et al. [3] applied this theory to compute
the reflection and transmission coefficients of water wave scattering by subaerial porous
breakwaters. In addition, Rojanakamthorn, et al. [4] and Rojanakamthorn, et al. [5] utilized
the theory for water wave scattering by rectangular and trapezoidal porous submerged
breakwaters, respectively. The theory of Sollitt and Cross [1] was widely applied for
solving water wave scattering over porous breakwaters by the eigenfunction matching
method [6–8] and the mild-slope equation [9–11]. These depth-integrated models are
computationally efficient and can be served as preliminary calculations followed by modern
three-dimensional numerical models [12–14] and/or experimental studies [15,16].
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In practice, the shoreline is sometime protected by vertical breakwaters or seawalls
which are usually considered as partially reflecting structures. Goda [17] studied several
common vertical coastal structures and provided a list of the approximate partially reflect-
ing factors, which vary from 0.3 to 1. In addition, Xiang and Istrati [18] found that the
hydrodynamic forces depend on the ratio of the wavelength-to-width of the coastal struc-
ture. In order to model these vertical coastal structures, Isaacson and Qu [19] formulated a
partially reflecting boundary condition. The condition was successfully applied for normal
wave scattering by floating breakwaters in front of a harbor sidewall [20] and a submerged
porous bar with a vertical wall [21]. In addition, Zhao et al. [22] and Behera and Khan [23]
studied oblique wave scattering by a submerged porous bar near a partially reflecting
wall and double trapezoidal porous breakwaters in front of a porous seawall, respectively.
They found that multiple structures in presence of the vertical wall is the more efficient
configurations in reducing the wave force on the wall. The later study was sequentially
applied to other configurations with porous breakwaters [24–26].

Depth-integrated models are computationally efficient for solving problems of wa-
ter wave scattering when comparing with the depth-resolved models based on the finite
volume method [27], finite element method [28], and smooth particle hydrodynamics
(SPH) [29–31]. These models include the mild-slope equation (MSE) [32], the eigenfunc-
tion marching method (EMM) [33], and the Miles’ method [34,35]. The MSE has been
successfully applied to solve problems of wave-seabed interactions [36,37], wave-current
interactions [38], nonlinear waves [39], and wave-structure interactions [40]. A comprehen-
sive review on the MSE can be found in a recent article by Porter [41]. Basically, the MSE is
mainly applied for solving problems with variable bottoms. On the other hand, the EMM
was initially applied as an analytical tool for obtaining solutions of problems with regular
geometrical shapes [42–44]. By approximating the variable bottoms by shelves separated by
steps, the EMM was used as a semi-analytical method for solving water wave scattering by
variable structures over uneven bottoms in several previous studies [45–52]. The accuracy
of the EMM solutions was demonstrated to be comparable to that of the MSE solutions [53].
In addition, the EMM is known to have a simpler mathematical formulation, as it requires
no spatial derivatives of the eigenfunctions, which are needed in the MSE. However, the
application of the EMM to three-dimensional, nonlinear, and/or time-dependent problems
requires further investigation.

In the present study the EMM is formulated in the first time, to the best knowledge
of the authors, for solving problems of water wave scattering by multiple variable porous
breakwaters near a partially reflecting wall over uneven bottoms. By applying the conser-
vation of mass and momentum to the eigen solutions on the shelves, the problems can be
converted into a system of linear equations with unknown coefficients representing the
wave amplitudes on the shelves. The sparse-matrix solver SuperLU was used to solve the
resulting system [54]. The proposed EMM formulation is an extension of the traditional
EMM for solving problems of water wave scattering by porous breakwaters resting on a
flat bottom in front of totally reflecting [55,56] and partially reflecting [21,22] walls. Ad-
ditionally, the proposed EMM model was validated by comparing with the solution by
the boundary element method for water wave scattering by double trapezoidal porous
breakwaters with a totally reflecting porous seawall [23]. Some discussions and further
applications are also provided.

This paper is organized as follows. The wave problem is mathematically modeled
and the EMM solution is developed in Section 2. The validations of the EMM model are
provided in Section 3. Discussions and further applications are in Section 4. Finally, the
conclusions of this study are presented in Section 5.

2. Materials and Methods
2.1. Problem Definition

In this subsection, the problem of water wave scattering by porous breakwaters near a
partially reflecting vertical wall over uneven bottoms are formulated. Considering a train
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of monochromatic water waves with incidence angle γ, amplitude a, angular frequency σ,
and wavelength λ, which propagate from left hand side toward porous breakwaters ended
at the partially reflecting vertical wall over uneven bottoms. Here, the fluid is assumed
to be irrational and incompressible and the surface waves are of small amplitude so that
the linear wave theory can be applied [57]. A schematic configuration of the problem is
depicted in Figure 1. In the figure, a Cartesian coordinate system is taken in which z-axis is
chosen vertically upwards and the x-axis is taken as the rest position of the free surface.
The wave motion is assumed to be time-harmonic by e−iσt, where t is the time, i is the
unit of complex numbers, and σ is equal to 2π/T with T being the wave period. In the
step approximation, the porous breakwaters along with the uneven bottom are discretized
into a series of M − 1 shelves in the interval of xm−1 ≤ x ≤ xm for m = 1, 2, . . . , M − 1.
The shelves are separated by M− 2 steps at x = xm for m = 1, 2, . . . , M− 2. Additionally,
x0 = −∞ is assumed and the partially reflecting vertical wall is located at x = xM−1. On
the m-th shelf, there is a porous layer located between z = −dm and z = −hm, where dm
and hm are the water and total depths, respectively. Therefore, the porous layer is absent if
dm = hm and it is subaerial if dm = 0. Additionally, it is assumed that there are no porous
media on the leftmost shelf, i.e., d1 = h1 in x0 ≤ x ≤ x1. Nothing is assumed on the
rightmost shelf in xM−2 ≤ x ≤ xM−1.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 30 
 

 

which subjected to the kinematic and dynamic free-surface boundary conditions, respec-
tively, as 

 
Figure 1. EMM definitions for the problem of water wave scattering by porous structures near a 
partially reflecting vertical wall over uneven bottoms. 

