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Abstract: This paper proposes a neural network-based nonsingular terminal sliding mode controller 
with prescribed performances for the target tracking problem of underactuated underwater robots. 
Firstly, the mathematical formulation of the target tracking problem is presented with an underac-
tuated underwater robot model and the corresponding control objectives. Then, the target tracking 
errors from the line-of-sight guidance law are transformed using the prescribed performance tech-
nique to achieve good dynamic performance and steady-state performance that meet the pre-set 
conditions. Meanwhile, considering the model’s uncertainties and the external disturbances to the 
underwater robots, a target tracking controller is proposed based on the radial basis function (RBF) 
neural network and the non-singular terminal sliding mode control. Lyapunov stability analysis 
and homogeneity theory prove the tracking errors can converge on a small region that contains the 
origin with prescribed performance in finite time. In the simulation comparison, the controller pro-
posed in this paper had better dynamic performance, steady-state performance and chattering su-
pression. In particular, the steady-state error of the tracking error was lower, and the convergence 
time of the tracking error in the vertical distance was reduced by 19.1%. 

Keywords: underwater robot; target tracking; neural network; non-singular terminal sliding mode; 
prescribed performance 
 

1. Introduction 
In recent years, underwater robots have been widely used in various underwater 

tasks. Typical applications include search and rescue, monitoring and surveillance, petro-
leum exploration, deep-sea archaeological research, ship hull maintenance industry [1–3] 
and so on. In the underwater applications mentioned above, underwater robots are often 
required to track the targets in a fast and accurate manner. As underwater robots gener-
ally have the characteristics of many uncertainties, high nonlinearity and strong coupling 
dynamics, and work in an environment with unknown external disturbances, it is typi-
cally difficult for traditional linear controllers to achieve good tracking control perfor-
mance. 

Many advanced control methods have been used in the control of underwater robots, 
such as backstepping control [4–6], model predictive control [7,8], neural network control 
[9–13], active disturbance rejection control [14–16], sliding mode control [17–23], adaptive 
and distributed control [24–26] and reinforcement learning [27–30]. In the above methods, 
sliding mode control has been widely studied or used because of its strong robustness to 
the external time-varying disturbance and unmodeled characteristics, fast responses and 
easy implementation. Yingkai Xia et al. designed of an improved line-of-sight-based 
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adaptive sliding mode tracking controller for highly coupled dynamics, ocean current dis-
turbances and input saturation of underactuated autonomous underwater vehicles 
(AUVs) [21]. For the problems of the remote operated vehicle (ROV) movement instability 
and large tracking error caused by unknown disturbances, an adaptive sliding mode mo-
tion controller was developed by Zongsheng Wang et al. [20]. However, the standard slid-
ing mode control can only realize the asymptotic stability of the system, and cannot guar-
antee the convergence time. As an effective method to speed up the convergence of track-
ing errors, terminal sliding mode control achieves finite-time stability by introducing frac-
tional order terms when constructing a sliding hyperplane. For underactuated underwa-
ter vehicles, Taha Elmokadem et al. designed a target tracking controller based on termi-
nal sliding mode control, and proved that the tracking errors can converge to zero within 
a specified finite time [18]. However, the negative fractional power terms contained in the 
controller may lead to a singularity when the errors converge. Cao Jian et al. designed a 
non-singular terminal sliding mode controller that evades the issue of a singularity in the 
target tracking problem of underwater robots [31]. Nevertheless, it is necessary to obtain 
the upper bound of uncertainty in advance. Strong robustness can be obtained by setting 
a larger switching gain. However, this will lead to a serious chattering problem, affect the 
control accuracy and increase the energy consumption, which are harmful to the tracking 
control of underwater robots. B.M. Patre et al. added a state observer to the sliding mode 
controller to reduce the switching gains [19], thereby attenuating the chattering. The pre-
condition of applying this method is that the uncertainty changes slowly and the first de-
rivative is almost zero, which is inconsistent with the actual working environment of un-
derwater robots. In practice, underwater robots are always subject to various uncertain-
ties, such as unknown parameters, unmodeled time-varying dynamics and measurement 
noise. A neural network can approximate nonlinear time-varying functions and has been 
becoming one of the most effective ways to observe uncertainties [9,12,13]. It is worth not-
ing that a neural network can reduce the switching gain of a sliding mode controller by 
approximating unmodeled uncertainties. Therefore, a terminal sliding mode controller 
combined with RBF neural network technology improves the tracking control perfor-
mance while attenuating chattering. 

As underwater tasks are becoming more complex, it is important to ensure good tar-
get tracking of underwater robots. While improving the robustness to external disturb-
ances and modeling uncertainties, the controller should also pay attention to the dynamic 
performance and steady-state performance of the tracking errors. The performance con-
trol parameters proposed by Charalampos P. Bechlioulis et al. include constraints to limit 
errors, which not only ensures that the steady-state errors are always less than a pre-set 
boundary, but also limits the dynamic performance of the system state errors, including 
convergence rate and overshoot, to meet the pre-set conditions [32]. Charalampos P. Bech-
lioulis et al. developed an approximation-free trajectory tracking controller for underac-
tuated AUVs with prescribed performances [33]. Nevertheless, this controller ignored the 
existence of external disturbances and modeling uncertainties. Omid Elhaki et al. created 
a neural network-based target tracking controller for an underactuated AUV with a pre-
scribed performance to overcome unmodeled dynamics and external disturbances [10]. 
The prescribed performance technique is applied to trajectory tracking to prevent colli-
sions and improve control performance [34,35]. Furthermore, a finite-time performance 
function [36] and a nonlogarithmic piecewise error mapping function [37] have also been 
introduced to accelerate convergence. However, the finite-time convergence of the con-
trollers has not been investigated in detail. 

Differently from previous research, in order to achieve robustness to uncertainties 
and external disturbances, realize finite-time convergence, attenuate chattering and obtain 
the tracking error’s prescribed performance simultaneously, this paper proposes a neural 
network nonsingular terminal sliding mode controller with prescribed performance for 
the target tracking problem of underactuated underwater robots. Compared with the 
nonsingular terminal sliding mode controller, the proposed controller has obvious 
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advantages in dynamic performance and steady-state performance. Additionally, its chat-
tering is weaker than that of a nonsingular terminal sliding mode controller with pre-
scribed performances. Firstly, the mathematical formulation of the target tracking prob-
lem is proposed for the underactuated underwater robot model and the corresponding 
control objectives. The target tracking guidance law is designed based on the line-of-sight. 
The range and bearing angles of the robot relative to the target are obtained as tracking 
errors. Then, the range and bearing angles are transformed into corresponding transfor-
mation errors with prescribed performances. The tracking errors converge to arbitrarily 
small limit bounds, and the dynamic performance is optimized with a prespecified maxi-
mum overshoot and the convergence speed. The non-singular terminal sliding mode con-
troller was developed to ensure that the underwater robot is robust to external disturb-
ances and modeling uncertainties, and guarantee finite-time convergence of the tracking 
errors. For improving the accuracy of tracking control and attenuating the chattering of 
sliding mode control, an RBF neural network estimator is integrated to approximate mod-
eling uncertainties. Finally, a Lyapunov stability synthesis and homogeneity theory show 
that the tracking errors converge in finite time on a small region that contains zero with 
the prescribed performance. In the simulation comparison, the controller proposed in this 
paper had better dynamic performance, steady-state performance and chattering suppres-
sion. 

