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Abstract: Underwater target detection plays an important role in ocean exploration, to which the
improvement of relevant technology is of much practical significance. Although existing target detec-
tion algorithms have achieved excellent performance on land, they often fail to achieve satisfactory
outcome of detection when in the underwater environment. In this paper, one of the most advanced
target detection algorithms, YOLOv5 (You Only Look Once), was first applied in the underwater
environment before being improved by combining it with some methods characteristic of the under-
water environment. To be specific, the Swin Transformer was treated as the basic backbone network
of YOLOv5, which makes the network suitable for those underwater images with blurred targets. It is
possible for the network to focus on fusing the relatively important resolution features by improving
the method of path aggregation network (PANet) for multi-scale feature fusion. The confidence loss
function was improved on the basis of different detection layers, with the network biased to learn
high-quality positive anchor boxes and make the network more capable of detecting the target. As
suggested by the experimental results, the improved network model is effective in detecting under-
water targets, with the mean average precision (mAP) reaching 87.2%, which makes it advantageous
over general target detection models and fit for use in the complex underwater environment.

Keywords: deep learning; underwater target detection; YOLOv5;swin transformer; confidence loss
function; feature fusion

1. Introduction

Oceans account for a vast majority of the total surface area of the earth and contain
abundant oil, gas, mineral, chemical, and aquatic resources [1,2]. In recent years, due to
the constant expansion of human living space, land resources have been overly exploited.
In this circumstance, most developed countries around the world have focused attention
on maritime resources, thus making maritime exploration increasingly frequent. Therefore,
the last decade has witnessed the rapid development of relevant underwater robots and
detection technologies, such as autonomous submersibles fitted with intelligent under-
water target detection systems [3,4] and remotely operated submersibles, which play a
significant role in the development and preservation of maritime resources. Up to now,
such advantages as high imaging resolution and abundant information have made the un-
derwater optical imaging technology the most intuitive and common method of acquiring
information. However, because of the complicated underwater environment and lighting
conditions, it is inevitable that noise arises from the collection of visual information, which
presents a significant challenge to the practice of vision-based underwater target detection.
Therefore, it is essential to conduct research on underwater target detection technology.

With the rapid development of such underwater robots as ROVs (Remotely Oper-
ated Vehicle) and AUVs (Autonomous Underwater Vehicle), deep-sea exploration and
exploitation have become made increasingly frequent, which draws more and more atten-
tion from scholars to research on underwater target detection. Depending on the exact
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theoretical background, the existing target detection algorithms can be classified into two
categories, one of which is traditional target detection methods and the other of which
is deep learning-based target detection methods. Traditional target detection algorithms
start by selecting the interest region through sliding windows [5]. Then, various feature
extraction algorithms, such as scale-invariant feature transform (SIFT) [6], histogram of
oriented gradient (HOG) [7], etc. are applied to extract features for each interest region.
Finally, machine learning algorithms as support vector machines (SVM) [8] are employed
to classify the extracted features to determine whether the window contains objects. How-
ever, there are some limitations due to the traditional approaches requiring the design
of windows of various sizes and relying on machine learning methods for classification.
On the one hand, the region selection strategy is not targeted, thus leading to high time
complexity and window redundancy. On the other hand, artificially designed approaches
are not as robust in terms of feature diversity as is required. In recent years, there has been
some significant progress made in the target detection task based on deep convolutional
neural networks to address the above limitations, which show a massive potential to be
applied in underwater target detection.

Currently, there have been plenty of studies demonstrating that the methods based on
deep convolutional neural networks significantly outperform those traditional methods
based on specific features. For example, they require no manual intervention, thus making
them more convenient to deploy on underwater robots. As for object detection algorithms
based on convolutional neural networks, they can be classified into two categories depend-
ing on whether it is necessary to extract the candidate areas: region proposal-based target
detection algorithms and regression-based target detection algorithms [9]. Also known
as the two-stage target detection algorithm, the former first extracts the proposed region
from the images. Then, they are classified and regressed to obtain the detection result.
On this basis, Girshick et al. [10] proposed the R-CNN (Region-CNN) algorithm in 2014,
which combines region suggestion and convolutional neural network (CNN) to achieve a
significant improvement of performance. In spite of this, the problem of computational
load remains. In 2015, Girshick [11] put forward a fast region-based convolutional network
method based on R-CNN, which is effective in improving the accuracy of detection and
the speed of the network. Subsequently, Shaoqing Ren et al. [12] further incorporated
the region proposal network (RPN) and Fast R-CNN into an integrated network, which
not only reduced the consumption of resource as required for network training, but also
improved accuracy and speed by sharing the features of full image convolution with the
detection network. In addition, excellent performance can also be produced by the other
two-stage networks that have been improved on the basis of the above algorithms, such as
R-FCN (region-based fully convolutional networks) [13], Mask R-CNN [14], and Cascade
R-CNN [15]. To obtain more accurate detection results, however, it is always inevitable
that the speed of detection is compromised in a two-stage algorithm. Also referred to as
one-stage target detection algorithms, the regression-based target detection algorithms are
end-to-end target detection algorithms that removes the need for region extraction. These
methods detect the targets consistently faster because the targets are detected and localized
directly from the whole image. The representative algorithms include SSD (single shot
multibox detector) [16] and the YOLO series (YOLO [17]: YOLO9000 [18], YOLOv3 [19],
YOLOv4 [20], YOLOv5), etc. As the first conversion of a target detection task into a
regression task, YOLO was proposed by Redmon et al. in 2015. Despite such problems
as inaccurate positioning, low recall rate, and poor detection of small targets, there is no
denying that it contributes a novel idea to the practice of target detection. With constant
improvements and innovations, the current single-stage target detection algorithms are
capable of taking into account accuracy of detection while ensuring speed.