0m
m z

φ
ση

∂
− − =

∂
i  (5)

and 

σφ η− + = 0m mgi   on 0,z =    (6)

where mη  is the surface elevation. Equations (5) and (6) can be combined to obtain 

φ σ φ
∂

− =
∂

2

0m
mz g

 (7)

In Equations (5)–(7) and the following of this section, it is assumed that the porous 
layer is submerged, i.e., > 0md , if it is not otherwise mentioned. Between the water and 
porous layers, the interface conditions are 

Figure 1. EMM definitions for the problem of water wave scattering by porous structures near a
partially reflecting vertical wall over uneven bottoms.



J. Mar. Sci. Eng. 2022, 10, 409 4 of 27

Considering the solution on the m-th shelf in the interval xm−1 ≤ x ≤ xm for
m = 1, 2, . . . , M− 1, the velocity in the water layer (−dm ≤ z ≤ 0) and the discharge
velocity in the porous layer (−hm ≤ z ≤ −dm) are both defined by

um = ∇φm, (1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z) denotes the three-dimensional del operator with respect to
the three-dimensional Cartesian coordinate (x, y, z) and φm is the velocity potential. By
the Bernoulli’s equation [9], the pressures in water and porous layers are, respectively,
defined as

pm = −ρ(−iσφm + gz) (2)

and

pm = −ρ

(
−iσs

ε
φm + gz +

f
ε

σφm

)
(3)

with ρ, g, ε, s, and f being the density of water, the acceleration of gravity, the porosity, inertial,
and friction coefficients of the porous media, respectively. Following Dalrymple et al. [2],
Losada et al. [58], and Twu et al. [6], ε, s, and f were assumed to be known constants,
whose effects were studied by parametric analyses. In this study, s = 1 is considered if not
otherwise mentioned.

Sequentially by applying the continuity equation to Equation (1), the velocity potential
is governed by the Laplace equations as

∇2φm = 0, (4)

which subjected to the kinematic and dynamic free-surface boundary conditions, respec-
tively, as

− iσηm −
∂φm

∂z
= 0 (5)

and
−iσφm + gηm = 0 on z = 0, (6)

where ηm is the surface elevation. Equations (5) and (6) can be combined to obtain

∂φm

∂z
− σ2

g
φm = 0 (7)

In Equations (5)–(7) and the following of this section, it is assumed that the porous
layer is submerged, i.e., dm > 0, if it is not otherwise mentioned. Between the water and
porous layers, the interface conditions are

∂φm

∂z

∣∣∣∣
z=−dm+

=
∂φm

∂z

∣∣∣∣
z=−dm−

(8)

and
pm|z=−dm+ = pm|z=−dm−

. (9)

The bottom boundary condition is required to be

∂φm

∂z
= 0 on z = −hm. (10)

Additionally, Equation (9) can be equivalently written as

φm

δ

∣∣∣∣
z=−dm+

= φm|z=−dm−
(11)
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with δ being defined as

δ =
ε

s + i f
. (12)

At the m-th step located at x = xm for m = 1, 2, . . . , M− 2, the velocity potentials φm
and φm+1 require interface conditions

∂φm

∂x

∣∣∣∣
x=xm

=
∂φm+1

∂x

∣∣∣∣
x=xm

(13)

and
pm|x=xm

= pm+1|x=xm
, for−min(hm, hm+1) ≤ z ≤ 0, (14)

where

min(hm, hm+1) =

{
hm if hm ≤ hm+1
hm+1 if hm > hm+1.

(15)

Equation (14) can be equivalently rewritten as

∆(φm) = ∆(φm+1), (16)

where

∆(φm) =

{
φm if 0 ≥ z ≥ −dm
φm
δ if − dm > z ≥ −hm.

(17)

Additionally, the condition for the vertical wall is described by

∂φ

∂x
= 0 for−max(hm, hm+1) ≤ z ≤ −min(hm, hm+1), (18)

where

max(hm, hm+1) =

{
hm+1 if hm ≤ hm+1
hm if hm > hm+1

(19)

and φ stands for either φm or φm+1 depending on which side of the vertical wall is filled
with water or porous media. Additionally, the partially reflecting condition of the vertical
wall can be expressed as(

∂φM−1

∂x
− ik̂M−1,0

1− Kw

1 + Kw
φM−1

)∣∣∣∣
x=xM−1

= 0, (20)

where k̂M−1,0 is the wavenumber to be defined in the next subsection and Kw is a priori given
as the partially reflecting factor of the vertical wall [19,21,22,57]. It needs to be mentioned
that Equation (20) was originally developed without the effects of evanescent modes.

In order to make the solution unique, the far-field condition for the surface elevation
of the incident wave is required as

η1 = a
(

eik̂1,0x + KReiθR e−ik̂1,0x
)

eikyy as x → −∞, (21)

where the reflection coefficient KR and the phase angle θR are real numbers so that
KR =

∣∣KReiθR
∣∣. In Equation (21), ky and k̂1,0 are positive real wavenumbers to be defined in

the next subsection.