The remainder of this paper is ordered as follows. In Section 2, the formulation of the 
target tracking problem for underwater robots is stated. In Section 3, the design of the 
neural network nonsingular terminal sliding mode controller with prescribed perfor-
mance and its stability analysis are presented. Section 4 reports simulation experiments 
and performance comparisons. Finally, Section 5 draws the conclusions and proposes fu-
ture research. 

2. Problem 
2.1. Underwater Robot Model 

As shown in Figure 1, the motion of underwater robots is commonly described with 
the use of two coordinate systems. The first is the geotectonic inertial reference coordinate 
system {I}: the axes of the coordinate system are fixed to the earth and the origin is selected 
somewhere on the ground. The other is the body reference coordinate system {B}, whose 
origin coincides with the buoyancy center of the underwater robot. The robot is self-stable 
under roll, so the motion model does not need to consider this degree of freedom. The 
kinematic model of the underwater robot is described by the following equation: 

cos cos sin sin cos 0 0
sin cos cos sin sin 0 0

sin 0 cos 0 0
0 0 0 1 0

10 0 0 0 cos

u
v
w
q
r

ψ θ ψ θ ψξ
ψ θ ψ θ ψη

θ θζ
θ
ψ θ

−    
    
    
 −   =
    
    
        









 (1) 

where ξ , η  and ζ  indicate the position in {I}; θ  represents the pitch angle in {I}; and 
ψ  represents the yaw angle in {I}. u , v , w , q  and r  indicate the surge, sway, heave, 
pitch and yaw velocities in {B}. 
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Figure 1. Inertial reference coordinate system {I} and body reference coordinate system {B}. 

By applying the Newton–Euler formulation, the dynamics of the underwater robot 
in {B} can be described as [38]: 

( ) ( ) ( ) ex vMv C v v D v v G η τ τ+ + + = +
 

(2) 

where 
5 5M R ×∈  is the inertia matrix that includes body mass and added mass; 

5 5C R ×∈  is a matrix describing centripetal and Coriolis forces produced due to added 

inertia; 
5 5D R ×∈  represents the hydrodynamic damping matrix; ( ) 5G Rη ∈

 repre-

sents the combined gravitational and buoyancy forces vector; 
5

ex Rτ ∈  is the unknown 
time-varying vector of external disturbance forces such as waves and ocean current; and 

5
v Rτ ∈  is s the vector of control moments and forces. 

Due to the complexity and variability of the actual marine environment, it is difficult 
to ensure the accuracy of the hydrodynamic parameters obtained from an experiment, so 

the parameters are still uncertain. Therefore, M , ( )C v  and ( )D v  can be divided into 

two parts: the nominal dynamics 0M , ( )0C v  and ( )0D v ; and dynamic uncertainties 

MΔ , CΔ  and DΔ : 

( ) ( )
( ) ( )

0

0

0

( )

( )

M M M
C v C v C v

D v D v D v

= + Δ
= + Δ

= + Δ

 (3)

Then, the dynamic equation can be rewritten as the following form: 

( ) ( ) ( )0 0 0 ex vM v C v v D v v G η τ τ+ + + +Δ = +  (4)

where 
, , , ,

T

u v w q rM C D  Δ = Δ + Δ + Δ = Δ Δ Δ Δ Δ   is the total uncertainty of the dy-
namics. 

Finally, for convenience of controller design, the kinematics model and dynamics 
model of an underwater robot are presented in the standard form of a nonlinear system 
in Equation (5): 

( ) ( ) ( ) ( ) ( )
1 2

2 , ,
x Ax
x f x t g t u t x t d t

=
 ′= + + Δ +




 
(5)

where [ ]1 2, Tx x x=
 is the state variable of the system, and its expression is: 
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[ ]
[ ]

1

2

, , , ,

, , , ,

T

T

x

x u v w q r

ξ η ζ θ ψ=

=  

(6) 

The controller input ( )u t  is expressed as: 

( ) , , , ,
T

v u v w q ru t T T T T Tτ  = =    (7) 

The limits of control moments and forces are −6000 to 6000 N(Nm). Since there is no 

thruster actuator in the Y  direction, 0vT ≡ . ( ),f x t
 is a smooth nonlinear term, and it 

can be expressed according to Equation (2): 

( ) ( ) ( )1
0 0 2 2 0 2 2 1( , ) , , , ,

T

u v w q rf x t M C x x D x x G x f f f f f−  = − + + =      (8) 

The invertible matrix ( )g t
 is the control gain function. ( ),x t′Δ

 is the model un-

certainty function; ( )d t
 is the external bounded disturbance function: 

( ) { }
( )

( ) [ ]

1
0

1
0

1
0 1 2 3 4 5

, , , ,

, , , , ,

, , , ,

u v w q r

T

u u v v w w q q r r

T
ex ex ex ex ex ex

g t M diag g g g g g

x t M g g g g g

d t M τ τ τ τ τ τ

−

−

−

= =

′  Δ = − Δ = − Δ − Δ − Δ − Δ − Δ 

′ ′ ′ ′ ′= =

 (9) 

2.2. Control Objectives 
The position error between the underwater robot and the tracking target can be for-

mulated as follows: 

cos cos sin cos sin
sin cos 0

sin cos sin sin cos

e d B

e d B

e d B

x
y
z

ψ θ ψ θ θ ξ ξ
ψ ψ η η

θ ψ θ ψ θ ζ ζ

− −     
     = − −     
     −     

 (10) 

In Equation (10), ( , , )B B Bξ η ζ  and ( , , )d d dξ η ζ  are the coordinates of the underwater 
robot and the tracking target in {I} respectively. The transformation relationship between 
the range and bearing angles ( , , , )eZδ β α  and ( , , )e e ex y z  is as follows: 

2 2

2 2arctan( / )
arctan( / )

e e

e e e

e e

e e

x y

z x y
y x

Z z

δ

β
α

 = +

 = − +

=
 =

 (11) 

and 
cos
sin

e

e

e e

x
y
z Z

δ α
δ α

=
 =
 =

 (12) 

The range and bearing angles ( , , , )eZδ β α  are considered to be four tracking errors. 
Figure 2a is the horizontal projection of the underwater robot and the target from the top 
view perspective in {B}. Figure 2b is the vertical plane projection of the underwater robot 
with the z  axis coplanar with the target in {B}. It can be seen that δ  is the distance from 
the projection of the target on the BxO y  plane to the BO  point; α  is the angle between 

the line projected by the target and the underwater robot on the BxO y  plane and the x  
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axis; eZ  is the distance from the BxO y  plane to the target in {B}; and β  is the angle 

between the line of the underwater robot to the target and the BxO y  plane, as shown in 
Figure 2. 