In fact, object detection algorithms are developed against the backdrop of land target
detection. With the increase of underwater exploration activities, more and more scholars
are applying object detection techniques and classification technologies to the underwater
environment. In 2016, Ravanbakhsh et al. [21] drew a comparison between the deep
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learning method with HOG and SVM for the purpose of coral reef fish detection. According
to the experimental results, deep learning is advantageous in underwater target detection.
In 2015, Li et al. [22] applied Fast R-CNN to detect and identify fish species before acceler-
ating fish detection through Faster R-CNN [23]. In order to solve the problem of limited
sample images, Lingcai Zeng et al. [1] proposed introducing an adversarial occlusion net-
work (AON) into the standard Faster R-CNN detection algorithm, which is effective in
increasing the number of training samples and improving the capability of detection of the
network. In 2020, Long Chen et al. [24] proposed a new sample-weighted super-network
(SWIPENET) to address the blurring of underwater images in the context of severe noise
interference. By investigating simulated overlapping, occlusion, and blurring object en-
hancement strategies, Weihong Lin et al. [25] constructed an implementable generalization
model to resolve the overlapping, occlusion, and blurring of underwater targets. In 2021,
Weibiao Qiao et al. [26] put forward the design of a real-time and accurate underwater
target classifier using local wavelet acoustic pattern (LWAP) and multi-layer perceptron
(MLP) neural networks, so as to address the heterogeneity and difficulty of underwater
passive target classification. Due to the poor underwater environment, however, there
remain various challenges facing the current underwater target detection algorithms in
practice, such as poor quality, the loss of visibility, weak contrast, texture distortion, and
color variations in available underwater images, all of which may significantly hinder
underwater target detection. Despite the success of various object detection methods, there
is still a long way to go for research in such a poor environment. Furthermore, in practical
applications, the models are usually equipped with mobile devices such as underwater
robots, which require the models to be robust and portable. As the most advanced al-
gorithm in the YOLO series, YOLOv5 is more suitable for industrial applications due to
its high encapsulation and smaller size. Therefore, in this paper, a method based on the
improved YOLOv5 was proposed and applied to underwater images. Our contributions
are detailed as follows:

(1) In order to obtain more useful features and highlight the foreground targets, Swin
Transformer was introduced as the backbone network of YOLOv5, thus making the
model suitable for those underwater images with blurred targets;

(2) In order to improve the effectiveness of feature fusion at different resolutions, the PANet
multi-scale feature fusion method was improved, with consideration given to the contribu-
tion of features at different resolutions, and the features of the previous level were fused;

(3) The confidence loss function was improved based on the detection layers. In this way,
the model can be biased to learn features of relatively important scales, thus mitigating
the negative impact of low-quality anchor boxes on the network, with the network
biased to learn high-quality positive anchor boxes;

(4) More than 6000 valid images were labeled in order to demonstrate through experi-
mentation that the accuracy of improved network detection can reach 87.2%(mAP),
which exceeds its baseline and outperforms other general target detection models.

The rest of this paper is organized as follows. In Section 2, the architecture of the
YOLOv5 model and the approach proposed in this paper are introduced. In Section 3,
the dataset and experiments conducted are presented. A discussion is conducted in Sec-
tion 4 on the experimental results and the limitations of the proposed method. Finally,
Section 5 concluded this paper.

2. Improved YOLOv5 Network
2.1. Overview of YOLOv5

In this section, we described the model structure and fundamentals of YOLOv5, which
is the baseline for our proposed new underwater target detection algorithm. Glenn Jocher
released YOLOv5 in 2020. YOLOv5 extends the model structure of the previous YOLO
series algorithms. As shown in Figure 1, it consists of four main parts, which are the
input module, the backbone network for feature extraction, the neck network for achieving
cross-scale feature fusion, and the prediction network for completing target detection.
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Figure 1. The network structure of YOLOv5, which is composed of the input module, backbone network, neck network, and prediction network.
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Input module: Data is loaded at the input side. The YOLOv5 network pre-processes
the input images at this stage. First, the input images are resized to the specified size.
Mosaic data augmentation, random scaling, random cropping, and random scheduling
are also adopted in this module. The above data enhancement methods enrich the dataset
and enhance the robustness of the model. In addition, in the YOLO series of algorithms,
the initial length and width of the anchor frames are set to match objects more precisely for
different datasets. During network training, the network outputs prediction frames based
on the initial anchor frames, which are then compared with ground truth. It can be seen
that the initial anchor frame is also a relatively important step.