2.2. Dispersion Relations and Eigenfunctions

By separating variables along with the eigenfunction expansion method, the complete
solution of the velocity potential on the m-th shelf can be defined as

φm(x, y, z) =
N

∑
n=0

(
Am,nξ

(1)
m,n(x) + Bm,nξ

(2)
m,n(x)

)
ζm,n(z)eikyy (22)
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for m = 1, 2, 3, . . . , M − 1. Additionally Am,n and Bm,n are unknown coefficients to be
solved by the method addressed in the next subsection. To construct complete solutions
by the method of the separation of variables, the eigenfunctions in Equation (22) can be
expressed as

ζm,n(z) =
{

α1,m,nekm,nz + α2,m,ne−km,nz for z ≤ −dm
β1,m,nekm,nz + β2,m,ne−km,nz for z ≥ −dm,

(23)

ξ
(1)
m,n(x) = eik̂m,n(x−xm−1), (24)

and
ξ
(2)
m,n(x) = e−ik̂m,n(x−xm) (25)

with
k̂m,n =

√
k2

m,n − k2
y (26)

and {
xm = xm for m = 1, 2, . . . , M− 1
x0 = 0.

(27)

In Equation (22), ky is the transverse wavenumber of the incident wave as

ky = k1,0 sin γ, (28)

where k1,0 = 2π/λ > 0 is the wavenumber of the incident wave. According to the
Snell’s law [59] and the linear wave theory [57], the transverse wavenumber ky is constant
for m = 1, 2, 3, . . . , M − 1. In Equations (24) and (25), k̂m,n is the lateral wavenumber
corresponding to the absolute wavenumber km,n via Equation (26). Here, it needs to be
mentioned that the wave directionality follows the law of reflection, i.e., the angle of
reflection equals to the angle of incidence, from Equation (22) with m = 1 and N = 0.
If the EMM with evanscent modes is considered to refine the prescribed result on wave
directionality, the resulted surface elevations should be analyzed for obtaining the angle
of reflection by physical or other computational methods [60–62]. This is ignored as the
length of the article is already lengthy.

It can be noticed that the solutions defined by Equation (22) satisfy the governing
Equation (4) analytically. Sequentially, the absolute wavenumbers km,n can be determined
by enforcing Equations (7), (8), (10), and (11) such that the unknown coefficients α1,m,n,
α2,m,n, β1,m,n, and, β2,m,n have nontrivial solutions. This gives the dispersion relation in the
matrix form as

det


km,n − σ2

g −km,n − σ2

g 0 0
e−km,ndm −ekm,ndm −e−km,ndm ekm,ndm

e−km,ndm ekm,ndm − e−km,ndm
δ − ekm,ndm

δ
0 0 e−km,nhm −ekm,nhm

 = 0. (29)

It can be proved that the prescribed dispersion relation is equivalent to the explicit
form of the dispersion relation addressed in the literature [4,9].

If the wavenumbers km,n can be solved from Equation (29), the unknown coefficients
α1,m,n, α2,m,n, β1,m,n, and, β2,m,n for the depth eigenfunciton (23) can be solved by using
Equations (8), (11), (10), as well as the uniqueness condition

ζm,n(z = 0) = 1. (30)
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This can be expressed in the matrix form as
1 1 0 0

e−km,ndm −ekm,ndm −e−km,ndm ekm,ndm

e−km,ndm ekm,ndm − e−km,ndm
δ − ekm,ndm

δ
0 0 e−km,nhm −ekm,nhm




α1,m,n
α2,m,n
β1,m,n
β2,m,n

 =


1
0
0
0

, (31)

which can be numerically solved by the Gaussian elimination method [63].
When solving the porous dispersion relation (29), the Newton-Raphson method [5]

is applied with the wavenumbers of water wave being adopted as the initial guesses. In
addition, the perturbation technique is used to ensure the convergence [11,58,64]. Here, the
wavenumbers of water waves without porous breakwaters (dm = hm) can be obtained by
the dispersion relation as

σ2

g
= km,ntanhkm,nhm, (32)

which admits a propagating wavenumber km,0 and a sequence of evanscent wavenumbers
km,n for n = 1, 2, . . .. Correspondingly, the depth eigenfunciton (23) become

ζm,n(z) =
cosh km,n(z + hm)

cosh km,nhm
. (33)

Details on the wavenumbers and depth eigenfunciton of water waves without porous
breakwaters can be found in the literature [57]. These complete the introductions on the
dispersion relations and eigenfunctions.

2.3. Subaerial Porous Breakwaters

When the porous layer is subaerial (i.e., dm = 0), the free surface conditions (5)–(7)
should be replaced by

− iσεηm −
∂φm

∂z
= 0, (34)

−iσ
(s + i f )

ε
φm + gηm = 0, onz = 0, (35)

and
∂φm

∂z
− σ2(s + i f )

g
φm = 0. (36)

Consequentially, the dispersion relation of waves in subaerial porous breakwaters becomes

σ2(s + i f )
g

= km,ntanhkm,nhm. (37)

The depth eigenfunciton can be derived to be the same as Equation (33). Details can
be found in the literatures [2,3].

2.4. Eigenfunction Matching Method

The solution expression given in Equation (22) with Equations (23)–(29), and (31)
satisfies analytically the governing Equation (4) as well as the vertical conditions (7), (8),
(10), (11), and (30). The unknown coefficients Am,n and Bm,n can be solved by the matching
conditions (13), (16), and (18), the far-field condition (21) as well as the partially reflecting
condition (20).