 
 

(a) (b) 

Figure 2. The range and bearing angles ( , , , )eZδ β α : (a) the horizontal projection of an underwater 
robot and tracking target; (b) the vertical plane projection of an underwater robot and tracking tar-
get. 

Derivation of Equation (12) yields Equation (13): 

1

2

3

( tan )
tan

e e e d

e e e d

e e e d

x u qz ry
y v r x z
z w qx ry

χ
θ χ
θ χ

= − − + +
 = − − + +
 = − + + +





 (13) 

where 

1

2

3

cos cos cos sin sin
sin cos

sin cos sin sin cos

d d d d

d d d

d d d d

χ ξ θ ψ η θ ψ ζ θ
χ ξ ψ η ψ
χ ξ θ ψ η θ ψ ζ θ

 = + −
 = − +
 = + +

 
 
 

 (14) 

By combining Equations (11)–(13), the dynamic error equation related to the 
( , , , )eZδ β α  can be obtained as follows: 

( ) ( ) ( ) ( )
( ) ( )

1 2

2 2 2 2 2 2
3

1 2

3

cos sin cos tan sin cos sin

tan

tan cos sin cos sin sin cos
tan

e e d d

e e e e e d e

e e d d

e e e d

u v qZ rZ

x Z q Z Z w ry Z

Z r u v qZ

Z w qx ry

δ α α α θ α χ α χ α

β δ δ δ δ θ χ δ δ

α θ α δ δ α α α χ α χ α δ
θ χ

 = − − − − + +


   = − + + + − − + + +    
= − + + − + − +   

 = − + + +



 




 (15) 

The control objectives of this paper include the following. By designing the controller 

input ( )u t , the target tracking errors ( , , , )eZδ β α  stabilize near the origin in finite time 
with the pre-set dynamic responses and meet the steady-state error limit. To avoid colli-
sions, a small positive threshold δ  is introduced as the safe distance between the under-
water robot and the target. Therefore, δ  should converge to δ , and the others should 
converge to zero. Moreover, the proposed controller is expected to be robust to the uncer-
tainties of the dynamic model and unknown external disturbances, and can attenuate the 
chattering. 
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3. Controller Design 
3.1. Prescribed Performance and Error Transformation 

The prescribed performance is defined when the error can converge to a pre-assigned 
residual set; and the maximum overshoot, convergence rate and steady-state error in the 
convergent response strictly satisfy a bounded decreasing time function defined as the 
performance function [39]. The following formula is the mathematical expression of the 
prescribed performance. 

1 1 1 1L Hη δ η< <  (16) 

2 2 2 2L Hη β η− < <  (17) 

3 3 3 3L Hη α η− < <  (18) 

4 4 4 4eL Z Hη η− < <  (19) 

where, 1 1 2 2 3 3 4, , , , , ,H L H L H L H  and 4L  are positive real numbers, and 1 1H L>  should 
be guaranteed. , 1,2,3,4i iη =  is called the performance function, which could govern the 
dynamic and steady state performances of the errors. It is defined as 

( )0 , 1,2,3,4ia t
i i i ie iη η η η−

∞ ∞= − + =  and 0 0,  0i i iaη η ∞> > > , where iη ∞  should be suffi-
ciently small positive real numbers. iη ∞  determines the final boundaries of the tracking 
error. ia  determines the convergence rate of the tracking errors, which is mainly related 
to the dynamic performance of the system. The prescribed performance and error trans-
formation function are shown in Figure 3. 

  
(a) (b) 

Figure 3. The prescribed performance and error transformation function: (a) a graphical illustration 

for the prescribed performance; (b) error transformation function if . 

It can be seen in Equation (11) that when 0, / 2δ β π= = ± , a singularity will occur in 
the system. If / 2α π= ± , since there is no actuator for the lateral direction of the under-
water robot, the system will lose control in this direction. Therefore, the above situations 
should be avoided. Since 𝛽, 𝛼 and eZ  represent the vertical tracking error, horizontal 
orientation tracking error and vertical distance between the underwater robot and the tar-
get, respectively, they shall converge to zero as t → ∞ . If , ,Zeβ α  satisfy the constraints 
of Equations (17)–(19), the possible singularity can be avoided and the system can always 
be under control. Further, when the bound of Equation (16) is strictly satisfied, the hori-
zontal distance errorδ converges to the minimum safe distance such that ( ) 0δ δ∞ = ≠  
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as t → ∞ . This definition can not only eliminate the potential singularity of the system, 
but also maintain a safe distance between the robot and the tracking target. 

It is difficult to deal with inequality constraints Equations (16)–(19) directly. There-
fore, inequality constraints are firstly transformed into equality constraints, and four 
smooth and strictly increasing functions are defined as error transformation functions 

( ) ( ) ( ) ( )1 2 3 4, , ,
eZ

f f f fδ β αε ε ε ε  with the following properties: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4,              ,            ,           ,
eZt t t e tf f f Z fδ β αδ η ε β η ε α η ε η ε= = = =  (20) 

( ) ( ) ( )1 1 1 2 2 2 3 3 3 4 4 4,        ,     ( ) ,    ,
eZ

L f H L f H L f H L f Hδ β αε ε ε ε< < − < < − < < − < <  (21) 

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4lim ,        lim ,       lim ,      lim ,
Ze

f H f H f H f H
δ β α

δ β α δε ε ε ε
ε ε ε ε

→+∞ →+∞ →+∞ →+∞
= = = =  (22) 

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4lim ,         lim ,      lim ,     lim ,
Ze

f L f L f L f L
δ β α

δ β α δε ε ε ε
ε ε ε ε

→−∞ →−∞ →−∞ →−∞
= = − = − = −  (23) 

( ) ( ) ( ) ( )1 1 1 2 3 40 ,              0 0,                       0 0,                      0 0,f L f f fε= + = = =  (24) 

( )1 1 10 0 0 0
lim ,     lim 0,                    lim =0,                      lim Z =0,

Ze
eL

δ β αε ε ε ε
δ η ε β α

→ → → →
= + =  (25) 

where , ,δ β αε ε ε  and 
eZ

ε  are defined as the transformation errors corresponding to 
tracking errors , , , eZδ β α  respectively. When the transformation errors converge to zero, 
the tracking errors converge with prescribed dynamic and steady-state performances. 