Backbone network: The backbone network of YOLOv5 is designed to extract generic
features of the target, and is mainly composed of Focus, CBL, CSPDarknet53, and SPP
structures. The key role of the Focus structure is to slice the image before it enters the
backbone. The specific operation is shown in Figure 2. The output spaces are expanded
four times by the Focus operation, and the original three channels become twelve channels,
obtaining double downsampled feature maps with no information loss after the convolution
operation. CBL is composed of three components: convolution, batch normalization, and
the Leaky ReLU activation function. CSPNet [27] (cross stage partial network) solves the
problem of large computational effort when inferencing from the perspective of network
structure design. Compared with YOLOv4, two CSP structures (CSP1_X and CSP2_X) are
used in YOLOv5; one is used in the backbone network and the other is used in the neck
network. SPP adopts 1 × 1, 5 × 5, 9 × 9, and 13 × 13 maximum pooling for multi-scale
feature fusion.

Figure 2. Focus module slicing operation.

Neck network: Neck is located between backbone and prediction, adopting the struc-
ture of FPN connected PAN and aiming to further enhance the diversity of features for
the purpose of improving the robustness of the model, which will be described in detail
in Section 2.2.2. In addition, YOLOv5’s neck structure also adopts the CSP2, which was
designed by borrowing from CSPNet to improve the capability of network feature fusion.

Prediction network: Prediction is the output side, which completes the output of object
detection results.

2.2. Proposed Model

The underwater target detection method based on the improved YOLOv5 is introduced
in this section. As shown in Figure 3, to begin with, we processed the dataset, including data
cleaning and data labeling. Then, the improved YOLOv5 network was used to enhance the
model detection accuracy. To be specific, we designed an innovative backbone network for
YOLOv5 based on Swin transformer (Section 2.2.1), proposed a more efficient multi-scale
feature fusion method (Section 2.2.2), and improved the confidence loss function based on
different detection layers (Section 2.2.3).
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Figure 3. The improved YOLOv5 is used for underwater target detection.

2.2.1. Backbone Network Based on Swin Transformer

The fact that light cannot be fully transmitted in water affects underwater images
captured during monitoring. This makes the detected targets inconspicuous and difficult
for the monitor to discriminate. Therefore, the features of the detected targets should
be prominent and the background features should be weakened in the detection process.
Self-attention is an effective strategy. Transformer [28] is an effective strategy in the field of
natural language processing, replacing the recurrent layers most commonly used in encoder-
decoder architectures with multi-headed self-attention. Vision Transformer [29] first applied
Transformer to the image domain. TPH-YOLOv5 [30] also introduces Transformer encoder
blocks in the prediction header, which replace some convolution blocks and CSP bottleneck
blocks in the original version of YOLOv5, and achieved satisfactory results in target
detection in UAV capture scenes. However, applying Transformer directly to the field
of computer vision has the following two issues. (1) The feature scales involved in the
two fields are different. In natural language processing, the feature scale is standard
and fixed, while in computer vision, the feature scale has a very large range of variation.
(2) Computer vision requires a larger resolution than natural language processing and the
computational complexity of using Transformer directly in computer vision is the square
of the image resolution, which can lead to excessive computational effort. Moreover,
the limited computational resources of underwater detectors make it impractical to use
Transformer for underwater target detection.

Swin Transformer [31] is an effective strategy for applying self-attention in computer
vision, and has made the following improvements compared to previous work: (1) intro-
ducing the hierarchical construction method commonly used in CNN to build a hierarchical
Transformer; (2) introducing the locality idea to perform self- attention calculation within
the window region without overlap; (3) proposing a shifted window partitioning method to
realize the window-based self-attention module connection. The computational complexity
is linearly related to the input image size based on the above work. As depth increases,
image blocks are gradually merged to construct a hierarchical Transformer, which can be
used as a general-purpose visual backbone network.

The structure of the backbone network based on the Swin Transformer is shown in
Figure 4. Patch embedding consists of patch partition and linear embedding layers; patch
partition slices the feature-map module into small non-overlapping patches and linear
embedding maps the input features into arbitrary dimensions. The Swin Transformer block
consists of W-MSA (window multi-head self-attention) and SW-MSA (shifted-window
multi-head self-attention). The W-MSA reduces the computational effort by dividing the
feature map, and the SW-MSA enables information transfer between different windows.
Patch merging downsamples the input feature map. Firstly, the original feature map of size
c × h × w is input to the patch embedding module; the feature map is partitioned into
small non-overlapping patches to build a 96 × (h/4) × (w/4) feature map, and then input
to two successive stacked Swin Transformer block modules to obtain a 96 × (h/4) × (w/4)
feature map. After that, through three patch merging layers and the Swin Transformer
blocks, the feature maps P3, P4, and P5 are obtained. P3, P4, P5 are used as the input feature
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maps of the neck part of theFPN (feature pyramid networks) module. The structure of
YOLOv5 using Swin Transformer as the backbone network is shown in Figure 5.