To be clearer, the conservation of mass in Equations (13) and (18) can be formulated as〈
∂φm

∂x

∣∣∣ζlarge
m,l

〉
=

〈
∂φm+1

∂x

∣∣∣ζlarge
m,l

〉
for m = 1, 2, . . . , M− 2 and l = 0, 1, . . . , N, (38)
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where the inner product of two vertical eigenfunctions is defined by

〈G1|G2 〉 =
∫ 0

−λ
G1∆(G2)dz, (39)

where G1 and G2 are the vertical eigenfunction of ζm,n with arbitrary m and n, as well as λ
denotes the total depth of the vertical eigenfunction G1. Additionally, the functional ∆(G2)
is defined by Equation (17). The definition of the inner product ensures the orthogonal
relation as 〈

ζm,n
∣∣ζm,l

〉
= 0 for n 6= l. (40)

In Equation (38), the vertical eigenfunction ζ
larger
m,l is defined by

ζ
larger
m,l =

{
ζm,l for hm > hm+1
ζm+1,l for hm+1 > hm.

(41)

The conservation of momentum in Equation (16) can be expressed as〈
ζsmall

m,l |φm

〉
=
〈

ζsmall
m,l |φm+1

〉
for m = 1, 2, . . . , M− 2 and l = 0, 1, . . . , N, (42)

where

ζsmaller
m,l =

{
ζm,l for hm < hm+1
ζm+1,l for hm+1 < hm.

(43)

Here, it should be noted that Equations (38) and (42) are valid for all six cases even if
the porous layer is subaerial or absent, as shown in Figure 2.
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0
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0

ˆ ˆ

ˆ ˆ

N

m n m n m n m m n m n m n m m n m l
n

N

m n m n m n m m n m n m n m m n m l
n

k A x k B x

k A x k B x

ξ ξ ζ ζ

ξ ξ ζ ζ

=

+ + + + + +
=

−
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Figure 2. Schematics for six different situations of shelves separated by abrupt connections.

Then based on the far-field condition (21), the dynamic free-surface boundary condi-
tion (6), and Equation (30), the far-field solution of the velocity potential can be expressed as

φ1 = − iag
σ

ζ1,0(z)
(

eik̂1,0x + KReiθR e−ik̂1,0x
)

eikyy as x → −∞. (44)

Substituting Equation (44) into Equation (22), we can obtain following equations

B1,0eik̂m,nx = − iaKReiθR g
σ

, (45)

A1,0 = − iag
σ

, (46)

and
A1,n = 0 for n = 1, 2, . . . , N. (47)

In addition, the combination of the solution expression (22) and partially reflecting
condition (20) gives

N
∑

n=0

(
ik̂M−1,n AM−1,nξ

(1)
M−1,n(xM−1)− ik̂M−1,nBM−1,nξ

(2)
M−1,n(xM−1)

)〈
ζM−1,n|ζM−1,l

〉
= ik̂M−1,0

(
1−Kw
1+Kw

) N
∑

n=0

(
AM−1,nξ

(1)
M−1,n(xM−1) + BM−1,nξ

(2)
M−1,n(xM−1)

)〈
ζM−1,l

∣∣ζM−1,n
〉 (48)

for l = 0, 1, . . . , N. Finally, the substitutions of solution expression (22) into the conservation
of mas (38) and momentum (42), respectively, result in

N
∑

n=0

(
ik̂m,n Am,nξ

(1)
m,n(xm)− ik̂m,nBm,nξ

(2)
m,n(xm)

)〈
ζm,n|ζlarger

m,l

〉
=

N
∑

n=0

(
ik̂m+1,n Am+1,nξ

(1)
m+1,n(xm)− ik̂m+1,nBm+1,nξ

(2)
m,n(xm)

)〈
ζm+1,n|ζ

larger
m,l

〉 (49)

and
N
∑

n=0

(
Am,nξ

(1)
m,n(xm) + Bm,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm,n

〉
=

N
∑

n=0

(
Am+1,nξ

(1)
m,n(xm) + Bm+1,nξ

(2)
m,n(xm)

)〈
ζsmaller

m,l

∣∣∣ζm+1,n

〉
,

(50)

for l = 0, 1, . . . , N and m = 1, 2, . . . , M − 2. In summary, the EMM solution procedure
can begin with Equations (46)–(50), which compose 2(M− 1)(N + 1) linear equations for
solving the 2(M− 1)(N + 1) unknowns Am,n and Bm,n if the matrix system of the linear
equations is nonsingular. Then, Equation (45) can be used to solve the reflection coefficient
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KR. In this study, the SuperLU library is used for solving the sparse matrix of the resultant
system of linear equations [54].

2.5. Wave Force on the Partially Reflecting Wall

The dynamic pressure on the vertical wall can be calculated by the Bernoulli’s
Equations (2) and (3) as

pM−1|x=xM−1
= iρσ∆(φM−1)|x=xM−1

. (51)

Integrating the dynamic pressure along the vertical wall, we get the magnitude of
dimensionless horizontal wave force with the normalization factor 2aρghM−1 as

KF =
iσ
∫ 0
−hM−1

∆(φM−1)dz
∣∣∣
x=xM−1

2aghM−1
. (52)

Sequential substituting the solution expression Equation (22) into the above equation
gives the required formula for the dimensionless wave force on the vertical wall as

KF =

iσ
N
∑

n=0

(
AM−1,nξ

(1)
M−1,n(xM−1) + BM−1,nξ

(2)
M−1,n(xM−1)

)∫ 0
−hM−1

∆(ζM−1,n(z))dz

2aghM−1
.