, , eZβ α  converge to zero, and δ converges to the minimum safe distance 

( )1 1 10
lim
t

L
δε

δ δ η ε∞→
→∞

= = + . 

According to the above properties, ( ) ( ) ( ) ( )1 2 3 4, , ,
eZ

f f f fδ β αε ε ε ε  is designed as fol-

lows: 

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

4 4 4 4

4 4 4 4

1 1
1

2 2
2

3 3
3

4 4
4

Z Ze e

e Z Ze e

p v p v

p v p v

p v p v

p v p v

p v p v

p v p v

p v p v

Z p v p v

H e L ef
e e

H e L ef
e e

H e L e
f

e e

H e L ef
e e

δ δ

δ δ

β β

β β

α α

α α

ε ε

δ ε ε

ε ε

β ε ε

ε ε

α ε ε

ε ε

ε ε

ε

ε

ε

ε

+ − +

+ − +

+ − +

+ − +

+ − +

+ − +

+ − +

+ − +

 +
=

+
 − =
 +


− = +
 −

=
 +

 (26) 

where ( )( )1 1 1 1 10.5lnv H Lε ε= − −
, ( )2 2 20.5lnv H L= , ( )3 3 30.5lnv H L= , 

( )4 4 40.5lnv H L=  and 1 0, 0, 1,2,3,4ip iε > > = . 
The tracking errors should initially satisfy ( )1 10 1 100L Hη δ η< < , 

( )2 20 2 200L Hη β η− < < , ( )3 30 3 300L Hη α η− < <  and ( )4 40 4 400eL Z Hη η− < < ; that is, 

1 2 3 4 2 3 4, , , , , ,H H H H L L L  should be sufficiently large positive numbers, 1L  should be a 
small enough positive number and , , ,

eZ
Lδ β αε ε ε ε ∞∈ . Thus, the tracking errors of the sys-

tem can be guaranteed to meet the prescribed performance. All the signals of the closed-
loop system are bounded and non-singular, and the tracking errors converge with the 
specified dynamic and steady state performance (i.e., maximum overshoot, convergence 
rate and final accuracy). Finally, the tracking errors would be stabilized in the pre-set 
boundary: ( )1 1 1 1L Hη δ η∞ ∞< ∞ < , ( )2 2 2 2L Hη β η∞ ∞− < ∞ < , ( )3 3 3 3L Hη α η∞ ∞− < ∞ <  and 
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( )4 4 4 4eL Z Hη η∞ ∞− < ∞ < . The accuracy of the tracking errors can be improved by appro-
priately selecting parameters. Since the error transformation functions 

( ) ( ) ( ) ( )1 2 3 4, , ,
eZ

f f f fδ β αε ε ε ε  are strictly increasing and the performance function 

0, 1,2,3,4i iη ≠ = , the transformation errors can be obtained through the inverse transfor-
mation: 

( )( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )

1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1
3 3 3 3 3 3 3 3 3 3 3 3

1 1
4 4 4 4 4 4

0.5 ln 0.5 ln 0.5 ln

0.5 ln 0.5 ln

0.5 ln 0.5 ln

0.5 ln
e

t

t

t

Z e et

f p L p H L p H

f p H L H p L H L

f p H L H p L H L

f Z p Z H L H

δ

β

α

ε δ η δ η ε ε δ η ε

ε β η β η β η

ε α η α η α η

ε η η

− − − −

− − −

− − −

− −

= = − + − − − −

= = + − −

= = + − −

= = +( ) ( )( )1
4 4 4 4 4 40.5 ln ep L H Z Lη−








 − −

 (27) 

By continuing to derive Equation (28), 

( )
( )
( )
( )

1 1 1

2 2 2

3 3 3

4 4 4

= -

= -

= -

= -
eZ e eZ Z

δ

β

α

ε ζ δ δ η η

ε ζ β β η η

ε ζ α αη η
ε ζ η η









 

 

  
 

 (28) 

where 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

1 1 2
1 1 2

1 1 2

1 1 2e e

L H p

L H p

L H p

Z L Z H p

ζ δ η δ η η
ζ β η β η η
ζ α η α η η
ζ η η η

 = − − −  
= + − −   


= + − −   

 = + − −   . 
By substituting Equation (15) into Equation (28), we can get: 

( )
( )

1 1

2 2
2 2

3 3 3

4 4

=- cos

tan cos

e

e e

e

Z

u Y

x z q Y

z r Y
w Y

δ

β

α

ε ζ α

ε ζ δ δ

ε ζ θ α δ ζ
ε ζ

+


 = − + +  
= − − +

 = − +








 (29) 

where 

( ) ( ) ( )
( )
( )

1 1 1 1 1 1 1 2 1 1 1

2 2 2 2
2 2 2 3 2 2 2

3 3 2 1 3 3 3

4 4 3 4 4 4

cos cos sin tan sin sin

tan

cos sin sin cos sin
tan

e d e d

e e e d e

e d d

e e d e

Y qz v rz

Y z z w ry z

Y v u qz
Y qx ry z

ζ α ζ χ α ζ α ζ θ α ζ χ α ζ δ η η

ζ δ δ ζ θ χ δ δ ζ βη η

ζ α α α χ α χ α δ ζ αη η
ζ θ χ ζ η η

= − + − − + −


 = + − − + + + − 
= − + + + − −
= + + −


 








 . 

3.2. Dynamic Controller Design 
In this section, a neural network nonsingular terminal sliding mode controller is pro-

posed under bounded external disturbances and modeling uncertainties as shown in Fig-
ure 4. 
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Target Trajectory Coordinate 
Transformation

Range and 
bearing angles 

Generator

Error 
Transformation 

Function

Performance 
Function

Underwater Robot 
Model

RBF neural 
network

[ ], ,d d dξ η ζ

[ ], ,ξ η ζ

[ ], ,ξ η ζ

−

[ ], ,e e ex y z [ ], , , eZδ β α , , ,
eZδ β αε ε ε ε   Nonsingular 

terminal sliding 
mode controller

, , ,u q r wT T T T  

1 2 3 4
ˆ ˆ ˆ ˆ, , , Δ Δ Δ Δ 

 
Figure 4. The block diagram of the proposed controller. 