Figure 4. The Swin Transformer architecture.

Figure 5. The structure of YOLOv5 using Swin Transformer as the backbone network.

2.2.2. Improvement of Multi-Scale Feature Fusion

Compared with traditional handcrafted feature-based algorithms, the deep learning-
based algorithms usually obtain low-level and high-level image features through convolu-
tional neural networks and other feature extractors [32,33]. These features have different
resolutions, so how to effectively process and fuse these multi-scale features has a crit-
ical impact on the networks that use them for inference. The feature pyramid network
(FPN) [34] has performed pioneering work by using a top-down approach to combine
multi-scale features. The path aggregation network (PANet) [35] further adds a bottom-up
path to the FPN. The concrete approach is first to resize the feature maps to the same
resolution and then add them up, in which features at different scales are treated equally.
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The neck of YOLOv5 also adopts the same approach to fuse features. Figure 6a shows the
neck structure of YOLOv5 abstractly; assuming the input image size is 640× 640, the PANet
structure takes the features extracted by the backbone network with resolutions of 80 × 80,
40 × 40, and 20 × 20 at P3 to P5 levels, respectively, as input. As can be seen from the figure,
FPN adopts a top-down approach, fusing the deep features with the underlying features
by upsampling to obtain the predicted feature map. This operation conveys the strong
semantic features from the upper layers downward, which enhances the learning ability of
the model for image features, but some localization features might be lost. Therefore, PAN
is added after FPN for its complementary effect with FPN by conveying strong localization
features from the bottom up. Thus, the robustness and learning performance of the model
is improved comprehensively. The process of aggregating multi-scale features can be
expressed as:

Pout
3 = Conv(Ptd

3 ) (1)

Pout
4 = Conv(Ptd

4 + Resize(Pout
3 )) (2)

Pout
5 = Conv(Ptd

5 + Resize(Pout
4 )) (3)

where Resize is the upsampling or downsampling operation and Ptd are the intermediate
feature maps at level.

However, input features of different levels have different resolutions and they con-
tribute variously to the output, so the network is required to take into account the impor-
tance of different feature layers by adding weights. To this end, we introduced learnable
parameters as weights of different resolution features. The initial values were set to 1/m
(m the number of different resolution features.) and optimized together with the model as
parameters of the network. Furthermore, we also connected P4-level input features across
layers, which can make the network more effective in aggregating multi-scale features
without missing input features. The detailed structure of the network is shown in Figure 6b.
The P4 level output features are shown in Equation (4), which incorporates the weights of
the different scale features and fuses the input features as well.

Pout
4 = Conv(

w1 · Pin
4 + w2 · Ptd

4 + w3 · Resize(Pout
3 )

w1 + w2 + w3
) (4)

where Resize is the upsampling operation, Ptd are the intermediate feature maps at level,
and w1, w2, w3 are weights.

(a)

(b)

Figure 6. (a) The structure of PANet; (b) the structure of the improved PANet.
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2.2.3. Improvement of Confidence Loss Function Based on Detection Layers

The loss function, also called the cost function, maps the value of a random event or its
associated random variable to a non-negative real number to represent the “risk” or “loss”
of the random event. Neural networks generally use the method of minimizing the loss
function to train the network so that it acquires excellent inference ability. The following
three parts of the loss functions are utilized to optimize the YOLOv5 network. The first
part is the loss that is caused by the prediction category lclass, the second part is the loss
that is due to the prediction frame positions x, y, h, w (upper left corner coordinates and
aspect) llocal , and the third part is the loss that comes from the confidence of the target
lcon, indicating the confidence rate with or without the target. The total loss function l was
defined as:

l = lclass + llocal + lcon (5)

Although YOLOv5 has excellent performance on the coco dataset, the accuracy of the
network decreases when the materials change. Hence, the weights of the loss function
should be adjusted according to the changes in the materials [36,37]. In our study, we
found that despite YOLOv5 performing with high accuracy in our samples, the recall is
not satisfactory, which implies that a large number of targets are not detected. Confidence
represents the possibility of there being targets in the box or not. YOLOv5 calculates the
confidence loss of different prediction heads respectively, then sums them in the same
proportion as the total confidence loss, but different prediction heads are supposed to have
different sensitivities to the targets. In this research, we adopt a new method based on IoU
(Intersection over Union) to set the confidence loss of the detection layers.

IoU refers to the intersection-to-merge ratio, which calculates the ratio of intersection
and merge between the predicted target frame and the true target frame, as shown in
Equation (6).