(53)
In deriving Equation (53), the transverse wave function eikyy is neglected as the equa-

tion is normalized by considering its maximum value in the transverse direction.
Here, the formulation is derived for the in-plane horizontal wave force, other hydro-

dynamic parameters, such as the out-of-plane horizontal force, the overturning, and yaw
moments can be derived by following the previous study [62]. These will be the topics of
future research as the article is already lengthy.

3. Results

In this section, the EMM model is validated by comparing its results with those in
the literature. Several cases of water wave scattering by porous structures near a partially
reflecting wall are considered. The convergence is carefully studied by examining the
test cases.

3.1. A Rectangular Porous Structure near a Partially Reflecting Vertical Wall

Following Zhao et al. [21], let’s consider the problem of water wave scattering by a
rectangular porous breakwater near a vertical wall over a uniform bottom with γ = 0,
Kw = 0.5, D/h1 = 1, b/h1 = 1, d2/h1 = 0.5, ε = 0.45, and f = 2 as depicted in Figure 3. To
study the convergence with respect to the number of evanescent modes N, the reflection
coefficient KR is plotted against the dimensionless wavenumber k1,0h1 as depicted in
Figure 4. In the figures, it can be noted that the convergence is achieved for evanescent
modes increase up to N = 10. Additionally, the results are in good agreements with those
obtained by Zhao et al. [21]. Numerical reflection coefficients are detailed in Table 1.

The study is then extended to consider a problem with oblique incidence. Here, we
consider γ = 30o, Kw = 0.5, D/h1 = 3, b/h1 = 0.8, d2/h1 = 0.2, ε = 0.4, and f = 2.
Figure 5 shows the reflection coefficient KR varying against the dimensionless wavenumber
k1,0h1 for different numbers of evanescent modes N. Convergences can also be observed to
be significant. In addition, the results also agree well with those in the literature [22].

Overall, these two numerical examples demonstrate that the EMM can be applied
to solve problems of water wave scattering by a rectangular porous breakwater near a
partially reflecting vertical wall with normal or oblique incidences.
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3.2. Wave Force on the Vertical Wall

An important marine problem is to determine of the forces exerted on a vertical wall
when waves are reflected by the wall. Zhao et al. [21] studied the wave force for normal
incident wave scattering by a porous rectangular breakwater near a partially reflecting
vertical with γ = 0, Kw = 0.5, D/h1 = 3, b/h1 = 1.2, d2/h1 = 0.2, ε = 0.4, and f = 2
are considered, as depicted in Figure 3. Here, Equation (53) is used for evaluating the
dimensionless wave force. Figure 6 shows the dimensionless wave force KF varying
against the dimensionless wavenumber k1,0h1 for different numbers of evanescent modes
N. Convergences can also be observed to be significant. In addition, the results also agree
well with those in the literature [21].

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 3. Problem definition of water wave scattering by a rectangular porous breakwater near a 
partially reflecting vertical wall over a uniform bottom. 

 
Figure 4. Reflection coefficient varying against dimensionless wavenumber for normally incident 
water wave scattering by a rectangular porous breakwater near a partially reflecting vertical wall. 

Table 1. Convergences of RK  with the number of evanescent modes N . 

N  1,0 1 10k h π=  1,0 1 3k h π=  1,0 1k h π=  

0 0.4167 0.4419 0.4387 
1 0.3960 0.4070 0.4499 
2 0.3962 0.4110 0.4555 
3 0.3954 0.4085 0.4550 
5 0.3953 0.4087 0.4560 

10 0.3952 0.4088 0.4566 

K R

Figure 3. Problem definition of water wave scattering by a rectangular porous breakwater near a
partially reflecting vertical wall over a uniform bottom.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 3. Problem definition of water wave scattering by a rectangular porous breakwater near a 
partially reflecting vertical wall over a uniform bottom. 

 
Figure 4. Reflection coefficient varying against dimensionless wavenumber for normally incident 
water wave scattering by a rectangular porous breakwater near a partially reflecting vertical wall. 

Table 1. Convergences of RK  with the number of evanescent modes N . 

N  1,0 1 10k h π=  1,0 1 3k h π=  1,0 1k h π=  

0 0.4167 0.4419 0.4387 
1 0.3960 0.4070 0.4499 
2 0.3962 0.4110 0.4555 
3 0.3954 0.4085 0.4550 
5 0.3953 0.4087 0.4560 

10 0.3952 0.4088 0.4566 

K R

Figure 4. Reflection coefficient varying against dimensionless wavenumber for normally incident
water wave scattering by a rectangular porous breakwater near a partially reflecting vertical wall.



J. Mar. Sci. Eng. 2022, 10, 409 12 of 27

Table 1. Convergences of KR with the number of evanescent modes N.

N k1,0h1 = π/10 k1,0h1 = π/3 k1,0h1 = π

0 0.4167 0.4419 0.4387

1 0.3960 0.4070 0.4499

2 0.3962 0.4110 0.4555

3 0.3954 0.4085 0.4550

5 0.3953 0.4087 0.4560

10 0.3952 0.4088 0.4566

15 0.3952 0.4087 0.4566
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Then the wave forces acting on the vertical wall with different partially reflecting
factors Kw are considered. The problem is also defined by Figure 3 with γ = 0, D/h1 = 3,
b/h1 = 1.2, d2/h1 = 0.5, ε = 0.4, and f = 2. In Figure 7, the dimensionless wave forces KF
are plotted against the dimensionless wavenumber k1,0h1 for different partially reflecting
factors Kw of the vertical wall. In the figure, good agreements with convergences between
the present results and those of Zhao et al. [21] can be observed. Additionally, it can be
observed that the resulted wave forces are larger for the vertical walls with the larger
partially reflecting factors.