By continuing to take the second derivative of the transformation errors , , ,
eZδ β αε ε ε ε  

with respect to time, Equation (30) can be obtained: 

( )( ) ( )
( )

( )

1 1

2 2
2

22 2 22 2

2
3 3 3 3 3

2

cos sin

2 2

tan cos tan cos cos cos tan sin tan cos
e

e e e e e ee

e e

e e e e e
Z

u u

x x z x z zx
q

z z

z z z z z

δ

β

α

ζ α ζ αα

δ δ δ δ δδζ δε ζ
δ δε

ε
ζ θ α ζ θ α ζ θ α θ ζ θ αα δ ζ θ αδ

ε
δ

− +

  + + − +−    −    + +     = 
+ + − − 

−  

 

   

   


3

4

- r

w

ζ

ζ

 
 
 
 
 
 
             
 − 





1

2 1
2 2

2

3 3
3

4

4

cos 0 0 0

0 0 0
         

tan cos0 0 0

0 0 0

e

e

e

x u Y
z q Y

rz Y
w Y

ζ α
ζ δ

δ
ζ θ α ζ

δ
ζ

− 
     −    +   + +      − −             

−  






 

1

2

3

4

0 0 0
0 0 0

        
0 0 0
0 0 0

e eZ Z

f g u Y
f g q Y
f g r Y
f g w Y

δ δ

β β

α α

      
      
      = + +      
      

           






     

(30) 

Substituting Equation (5) into Equation (30) yields 

1 1

4 2

5 3

3 4e e e e e e

u u u u u ex

q q q q q ex

r r r r r ex

Z Z w w Z w Z w w Z ex Z

g g T g f g g g f Y
g g T g f g g g f Y
g g T g f g g g f Y
g g T g f g g g f Y

δ δ δ δ δ δ

β β β β β β

α α α α α α

ε τ
ε τ
ε τ
ε τ

′ = + − Δ + + +
 ′= + − Δ + + +
 ′= + − Δ + + +
 ′= + − Δ + + +







 (31) 

Choose the following nonsingular terminal sliding mode surface: 

1

2

3

4

1

1

1

1 Ze
Ze

e e

e

p
q

p
q

p
q

p
q

Z Z
Z

S
k

S
k

S
k

S
k

δ
δ

β
β

α
α

δ δ
δ

β β
β

α α
α

ε ε

ε ε

ε ε

ε ε


= +



 = +


 = +




= +










 (32) 
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where 0ik > , ,i ip q  is positive and odd and 1 2, , , ,i
e

i

p
i Z

q
δ β α< < = . 

The nonsingular terminal sliding mode controller is designed as follows: 

( )

( )

( )

21 1
1 1 1 1

2
1 1

2 2 2 2

21 1
3 3 3 3

1 1

sgn

sgn

sgn

e

e

p
q

u u u

p
q

q q q q

p
q

r r r r

Z Z
w Z w

k qT g g C S S f g f
p

k q
T g g C S S f g f

p

k q
T g g C S S f g f

p

k q
T g g

δ
δ

β
β

α
α

δ δ
δ δ δ δ

δ

β β
β β β

β

α α
α α α

α

ε κ

ε κ

ε κ

 − − −  

 − − −  

 − − −  

− −

 
= − + + + + 

 
 

= −  + + + + 
 
 
 

= − + + + + 
 

= −







( )
2

4 4 4 4sgn
Ze

Ze e

e e

e

p
q

w Z Z w
Z

C S S f g f
p

ε κ
 − 
 












  
  + + + +

   


 (33) 

In Equation (33), 0, 1,2,3,4iC i> = , 1 1 1ex u ug Y g gδ δκ τ ′> + − Δ
, 2 4 2ex q qg Y g gβ βκ τ ′> + − Δ

, 3 5 3ex r rg Y g gα ακ τ ′> + − Δ
 and 4 3 4e eZ ex Z w wg Y g gκ τ ′> + − Δ . 

Consider the following Lyapunov function: 

( )2 2 2 2
1 1 2 3 4

1
2

V S S S S= + + +  (34) 

Take the differential of Equation (34) and substitute Equation (33) into Equation (34) 
to obtain 

( ) ( )

( )

11

1 1 1 1 1 1 1 1 2 2 2 2 4 2 2

1

3 3 3 3 5 3 3

sgn sgn

      sgn e

pp
qq

ex u u ex q q

p
q

Z Z
ex r r

pp
V C S S g Y g g S C S S g Y g g S

k q k q

pp
C S S g Y g g S

k q

βδ
βδ

α

α

β βδ δ
δ δ β β

δ δ β β

α α
α α

α α

εε κ τ κ τ

εε κ τ

    −−       

 
−  

 

′ ′   = − + − − + Δ − + − − + Δ   

′ − + − − + Δ − 

  

  ( )

( ) ( ) ( ) ( )

1

4 4 4 4 3 4 4

11

1 1 1 1 1 1 1 2 2 2 4 2 2 2

1

3 3 3 5

sgn

sgn sgn

Ze

Ze

e

e e

e e

p
q

Z ex Z w w
Z Z

pp
qq

ex u u ex q q

p
q

ex

C S S g Y g g S
k q

pp
C S g Y g g S S C S g Y g g S S

k q k q

p
C S g

k q

βδ
βδ

α

α

β βδ δ
δ δ β β

δ δ β β

α α
α

α α

κ τ

εε κ τ κ τ

ε κ τ

 
 −
 
 

−−

−

 ′+ − − + Δ 

   ′ ′= − + − + − Δ − + − + − Δ   

− ′+ −



  

 ( ) ( ) ( ) ( )
1

3 3 3 4 4 4 3 4 4 4

1 2 3 4

sgn sgn

Ze

Ze

e e

e e

e e

e

p
q

Z Z
r r Z ex Z w w

Z Z

Z

p
Y g g S S C S g Y g g S S

k q

C S C S C S C S

α

δ β α

ε
κ τ

−

   ′+ − Δ − + − + − Δ   

= − − − −

 

 (35)

Obviously, 0, , , ,j eC j Zδ β α> = . When ( )min min jC C= , Equation (36) is obtained as 
follows: 

( )1 min 1 2 3 4

1
2

min 1   2

V C S S S S

C V

≤ − + + +

≤ −


 (36) 

According to Lyapunov finite time stability proof, the sliding mode variables 
1 2 3 4, , ,S S S S  will converge to zero in finite time. When 0, 1,2,3,4iS i= = , the dynamic 

equation of the terminal sliding surface is ( ) , , , ,
j j

j j

q q
p p

j j j j ek h j Zε ε ε δ β α= − = = . Accord-
ing to the sufficient and necessary conditions for homogeneous global finite-time stability: 

1. ( )j jhε ε ∈R  and ( ) 0j jhε ε ≤ , if and only if 0jε = , ( ) 0j jhε ε = ; 
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2. 0jε  is the initial value at 0iS = , 0jε∀ ∈R , ( )0

10

0

1

j
j j

j

j

q
p q

pj j
j

jj
j

d k
qh
p

ε

ε
ε

ε

−

−

 
 
 = < ∞
 − 
 

 . 