IoU =
area(pr ∩ tr)
area(pr ∪ tr)

(6)

where pr is the predicted frame and tr is the true frame. The network can be optimized by
setting the weights of the confidence loss functions of different detection layers. The process
of calculating the confidence loss function weights is shown in the flowchart in Figure 7.
After each training epoch, the positive anchor box pi is calculated for each detection layer
target. Among all the positive anchor boxes pi, the positive anchor box qi with IoU greater
than the threshold (0.8× IoUmax) is obtained. Then, we calculate the change of qi compared
to the previous epoch, denoted as 4qi, and judge whether the percentage of the sum of
4qi relative to qi is less than the given threshold. When the value is less than the given
threshold, the weights of the confidence loss function for each detection layer are calculated
by Equation (7). Otherwise, the training is continued. Finally, the confidence loss function
is set according to Equation (8).

λi =
qi

∑ qi + α (7)

lcon = ∑ λi · li
con (8)

where λ is the weight of the confidence loss function for detection layer i. α is the balance
factor. We found through experiments that there is a positive effect on the network when it
is equal to 0.76. Through improving the confidence loss function, the sensitivity of different
output layers to the targets is considered. The negative impact of low-quality anchor boxes
on the model can be suppressed by this method, and the network will be biased to learn
high-quality positive anchor boxes, which improves the capability of the network to capture
the targets, thus increasing the recall.
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Figure 7. Flow chart of calculation of the confidence loss function weights.

3. Experiments

This section verifies the effectiveness and superiority of this paper’s improved algo-
rithm in the underwater detection environment. The experimental results show that the
improvement of the YOLOv5 target detection algorithm based on the methods in this paper
can improve the accuracy of underwater target detection and make the algorithm more
suitable for complex underwater environments.

3.1. Data Set

The experimental dataset is from the Target Recognition Group of China Underwater
Robot Professional Competition (URPC), which contains underwater images of four differ-
ent seafood species as shown in Figure 8, including “holothurian”, “echinus”, “scallop”,
and “starfish”. We cleaned the data, removed the images that did not contain the detected
targets, and retained 6034 valid images, then labeled the targets. All sample images were
processed and stored according to the format of the PASAL VOC2007 sample set. Figure 9
shows the details of the dataset. Figure 9a shows the statistics of the number of targets
in each class, in which echinus accounts for the majority, followed by scallop, starfish,
and holothurian. Figure 9b is the normalized target location map, which is a right-angle
coordinate system established by taking the lower left corner of the dataset image as the
coordinate origin and using the relative coordinate values of the horizontal coordinate
x and vertical coordinate y to evaluate the relative positions of the targets. The results
show that the positions of the targets are spread throughout the coordinate system, are
more concentrated in the horizontal direction, and are relatively dispersed in the vertical
direction. Figure 9c is the normalized target size map. From the figure, we can see that
the targets size distribution is relatively concentrated. The width is mainly distributed in
0∼0.1. The height is distributed in 0∼0.2. The targets are mostly small in size. To maintain
the consistency of the data distribution, we randomly divided the dataset into a training set
and a test set at a ratio of 7:3. The training set contains 4224 images and the test set contains
1810 images.
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(a) (b)

(c) (d)

Figure 8. The dataset contains four biological categories, which are (a) holothurian, (b) echinus,
(c) scallop, and (d) starfish.

(a)

(b) (c)

Figure 9. Statistical results of the dataset: (a) bar chart of the number of targets in each class;
(b) normalized target location map; (c) normalized target size map.
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3.2. Model Evaluation Metrics

In target detection, representing these boxes as true targets or false targets can yield
four potential predictions: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). If the IoU between the detection box and the true box is greater
than the threshold (it was set to 0.5 in our experiments), the detection box is marked as TP.
Otherwise, it is marked as FP, and if there is no detection box matching the true box, it is
marked as FN. TP represents the number of correctly identified targets, FP is the number
of incorrectly identified targets, and FN is the number of targets that are not detected.
The performance of the model can usually be evaluated by precision (Pr) and recall (Re),
which are calculated by Equations (9) and (10).

Pr =
TP

FP + TP
(9)

Re =
TP

FN + TP
(10)

Precision (Pr) and recall (Re) are interactive. If the precision stays at a high value while
the recall increases, it means that the model performs better. In contrast, a model with
poorer performance may lose a significant amount of precision in exchange for improved
recall. In order to combine the two metrics, average precision (AP) is introduced to measure
the detection accuracy, as defined in Equation (11).

AP =
∫ 1

0
Rr(Re)dRe (11)

The value of AP is equal to the area under the precision-recall curve, and the higher
the AP value, the higher the accuracy of the network. In the task of multi-class targets
detection, the detection accuracy of the model is evaluated by calculating the average value
of all types of AP (mAP), which is defined in Equation (12).

mAP =
1
C

C

∑
c=1

AP(c) (12)

where C is the number of target categories.