Overall, the results in this subsection indicates that the proposed EMM can evaluate
the wave force on the partially reflecting vertical wall well.
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3.3. Multiple Porous Structures near a Totally Reflecting Vertical Wall

Then, the EMM is applied for solving water wave scattering by multiple rectangular
porous breakwaters near a totally reflecting vertical wall (Kw = 1) as depicted in Figure 8.
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In the figure, L is the number of rectangular porous breakwaters and h1 is the total depth.
Furthermore, the porous parameters are set as ε = 0.4 and f = 2 in this subsection.
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Figure 8. Problem definition of water wave scattering by multiple rectangular porous breakwaters
near a vertical wall over a uniform bottom.

Following Zhao et al. [56], the monochromatic wave is considered to have an oblique
incidence angle γ = 30° and three rectangular porous breakwaters are under the dimen-
sionless water depths d2/h1 = 0.6, d4/h1 = 0.2, and d6/h1 = 0.4. Additionally, the
horizontal scales are x2/h1 = 0.5, x3/h1 = 2.5, x4/h1 = 3.1, x5/h1 = 7.1, x6/h1 = 7.9, and
x7/h1 = 10.9. Figure 9 depicts the reflection coefficient KR varying against the dimension-
less wavenumber k1,0h1 for different numbers of evanescent modes N. Convergences can
also be observed to be significant. In addition, the results also agree well with those in
the literature.
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Then, combined effects of the Bragg scattering by six rectangular porous breakwaters
and the totally reflecting vertical wall are examined. The six rectangular porous break-
waters have vertical scale d2l/h1 = 0.5 and horizontal scales x2l−1/h1 = 2.2(l − 1) &
x2l/h1 = 2.2(l − 1) + 0.2 for l = 1, 2, . . . , 6. Furthermore, the totally reflecting vertical wall
is located at x13/h1 = 14.7. In Figure 10, the reflection coefficient KR are plotted against
the dimensionless wavenumber k1,0h1 for different numbers of evanescent modes N with
significant convergences. Also, the results also agree well with those in the literature [56].
More detailed studies of Bragg scattering by multiple variable porous breakwaters with a
partially reflecting vertical wall will be conducted in the next section.
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In summary, the results in this section demonstrates that the EMM can be applied
for solving water wave scattering by multiple rectangular porous breakwaters near a
vertical wall.

3.4. Trapezoidal Porous Breakwaters near a Porous Seawall

The main strength of the proposed EMM is the ability for solving problems with
variable porous breakwaters. Behera and Khan [23] used the boundary element method
(BEM) for solving water wave scattering by a singular breakwater or double trapezoidal
porous breakwaters near porous seawalls as depicted in Figures 11 and 12, respectively.
Here, the porous seawall is composed of a porous structure attached to a totally reflecting
vertical wall. In this subsection, the EMM is applied for solving the prescribed problems
and comparisons are conducted.
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In the following of this subsection, the trapezoidal porous breakwaters are with the
dimensionless bottom width and height being equal to 2 and 0.6, respectively. Both of the
porous breakwaters and the porous seawall are of porosity ε = 0.417. If two breakwaters are
considered, the dimensionless horizontal distance between the centers of the breakwaters
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is 7. The side slopes are 1 and
√

3 for the trapezoidal breakwaters and the porous seawall,
respectively. Additionally, the incidence angle is set as γ = 10°.

Firstly, the case of a single trapezoidal porous breakwater with f = 1 is considered.
The dimensionless seawall top width and the separation distance between the toes of the
breakwater and seawall are 0.5 and 1, respectively. In Figure 11, the reflection coefficient KR
are plotted against the dimensionless wavenumber k1,0h1 for different numbers of evanes-
cent modes N and steps. In the figure, convergent results can be obtained with N = 2 and
M = 50. Fewer evanescent modes are required for this case since the bottom is smoother.
In addition, the results are also in good agreements with those in the literature [23].

Secondly, the case of two single trapezoidal porous breakwaters with f = 0.5 is
considered. The dimensionless seawall top width and the separation distance between the
toes of the breakwater and seawall are 1 and 0.5, respectively. Figure 12 gives the reflection
coefficient KR varying against the dimensionless wavenumber k1,0h1 for different numbers
of evanescent modes N and steps. In the figure, N = 2 and M = 100 are required to
have convergent results and good agreements with the BEM results [23]. When compared
with the previous case, more steps are required since two trapezoidal porous breakwaters
are considered.

Therefore, the results in this subsection indicate that the EMM can be applied to solve
problems of water wave scattering by variable porous breakwaters near a porous seawall,
which is composed of a porous structure attached to a totally reflecting vertical wall.

4. Discussion

After the EMM model is validated, it is applied for studying oblique Bragg scattering
by four periodic half-cosine shaped breakwaters near a partially reflecting wall over uneven
bottoms as depicted in Figure 13. The four periodic breakwaters are considered to be either
porous, partially porous, or impermeable. Following Kirby and Anton [65] and Tsai
et al. [66], the water depth and the amplitude of the half-cosine shaped breakwaters are
set as h1 = 0.15 m and a = 0.05 m, respectively. Furthermore, the wavelength of the
periodic bottom and the separation distance between half-cosine breakwaters are defined
by 2π/K = 0.8 m and b = 0.5 m, respectively. The vertical wall with a partially reflecting
factor Kw is separated by D away from the toe of the last breakwater.