Therefore, the transformation error jε  will converge to zero for finite time on the 

sliding surface. The tracking errors ( ) , , , eZδ δ β α−   also converge to zero. By solving dif-

ferential equation ( )j jhε ε= , the convergence time of sliding mode is 

( )
1

0

j
j

j
j

q
j p

c jq
p

j j j

p
t

k p q
ε

−
=

−
. 

This paper introduces an RBF neural network as shown in Figure 5 to approximate 
the total modeling uncertainties. The RBF neural network has three layers: an input layer, 
a hidden layer and an output layer. The neuron activation function of the hidden layer 
consists of a radial basis function. It has good generalization ability and simple structure. 
Meanwhile, it can avoid unnecessary and lengthy calculations and can approximate any 
nonlinear function with arbitrary precision in a compact set [40]. In the RBF neural net-
work, the uncertainty terms are shown by Equation (37): 

( )*T ( ) 1,2,3,4; , , ,j i i i j u q r wεΔ = + = =W h x  (37) 

In Equation (37), x  represents the input to the network, the hidden layer output of 

the network is ( )h x , ( )
2

2exp
2

j
j

j

h x
b

 − = −
 
 

x c
 is the output of the jth neuron in the 

hidden layer, jc  is the center point vector of the Gaussian basis function in the hidden 

layer, jb  is the width of the Gaussian basis function in the hidden layer, *
iW  is the ideal 

weight of the neural network, iε  is the network approximation error and i Miε ε≤ . The 

larger jb  is, the larger the non-zero output region of the radial basis function is, indicat-

ing a stronger mapping ability to the input. The closer the input is to the center jc , the 
larger its output value will be, indicating that the radial basis function is more sensitive to 

the input. The neural network input vector is set as [ ]T, , , ,u v w q r=x , so the output of 
the radial basis network can be written as follows: 

Tˆ ˆ ( )i iΔ =W h x  (38) 

where ˆ
iW  is the actual estimate of the ideal weight, which is adaptively updated online 

based on the following Lyapunov stability analysis. Then, Equation (33) can be rewritten 
as follows: 
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( )

( )

( )

21 1
1 1 1 1

2
1 1

2 2 2 2

21 1
3 3 3 3

ˆsgn

ˆsgn

ˆsgn

p
q

u u u u u

p
q

q q q q q q

p
q

r r r r r r

k qT g g C S S f g f g g
p

k q
T g g C S S f g f g g

p

k q
T g g C S S f g f g g

p

δ
δ

β
β

α
α

δ δ
δ δ δ δ δ

δ

β β
β β β β

β

α α
α α α α

α

ε κ

ε κ

ε κ

 − − −  

 − − −  

 − − −  

 
= − + + + + − Δ 

 
 

= −  + + + + − Δ 
 
 

= − + + + + − Δ







( )
2

1 1
4 4 4 4

ˆsgn
Ze

Ze e e

e e e e

e

p
qZ Z

w Z w w Z Z w Z w w
Z

k q
T g g C S S f g f g g

p
ε κ

 − − −  










 
 
 

  
  = − + + + + − Δ

   


 (39) 

Substituting Equation (39) into the Lyapunov function 1V  yields: 

( ) ( )

( ) ( )

( ) ( )

1
1 1 1 1 1 1 1 1

1
2 2 2 2 4 2 2

1
3 3 3 3 5 3 3

sgn

      sgn

      sgn

      Ze

e

e e

p q
ex u u

p q
ex q q

p q
ex r r

pZ
Z

Z Z

p
V C S S g Y g g S

k q
p

C S S g Y g g S
k q
p

C S S g Y g g S
k q
p
k q

δ δ

β β

α α

δ
δ δ δ

δ δ

β
β β β

β β

α
α α α

α α

ε κ τ

ε κ τ

ε κ τ

ε

−

−

−

 ′= − + − − + Δ 

 ′− + − − + Δ 

 ′− + − − + Δ 

−

  

 

 

 ( ) ( )1
4 4 4 4 3 4 4sgnZe e

e e

q
Z ex Z w wC S S g Y g g Sκ τ−  ′+ − − + Δ 

 

 (40)

where ( ) ( )Tˆ ˆ ( )i i i i i iε εΔ = Δ −Δ = + − = + *T T
i iW h x W h x W h x , and ˆ= − *

i i iW W W . 
The Lyapunov function can be modified as: 

4

2 1
1

1
2

T
i

i
V V γ

=

= +  i iW W   (41) 

where 0iγ > . Differentiating 2V  and substituting Equation (39) into Equation (41) yields 

( ) ( ) ( )

( ) ( ) ( )

1 12
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 12
2 2 2 2 4 2 2 2 2 2 2 2 2 2

ˆ

ˆ      

    

p q p q
ex u

p q p q
ex q

p pV C S S g S Y S S g g S
k q k q

p p
C S S g S Y S S g g S

k q k q

δ δ δ δ

β β β β

δ δ
δ δ δ δ

δ δ δ δ

β β
β β β β

β β β β

ε κ τ ε ε γ

ε κ τ ε ε γ

− −

− −

 
′ = − + − − − − +  

 
 

′ − + − − − − +    
 

   

  

T

T

W h x W

W h x W

( ) ( ) ( )

( ) ( ) ( )

1 12
3 3 3 3 5 3 3 3 3 3 3 3 3 3

1 12
4 4 4 4 3 4 4 4 4 4 4 4 4 4

ˆ 

ˆ     Z Z Z Ze ee e e e

e e e e

e e e e

p q p q
ex r

p q p qZ ZT
Z Z ex Z Z w

Z Z Z Z

p pC S S g S Y S S g g S
k q k q

p p
C S S g S Y S S g g S

k q k q

α α α αα α
α α α α

α α α α

ε κ τ ε ε γ

ε κ τ ε ε γ

− −

− −

 ′ − + − − − − +  
 


 ′− + − − − − + 



  

  

TW h x W

W h x W


  


  (42) 

Consider the following adaptive law: 

( ) ( ) ( )11ˆ    1, 2,3, 4; , , , ; , , ,j jp qj
i j j k i e

i j j

p
g g S i j Z k u q r w

k q
ε δ β α

γ
−= − = = = W h x  (43) 

Then 
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( )

( )

( )

( )