3.3. Experimental Settings

We conducted experiments on an experimental platform equipped with an Intel(R)
Xeon(R) Gold 5218 CPU@2.30 GHz (192G RAM) and a NVIDIA GeForce RTX 3090 graphics
processor (24 G RAM). The software environments were CUDA 10.1, CUDNN 7.6, and
Python 3.7. The model was optimized by the SGD (stochastic gradient descent) method.
The specific settings of hyperparameters of the network training are shown in Table 1.
The training epochs were set to 500, the batch size was set to 16, the initial learning rate was
set to 0.01, the weight decay was set to 0.0005, and the SGD momentum was set to 0.9. In ad-
dition, we also used the data enhancement technique in YOLOv5. The hyperparameters
settings of data enhancement as shown in Table 2.

Table 1. Hyperparameter settings of network training.

Training Epochs Batch Size Learning Rate Weight Decay Momentum

500 16 0.01 0.0005 0.9
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Table 2. Hyperparameter settings of data enhancement.

Translate (Image
Translation) Scale (Image Scale) Fliplr (Image Flip

Left-Right)
Flipud (Image Flip

Up-Down) Mosaic Mixup

0.1 0.5 0.1 0.5 1.0 0.1

3.4. Experimental Results

YOLOv5 is divided into four different models based on the depth and width of the
model: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The parameter settings are shown
in Table 3, with an increasing Depth Multiple and Width Multiple, the number of model
parameters and model size also increase linearly. YOLOv5s, as the lightest model, contains
the least number of parameters and is convenient to deploy in realistic application scenarios.
YOLOv5x contains the most parameters and the largest size, and is comparatively not easy
to train. We conducted experiments based on different models. It can be seen from the
table that the average AP (mAP) of the model improves as the depth and width of the
model increase. There is 0.8% improvement between the largest model and the smallest
model, but this also consumes a huge amount of computational resources. To reduce
the consumption of computational resources, we selected YOLOv5s as a baseline for
improvement and conducted further experiments.

Table 3. Experimental results of different YOLOv5 models.

Model Depth Multiple Width Multiple Number of Parameters Size of Model (MB) mAP (%)

YOLOv5s 0.33 0.50 7.2× 106 14.1 84.9
YOLOv5m 0.67 0.75 21.2× 106 40.5 85.2
YOLOv5l 1.0 1.0 46.5× 106 89.4 85.6
YOLOv5x 1.33 1.33 86.7× 106 167.0 85.7

Figure 10 shows the precision-recall curve of the improved YOLOv5s model. It can
be seen from the figure that the improved model achieves better detection results for all
classes of targets; in particular, the AP value for echinus reaches 90.5%. The value of mAP
is 87.2%

Figure 10. The precision-recall curve of the improved YOLOv5s.

The confusion matrix is shown in Figure 11. The column indicates the predicted cate-
gory and the row indicates the true category. The sum of the values in each column equals
1 and the value in each row indicates the proportion of predictions in the corresponding
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category. As can be seen from the figure, most of the targets were correctly predicted, which
indicates that the model has good performance.

Figure 11. The confusion matrix of the improved YOLOv5s.

Figure 12 shows the variation curves of the loss values, including classification loss
(Figure 12a), localization loss (Figure 12b), and confidence loss (Figure 12c). As can be seen
from the figure, the different classes of losses steadily decrease as the number of iterations
increases. The model converged after 100 iterations.

(a) (b)

(c)

Figure 12. The variation curves of the loss values: (a) classification loss; (b) localization loss;
(c) confidence loss.
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We conducted ablation experiments to intuitively observe the impact of different
improvements on the model performance. As the anchor frame in the standard YOLOv5
algorithm is obtained based on the coco dataset, which is not suitable for our underwater
dataset, we pre-set the anchor frame based on prior knowledge. Next, we used a redesigned
backbone network based on Swin Transformer to extract features, then improved the
PANet multi-scale fusion network, and finally improved the confidence loss function.
The experimental results are shown in Table 4. Among them, using Swin Transformer as
the backbone network of the model to obtain more useful features was the most critical
improvement, as it improved the mAP of the model by 1.5%. The mAP of the network was
improved by 0.3% by pre-setting the anchor frame in the initial stage of the experiment.
Through the improvement of the multi-scale feature fusion method and the confidence loss
function, the mAP was also improved by 0.2% and 0.3%, respectively.

Table 4. Ablation experiments.

Pre-Set Anchor Swin
Transformer

Improved
Multi-Scale

Feature Fusion

Improved
Confidence

Loss Function
mAP (%)

84.9√
85.2 (+0.3)√ √
86.7 (+1.5)√ √ √
86.9 (+0.2)√ √ √ √
87.2 (+0.3)

To demonstrate the superiority of the improved method based on YOLOv5, YOLOv4
and SSD were used as other models for comparison experiments. The experimental results
are shown in Table 5; compared with other models, the improved YOLOv5s model has
the highest mAP. The mAP of the improved YOLOv5s model (87.2% mAP) exceeds SSD
(60.9% mAP) by 26.3%, and is higher than YOLOv4 and standard YOLOv5s by 5.0% and
2.3%, respectively. It also significantly exceeded the largest model, YOLOv5x (85.7% mAP),
by 1.5%. The experimental results indicate that the method is significantly superior for
underwater target identification.