Before studying the physical phenomena of the constructive and destructive Bragg
scattering, convergences with respect to the numbers of steps and evanescent modes are
studied. Here, the problem of Bragg scattering by four periodic half-cosine shaped imper-
meable breakwaters without vertical wall is first considered. In Figure 14, the convergence
can be found for N = 5 and M = 200. In addition, the corresponding results are in
good agreements with those of Kirby and Anton [65]. Additionally, the primary and sec-
ondary Bragg resonances can be observed to be significant at 2k1,0/K∼ 1 and 2k1,0/K∼ 2,
respectively. Therefore, N = 5 and M = 200 will be used in the following of this section.

4.1. Constructive Bragg Scattering by the Partially Reflecting Wall

If a totally reflecting wall is located in the right end of periodic impermeable structures,
the reflection coefficient of the problem will be approximately equal to one according to
the conservation of energy. However, in practical coastal environments, the shoreline is
occasionally protected by vertical breakwaters or seawalls which are usually considered to
be partially reflecting.
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According to our preliminary studies, the separation distance between the last break-
water and the vertical wall (Figure 13) is considered to be

D =
(2p− 1)

2
2π

K
= 0.4(2p− 1)m (54)

for p = 1, 2, . . .. For D = 0.4 m (or p = 1), Figure 15 depicts the reflection coefficient and
dimensionless wave force obtained by the EMM model. In the figure, it can be observed
that both the primary and secondary Bragg resonances are constructive. Additionally, the
wave forces are migrated significantly at the primary Bragg resonance for all three cases
with different reflection coefficients of the vertical wall.
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Then, we also consider the configuration with D = 1.2 m (or p = 2). The reflection
coefficient and dimensionless wave force can also be solved by the EMM model as described
in Figure 16. In the figure, it is obvious that the configuration results in constructive primary
Bragg resonances with destructive secondary ones. Detailed reason will be investigated in
our future studies.

These results suggest that multiple breakwaters should be periodically located with
the wavelength equal to half of the significant wavelength of the coastal wave environment.
In addition, the partially vertical wall should be located by a quarter of the significant
wavelength away from the last breakwater. In this situation, the wave forces on the wall
can be significantly reduced.
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4.2. Destructive Bragg Scattering by the Partially Reflecting Wall

Then, the destructive Bragg scattering by the partially reflecting wall are also consid-
ered. Similarly, the preliminary studies suggest that

D = q
2π

K
= (0.8q)m (55)

for q = 1, 2, . . ..
For D = 0.8 m (or q = 1), Figure 17 shows the reflection coefficient and dimensionless

wave force obtained by the EMM model. In the figure, it is significant to observe that both
the primary and secondary Bragg resonances are destructive. Therefore, the results indicate
that the separation distance should not be equal to the wavelength of the periodical bottom
so that the extreme wave forces on the vertical wall can be avoided.

4.3. Oblique Incidence

In practical coastal environments, the significant wave angle, γ, is sometimes oblique
to the normal direction of the shoreline or the protecting vertical wall. Following Mei [67]
and Dalrymple et al. [68], the wavenumber of the bottom structures, K, should be set as
2k1,0 cos γ/K∼ 1 so that the Bragg scattering can be used to protect the coast. In this study,
we also found that Equation (54) should be adopted to locate the partially reflecting vertical
wall so that the constructive primary Bragg scattering occurs.

Considering γ = 30° and D = 0.4 m, Figure 18 shows the reflection coefficient and
dimensionless wave force obtained by the EMM model. In the figure, it is significant
to observe that both the primary and secondary Bragg resonances are constructive at
2k1,0 cos γ/K∼ 1 and 2k1,0 cos γ/K∼ 2, respectively. This confirms the description ad-
dressed in the previous paragraph.
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D = 0.8 m for oblique-wave Bragg scattering by four periodic half-cosine shaped impermeable
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Then, the wave directionality is studied by considering different incidence angles
with the partially reflecting factor Kw = 0.2. Figure 19 describes the reflection coefficient
and dimensionless wave force solved by the EMM model. This results further ensure the
constructive Bragg scattering for oblique waves. Additionally, it can be observed that the
wave forces are slightly smaller and the Bragg reflections are stronger for the cases with
smaller incidence angles.
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Figure 19. Reflection coefficient and dimensionless wave force varying against 2k1,0cosγ/K with
D = 0.8 m for oblique-wave Bragg scattering by four periodic half-cosine shaped impermeable
breakwaters near a partially reflecting vertical wall with different incidence angles.

4.4. Periodic Porous Breakwaters

Then, the case of Figure 15 is re-examined by replacing the four impermeable break-
waters by either porous or partially porous breakwaters with ε = 0.4 and f = 1 as depicted
in Figure 13 Additionally, Kw = 0.5 is set for all of the three cases.

Figure 20 shows the reflection coefficients and dimensionless wave forces obtained
by the EMM model. In the figure, the constructive Bragg resonances can also be observed.
Additionally, the use of porous breakwaters can further reduce the reflection coefficients
and the wave forces. At the primary Bragg resonances, the wave forces of the three cases
are of similarly magnitudes while the reflections are further reduced for the cases with
porous breakwaters.



J. Mar. Sci. Eng. 2022, 10, 409 23 of 27J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure 20. Reflection coefficient and dimensionless wave force varying against 2k1,0/K with D = 0.4 
m for normal-wave Bragg scattering by four periodic half-cosine shaped porous or impermeable 
breakwaters near a partially reflecting vertical wall. 