1 2
2 1 1 1 1 1 1 1 1 1 1

1 2
2 2 2 2 4 2 2 2 2 2

1 2
3 3 3 3 5 3 3 3 3 3

1
4

      

      

      Z Ze e e

e

e e

p q
ex

p q
ex

p q
ex

p qZ
Z

Z Z

p
V C S S g S Y S S

k q
p

C S S g S Y S S
k q
p

C S S g S Y S S
k q
p

C S
k q

δ δ

β β

α α

δ
δ δ

δ δ

β
β β

β β

α
α α

α α

ε κ τ ε

ε κ τ ε

ε κ τ ε

ε

−

−

−

−

′ = − + − − − 

′ − + − − − 

′ − + − − − 

−

 





 2
4 4 4 3 4 4 4 4 4eZ exS g S Y S Sκ τ ε ′+ − − − 



 (44)

Since iε  can be limited to a small size and exiτ ′  is bounded, when 

1 1 1 1 2 4 2 2 3 5 3 3 4 3 4 4, , ,
eex ex ex Z exg Y g Y g Y g Yδ β ακ τ ε κ τ ε κ τ ε κ τ ε′ ′ ′ ′> + + > + + > + + > + +    , then 2 0V < . 

Thus, the adaptive update rate of ˆ
iW  is also given completely. 

The above stability analysis proves that the tracking errors ( ) , , , eZδ δ β α−   can con-

verge to the neighborhood of the zero without any singularity in finite time with the pre-
scribed performance, and the proposed controller can solve the problem of underwater 
robot target tracking with the external disturbances and modeling uncertainties. 

 
Figure 5. RBF neural network structure. 

4. Numerical Simulation Example 
To verify the effectiveness and robustness of the target tracking controller proposed 

in this paper, a numerical simulation has been performed on the “Qilin” underwater robot 
using MATLAB/Simulink®. The “Qilin” underwater robot is a new prototype deep-sea 
work platform that can cruise in the deep sea and crawl on the bottom of the sea. The 
thruster layout and physical prototype of the robot are shown in Figure 6. Among them, 

1L  = 2L  = 1 m; the thrust output of the four thrusters is −3000 to 3000 N. Thus, the limit 
of control moments and forces was −6000 to 6000 N(Nm) in simulation. 

1x

2x

ix

...
1h

2h

jh



...

1w

2w

jw

my
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41

32

L2

L1

L1

forward 
thrust

backward 
thrust

L2 right 
thrust

left 
thrust  

 

(a) (b) 

Figure 6. The underwater robot: (a) the thruster layout; (b) the physical prototype. 

For this simulation, the control parameters are given in Table 1. The initial position 

and orientation of the underwater robot were ( ) ( )0 0 0, , 1.25 ,1.25 ,100.1m m mξ η ζ =  

and ( )0 0, ,0
2
rad radπψ θ  =  

 
; the initial velocity of the underwater robot was 

( ) ( )0 0 0, , 0 ,0 ,0u v w m s m s m s= . The initial position of the target was 

( ) ( )0 0 0, , 2 ,2 ,100d d d m m mξ η ζ = , and the desired trajectory was generated by following 
typical timing laws: 

( )
( )

5cos 10 3
5sin 10 2

0.05 100

d

d

d

t

t
t

ξ π
η π
ζ

= −


= +
 = − +

 (45) 

Table 1. The control parameters. 

Controller Function Control Parameters 

Non-singular terminal sliding mode func-
tion 

0.01kδ = , 0.1kβ = , 0.01kα = , 0.1
eZ

k = , 

5pδ = , 5pβ = , 5pα = , 5
eZ

p = , 

3qδ = , 3qβ = , 3qα = , 3
eZ

q = , 

1 1C = , 2 10C = , 3 10C = , 4 10C = , 

1 0.5κ = , 2 0.5κ = , 3 0.005κ = , 4 0.001κ = . 

Prescribed performance function 
10 1η = , 1 0.2η ∞ = , 20 1η = , 2 0.1η ∞ = , 

30 1η = , 3 0.1η ∞ = , 40 1η = , 4 0.1η ∞ = , 

1 0.2a = , 2 0.2a = , 3 0.2a = , 4 0.2a = . 

Error transformation function 
1 2H = , 1 0.01L = , 2 0.4H = , 2 4L = , 

3 1.2H = , 3 1.2L = , 4 0.2H = , 4 0.2L = , 

1 1p = , 2 1p = , 3 1p = , 4 1p = , 1 0.5ε = . 

RBF neural network function 
( )1 0,1.8,100linspace=c , ( )2 0.5,0.7,100linspace= −c , 

( )3 0.1,0.7,100linspace= −c , ( )4 0.5,1.6,100linspace= −c , 
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1 0.5b = , 2 1.5b = , 3 0.4b = , 4 1b = , 

1 0.7γ = , 2 0.01γ = , 3 0.8γ = , 4 0.08γ = . 

Equation (46) was introduced to simulate the bounded external disturbances. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

5

0.25 0.5sin 0.1
0.25 0.5sin 0.1
0.25 0.5sin 0.1
0.25 0.5sin 0.1
0.25 0.5sin 0.1

ex

ex

ex

ex

ex

sign u t
sign v t
sign w t
sign q t
sign r t

τ
τ
τ
τ
τ

= +
 = + = +
 = +

= +

 (46) 

The uncertainties of robot were as follows in the simulation: 
35 2.5 1.5 ,  , , , ,i i i i i i u v w q rΔ = + + =  (47) 

Equation (46) and Equation (47) refer to [10]. 
To better verify the performance of the proposed controller, the proposed controller 

(PNTSMC) is compared with the nonsingular terminal sliding mode controller (TSMC) 
and the nonsingular terminal sliding mode controller with prescribed performance 
(PTSMC). The initial conditions for these controllers were the same. 

Simulation results are illustrated in Figures 7–11. 

  
(a) (b) 

 
© 

Figure 7. The underwater robot trajectory and target trajectory: (a) -η ζ  plane; (b) -ξ ζ  plane; (c) 
-ξ η  plane. 
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(a) (b) 

  
(c) (d) 

Figure 8. The tracking errors with their performance bounds: (a) ( )tδ ; (b) ( )tβ ; (c) ( )tα ; (d) ( )e tZ . 

 
Figure 9. The positional errors between the robot and the tracking target: ex , ey  and ez . 

   
(a) (b) (c) 
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(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 10. The control moments and forces uT , qT , rT  and wT . (a) uT  of PNTSMC; (b) uT  of 

PTSMC; (c) uT  of TSMC; (d) qT  of PNTSMC; (e) qT  of PTSMC; (f) qT  of TSMC; (g) rT  of 
PNTSMC; (h) rT  of PTSMC; (i) rT  of TSMC; (j) wT  of PNTSMC; (k) wT  of PTSMC; (l) wT  of 
TSMC. 