Table 5. Experimental results of different algorithms.

Method Backbone Network mAP (%) AP (%,
Holothurian)

AP (%,
Echinus)

AP (%,
Scallop)

AP (%,
Starfish)

SSD VGG-16 60.9 59.5 73.8 41.1 69.1
YOLOv4 Darknet-53 82.2 71.8 89.6 82.3 85.2
YOLOv5s CSPDarknet53 84.9 74.9 91.0 85.1 88.4
YOLOv5x CSPDarknet53 85.7 76.5 91.4 86.1 88.6

Improved YOLOv5s Swin Transformer 87.2 83.3 90.5 85.1 89.7

4. Discussion

Due to the shortcomings of convolutional neural (CNN) for target detection in harsh
underwater scenes, we innovatively introduced Swin Transformer as the basic backbone
network of YOLOv5 to highlight the target features, as well as improved the traditional
PANet network and confidence loss function. Experimental results show that the improved
model based on the method proposed in this study has excellent performance in harsh
underwater scenes. As shown in Figure 13, the model works well for both single-class and
multi-class targets in the case of blurred near and far images, and all targets in the images
are detected accurately.

However, our model still suffers from false detections and missed detections when
the environment is overly complex. Figure 14 shows examples of incorrect detection.
In Figure 14a, the water weeds are incorrectly identified as holothurian. In Figure 14b,
water weeds and stones are identified as echinus. We have put additional markers in
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the figures for incorrect recognitions. In Figure 14c,d, a large number of scallops were
not detected.

(a) (b)

(c) (d)

Figure 13. Single-class and multi-class target detection results in the case of blurred images at close
and far distances, where different color squares represent different targets, the red squares represent
holothurian, the pink squares represent echinus, the yellow squares represent starfish: (a) single-class
of targets at close range; (b) multi-class of targets at close range; (c) single-class of targets at far
range; (d) multi-class of targets at far range.

(a) (b)

(c) (d)

Figure 14. Examples of incorrect detection, where different color squares represent different tar-
gets, the red squares represent holothurian, the pink squares represent echinus, the yellow squares
represent starfish, the orange squares represent scallop: (a,b) examples of incorrect detection; (c,d)
examples of not detected .

Table 6 shows the training time, testing time, precision, and recall of the model. Our
model was trained for 45 h and took 31 milliseconds to detect an image. The detection
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speed reached 32 FPS. The model size was 775 M. The precision and recall were 88.4% and
88.1%, respectively. We know from the above data that our model satisfies the real-time
requirement with high precision and recall, but the model size is relatively large.

Table 6. Other indicators of improved YOLOv5s.

Training Time (h) Time Spent in Detection (ms) Detection Speed (FPS) Size of Model (MB) Precision (%) Recall (%)

45 31 32 775 88.4 81.1

5. Conclusions

Underwater target detection algorithms have good performance on land at this phase,
but are not suitable for complex underwater environments. In this paper, we proposed
an underwater target detection algorithm based on the improved YOLOv5. The modi-
fied algorithm includes three key steps. Firstly, Swin Transformer was introduced as the
basic backbone network of YOLOv5 to highlight the target features. Secondly, the multi-
resolution feature fusion method was improved; the improved method can fuse images of
different resolutions more effectively. Finally, the confidence loss function was improved
to reduce the negative impact of low-quality anchor boxes on the network, so that the
network can be biased to learn high-quality positive anchor boxes and improve its ability to
detect targets. We compared the detection results of different models of YOLOv5 through
experiments, conducted ablation experiments for the improved strategy, and conducted
comparison experiments with other models. The experimental results show that the detec-
tion results of the YOLOv5 model in complex underwater environments were improved by
the above improvements. The improved model outperforms the general target detection
model and is more robust in complex underwater scenarios.

However, it is worth noting that our experiments were conducted only on one dataset,
which may be limited in number and type because of the difficulty of collecting underwater
datasets. It is also essential to use underwater image enhancement techniques for under-
water datasets due to the poor quality of underwater images caused by the inability of
light to completely transmit through water. In addition, the size of our model is relatively
large. In our future research, we will collect datasets containing additional underwater
target detection types and use image enhancement techniques in our models. Designing a
lightweight network to speed up inference without losing accuracy will be another focus of
future research.

Author Contributions: Data curation, F.T.; methodology, F.L.; project administration, F.L.; software,
F.L.; supervision, S.L.; validation, F.T.; writing—original draft, F.L.; writing—review and editing, F.T.
and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We appreciate the comments from three anonymous reviewers which greatly
improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zeng, L.; Sun, B.; Zhu, D. Underwater target detection based on Faster R-CNN and adversarial occlusion network. Eng. Appl.