5. Conclusions 
In this article, the constructive and destructive Bragg scattering are studied for 

oblique water waves interactions with multiple variable porous/impermeable breakwa-
ters near a partially reflecting wall over uneven bottoms by using the eigenfunction 
matching method (EMM). In the solution procedure, the variable breakwaters and bottom 
profiles are sliced into shelves separated steps and the solutions on the shelves are com-
posed of eigenfunctions with unknown coefficients representing the wave amplitudes. 
Using the conservations of mass and momentum as well as conditions for the partially 
reflecting sidewall, a system of linear equations is resulted that can be solved by a sparse-
matrix solver. Several cases are solved by the EMM to validate the proposed formulation. 
Then the constructive and destructive Bragg scattering for oblique water waves interac-
tions with multiple variable porous/impermeable breakwaters near a partially reflecting 
wall over uneven bottoms are discussed. Numerical results indicated that the partially 
reflecting wall should be located by half of the wavelength of periodic breakwaters to 
migrate the wave forces on the vertical wall for both normal and oblique attacks of waves. 

The proposed EMM is a depth-integrated model by assuming irrational, harmonic, 
and linear waves. The effects of wave breaking and dissipation can be included in the 
EMM formulation by the energy-dissipation factor of the MSE [69–71]. In addition, the 
proposed model is computationally efficient and can be served as preliminary calculations 
followed by modern three-dimensional numerical models. These are currently under in-
vestigation. 

Author Contributions: Conceptualization, C.-C.T.; methodology, J.-Y.C. and C.-C.T.; software, C.-
C.T.; writing-original draft, J.-Y.C.; visualization, J.-Y.C. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was funded by the Ministry of Science and Technology of Taiwan under the 
Grant No. MOST 109-2221-E-992-046-MY3. 

Institutional Review Board Statement: Not applicable. 

Figure 20. Reflection coefficient and dimensionless wave force varying against 2k1,0/K with D = 0.4 m
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5. Conclusions

In this article, the constructive and destructive Bragg scattering are studied for oblique
water waves interactions with multiple variable porous/impermeable breakwaters near
a partially reflecting wall over uneven bottoms by using the eigenfunction matching
method (EMM). In the solution procedure, the variable breakwaters and bottom profiles
are sliced into shelves separated steps and the solutions on the shelves are composed of
eigenfunctions with unknown coefficients representing the wave amplitudes. Using the
conservations of mass and momentum as well as conditions for the partially reflecting
sidewall, a system of linear equations is resulted that can be solved by a sparse-matrix
solver. Several cases are solved by the EMM to validate the proposed formulation. Then
the constructive and destructive Bragg scattering for oblique water waves interactions with
multiple variable porous/impermeable breakwaters near a partially reflecting wall over
uneven bottoms are discussed. Numerical results indicated that the partially reflecting wall
should be located by half of the wavelength of periodic breakwaters to migrate the wave
forces on the vertical wall for both normal and oblique attacks of waves.

The proposed EMM is a depth-integrated model by assuming irrational, harmonic,
and linear waves. The effects of wave breaking and dissipation can be included in the EMM
formulation by the energy-dissipation factor of the MSE [69–71]. In addition, the proposed
model is computationally efficient and can be served as preliminary calculations followed
by modern three-dimensional numerical models. These are currently under investigation.
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Nomenclature

α1,m,n coefficient of vertical eigenfunction
α2,m,n coefficient of vertical eigenfunction
β1,m,n coefficient of vertical eigenfunction
β2,m,n coefficient of vertical eigenfunction
γ incidence angle
ε porosity of porous media
λ wavelength of incident wave
σ angular frequency of incident wave
ρ density of water
φm velocity potential on the m− th shelf
ηm surface elevation on the m− th shelf
δ parameter for porous layer
θR phase angle
ζm,n(z) vertical eigenfunction

ξ
(1)
m,n(x) the first horizontal eigenfunction

ξ
(2)
m,n(x) the second horizontal eigenfunction

ζ
larger
m,l vertical eigenfunction for the larger total depth

ζsmaller
m,l vertical eigenfunction for the smaller total depth
∇ three-dimensional gradient operator
∇2 three-dimensional Laplace operator
∆ operator for porous pressure
a amplitude of incident wave
a amplitude of the half-cosine shaped breakwater in Section 4
b width of the rectangular porous breakwater in Sections 3.1 and 3.2 or separation

distance between half-cosine breakwaters in Section 4
dm water depth on the m− th shelf
f friction coefficient of porous media
g acceleration of gravity
hm total depth on the m− th shelf
i unit of complex numbers
ky transverse wavenumber
k̂m,n lateral wavenumber of the n− th evanescent mode on the m− th shelf
km,n absolute wavenumber of the n− th evanescent mode on the m− th shelf
k̂m,0 lateral wavenumber of the propagating mode on the m− th shelf
km,0 absolute wavenumber of the propagating mode on the m− th shelf
n index of modes
m index for shelves and steps
pm pressure on the m− th shelf
p index for constructive Bragg scattering
q index for destructive Bragg scattering
t time
s inertial coefficient of porous media
um fluid velocity or discharge velocity on the m− th shelf
xm x coordinate of the m− th step
xm reference location of the
(x, y, z) three-dimensional Cartesian coordinates
Am,n EMM unknown coefficients
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Bm,n EMM unknown coefficients
D Separation distance between the last porous breakwater and the vertical wall

in Sections 3.1, 3.2 and 4.
G1 or G2 variable for depth eigenfunction
Kw partially reflecting factor of the vertical wall
KR reflection coefficient
KF dimensionless horizontal wave force on the vertical wall
M number of shelves plus one
N number of evanescent modes
T wave period of incident wave
2π/K wavelength of the periodic bottom in Section 4
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