  
(a) (b) 

Figure 11. The total model uncertainty estimation: (a) the total uncertainties term iΔ ; the estimates 

of the total uncertainties term ˆ
iΔ ; (b) the errors of the above term iΔ . 

Figure 7 shows the trajectories of the underwater robot and the target. After cruising 
for a short distance, the trajectory of the underwater robot overlaps with that of the target. 
The results show that the three controllers can achieve accurate trajectory tracking in the 
presence of external disturbances and modeling uncertainties. In Figure 8, the tracking 
errors of PNTSMC and PTSMC could converge to zero with the prescribed performance 
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and converge faster with less overshooting than those of TSMC. It can be observed in 
Figure 8 that the convergence process of PNTSMC is smoother than that of PTSMC. Figure 
9 shows the posture errors. As ey  and ez  approach 0 m, ex  approaches the safe dis-

tance 0.102δ =  m. It not only achieved convergence in the underactuated direction, but 
also avoided a collision, which shows the good performance of the tracking error and the 
success of the tracking guidance law. Figure 10 shows the control moments and forces 
generated by the three controllers. TSMC had the most dramatic chattering. Since the RBF 
neural network can approximate the unmodeled uncertainties, the gain of the sliding 
mode controller can be reduced to attenuate chattering. Simulation results show that chat-
tering phenomenon of PNTSMC is weaker than that of PTSMC. From Figure 11, we can 
see that the RBF neural network effectively approximates the uncertainties of the under-
water robot. 

Remark 1. If the chattering in Figure 10 cannot be tolerated by the thrusters, continuous satura-
tion functions or hyperbolic tangent functions can be used to replace the sign functions to further 
attenuate chattering. However, this approach comes at the cost of losing control accuracy and re-
ducing robustness. 

In order to better understand the performance of different controllers, typical criteria 
such as steady-state error, convergence time and root mean square error are used for a 
quantitative comparison in Table 2. The steady-state error reflects the control accuracy 
and anti-disturbance ability of the system. The convergence time reflects the dynamic time 
of the system. In addition, root mean square error is reported to describe the controller’s 
control performance during the whole tracking process. Firstly, the results of the simula-
tion for PNTSMC and TSMC are compared. It can be seen that PNTSMC has advantages 
over TSMC in steady-state error, which shows that PNTSMC can achieve more accurate 
tracking. As for the convergence time, the convergence times of tracking errors ( )tδ , ( )tα  

and ( )e tZ  were shortened by 30.74, 0.152 and 0.621 s, respectively—reduced by 74.4%, 
3.2% and 19.1%. The convergence time of tracking error ( )tβ  increased by 1.171 s, that is, 
36.8%. In general, PNTSMC accelerated the convergence process. The root-mean-square 
errors of the tracking errors of the PNTSMC are all smaller, corresponding to ( )tδ , ( )tβ , 

( )tα  and ( )e tZ , which were reduced by 0.4238, 0.1279, 3.1862 and 0.0012 m, respectively—
70.5%, 25.2%, 50.1% and 11.0%. Secondly, for the comparison between PNTSMC and 
PTSMC, the gap between the two is very small by most criteria. The performance of 
PNTSMC was slightly better. In conclusion, we demonstrated the advantages of PNTSMC 
in rapid acquisition of stability and accurate trajectory tracking due to the prescribed per-
formance technique. 

Table 2. Comparison of the performances of different controllers. 

Quantitative Comparison Control Scheme ( )tδ  ( )tβ  ( )tα  ( )e tZ  

Steady-state error 
PNTSMC 0.0001 m −1.6155 × 10−5° 7.4915 × 10−5° −1.8646 × 10−5 m 
PTSMC 0.0001 m 7.2886 × 10−5° 0.0012° −7.355 × 10−6 m 
TSMC 0.0030 m 1.848 × 10−4° 0.0019° 1.6467 × 10−6 m 

Convergence Time 
PNTSMC 10.59 s 4.351 s 4.639 s 2.625 s 
PTSMC 10.7 s 4.146 s 4.121 s 3.951 s 
TSMC 41.33 s 3.18 s 4.797 s 3.246 s 

Root-mean-square error 
PNTSMC 0.1870 m 0.3791° 3.1786° 0.0097 m 
PTSMC 0.1942 m 0.4598° 6.1865° 0.0104 m 
TSMC 0.6008 m 0.5070° 6.3648° 0.0109 m 
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According to the above results, the proposed controller can force an underwater ro-
bot to accurately track the desired target with prescribed steady-state and dynamic per-
formances in the presence of modeling uncertainties and external disturbances. Overall, 
PNTSMC provides better dynamic performance, steady performance and chattering re-
pression than the other two controllers. 

5. Conclusions 
To achieve good target tracking motion control performance in an environment with 

uncertainties and external disturbances, we designed a neural network non-singular ter-
minal sliding mode controller for underactuated underwater robots with prescribed per-
formances. By using non-singular terminal sliding mode and the RBF neural network, the 
controller achieves strong robustness against the modeling uncertainties and external dis-
turbances. The prescribed performance technique ensures that the underwater robot has 
excellent target tracking control performance. Numerical simulations showed that the 
proposed controller has better dynamic performance, steady-state performance and chat-
tering suppression, and can accomplish the target tracking task accurately and reliably in 
the presence of modeling uncertainties and external disturbances. The controller pro-
posed in this paper is unique in its ability to achieve robustness against modeling uncer-
tainties and the external disturbances, finite-time convergence, attenuating chattering and 
prescribed performances, simultaneously. It provides a new research topic for the target 
tracking control of underwater robots. 

There are still some open problems to improve the target tracking control of under-
water robots which are for future work: 
1. A hardware implementation of the proposed controller will be realized in a practical 

robot control system, and the possible concentration degree in the actual deployment 
would be discussed. Non-singular terminal sliding mode control and RBF neural net-
works have been used on a variety of platforms, and the prescribed performance 
technique only adds some logarithmic operations. In mainstream embedded com-
puters, the computational load of the controller proposed in this paper is affordable. 
We will put this controller to the test in a computer with Intel® Atom™ N455 as the 
core. 

2. When there is a large deviation in the tracking error, or when the underwater robot 
encounters a large disturbance, the prescribed performance technique may produce 
singular values. It is necessary to adaptively adjust the relevant parameters according 
to the real environment. At the same time, a finite-time performance function will be 
considered to improve the control performance. 

3. After comparing with PTSMC and TSMC, the method proposed in this paper should 
also be compared with other state-of-the-art positioning error and tracking error 
methods. This is one of the directions for further extending and improving the pro-
posed controller. 
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