Artif. Intell. 2021, 100, 104190. [CrossRef]
2. Chen, L.; Zheng, M.; Duan, S.; Luo, W.; Yao, L. Underwater Target Recognition Based on Improved YOLOv4 Neural Network.

Electronics 2021, 10, 1634. [CrossRef]
3. Sahoo, A.; Dwivedy, S.K.; Robi, P. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160.

[CrossRef]

http://doi.org/10.1016/j.engappai.2021.104190
http://dx.doi.org/10.3390/electronics10141634
http://dx.doi.org/10.1016/j.oceaneng.2019.04.011


J. Mar. Sci. Eng. 2022, 10, 310 18 of 19

4. Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive low-level control of autonomous underwater vehicles
using deep reinforcement learning. Robot. Auton. Syst. 2018, 107, 71–86. [CrossRef]

5. Forsyth, D. Object detection with discriminatively trained part-based models. Computer 2014, 47, 6–7. [CrossRef]
6. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
7. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
8. Platt, J. Sequential minimal optimization: A fast algorithm for training support vector machines. Adv. Kernel Methods-Support

Vector Learn. 1998, 208. Available online: https://www.microsoft.com/en-us/research/uploads/prod/1998/04/sequential-
minimal-optimization.pdf (accessed on 1 January 2022).

9. Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.G.; Chen, Y.; Xue, X. Dsod: Learning deeply supervised object detectors from scratch. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1919–1927.
[CrossRef]

10. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

11. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

13. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 379–387.

14. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [CrossRef]
[PubMed]

15. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

17. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

18. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

19. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
20. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
21. Villon, S.; Chaumont, M.; Subsol, G.; Villéger, S.; Claverie, T.; Mouillot, D. Coral reef fish detection and recognition in underwater

videos by supervised machine learning: Comparison between Deep Learning and HOG+ SVM methods. In Proceedings of the
International Conference on Advanced Concepts for Intelligent Vision Systems, Lecce, Italy, 24–27 October 2016; pp. 160–171.

22. Li, X.; Shang, M.; Qin, H.; Chen, L. Fast accurate fish detection and recognition of underwater images with fast r-cnn. In
Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–5.

23. Li, X.; Shang, M.; Hao, J.; Yang, Z. Accelerating fish detection and recognition by sharing CNNs with objectness learning. In
Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10–13 April 2016; pp. 1–5.

24. Chen, L.; Zhou, F.; Wang, S.; Dong, J.; Li, N.; Ma, H.; Wang, X.; Zhou, H. SWIPENET: Object detection in noisy underwater
images. arXiv 2020, arXiv:2010.10006.

25. Lin, W.H.; Zhong, J.X.; Liu, S.; Li, T.; Li, G. Roimix: Proposal-fusion among multiple images for underwater object detection.
In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 2588–2592.

26. Qiao, W.; Khishe, M.; Ravakhah, S. Underwater targets classification using local wavelet acoustic pattern and Multi-Layer
Perceptron neural network optimized by modified Whale Optimization Algorithm. Ocean Eng. 2021, 219, 108415. [CrossRef]

27. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning
capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

29. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; Uszkoreit, J.; Houlsby, N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020,
arXiv:2010.11929.

30. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object
Detection on Drone-captured Scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal,
QC, Canada, 11–17 October 2021; pp. 2778–2788.

http://dx.doi.org/10.1016/j.robot.2018.05.016
http://dx.doi.org/10.1109/MC.2014.42
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://www.microsoft.com/en-us/research/uploads/prod/1998/04/sequential-minimal-optimization.pdf
https://www.microsoft.com/en-us/research/uploads/prod/1998/04/sequential-minimal-optimization.pdf
http://dx.doi.org/10.1109/ICCV.2017.212
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/TPAMI.2018.2844175
http://www.ncbi.nlm.nih.gov/pubmed/29994331
http://dx.doi.org/10.1016/j.oceaneng.2020.108415


J. Mar. Sci. Eng. 2022, 10, 310 19 of 19

31. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. arXiv 2021, arXiv:2103.14030.

32. Ma, J.; Yuan, Y. Dimension reduction of image deep feature using PCA. J. Vis. Commun. Image Represent. 2019, 63, 102578.
[CrossRef]

33. Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimed. Tools
Appl. 2020, 79, 23729–23791. [CrossRef]

34. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

35. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768.

36. Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7482–7491.

37. Cai, Q.; Pan, Y.; Wang, Y.; Liu, J.; Yao, T.; Mei, T. Learning a unified sample weighting network for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 14173–14182.

http://dx.doi.org/10.1016/j.jvcir.2019.102578
http://dx.doi.org/10.1007/s11042-020-08976-6

	Introduction
	Improved YOLOv5 Network
	Overview of YOLOv5
	Proposed Model
	Backbone Network Based on Swin Transformer
	Improvement of Multi-Scale Feature Fusion
	Improvement of Confidence Loss Function Based on Detection Layers


	Experiments
	Data Set
	Model Evaluation Metrics
	Experimental Settings
	Experimental Results

	Discussion
	Conclusions
	References

