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Abstract: The current study employs a novel nonlinear robust control approach for path-following
control of underactuated autonomous underwater vehicles (AUVs) with multiple uncertainties in
the vertical plane. Firstly, a nonlinear underactuated AUV model is established to characterize the
dynamics of AUV and path-following error. To resolve dependence on a detailed model that appeared
in previous studies, the unknown time-varying attack angular velocity in the dynamic model of the
path-following error is considered as the kinematic uncertainty, while the linear superposition of the
external environmental disturbances, the perturbations in the internal model parameters, and other
unmodeled dynamics in the dynamic model is chosen as lumped dynamic uncertainties. Several
reduced-order extended state observers (ESOs) are designed for estimating both of these uncertainties.
Secondly, to reduce the impact of input saturation and avoid the “explosion of complexity” associated
with traditional back-stepping method, a nonlinear track differentiator (NTD) is utilized to follow the
virtual control signal and its derivative. Thirdly, the constructed reduced-order ESOs and NTD are
adopted to establish an augmented back-stepping controller, where its ability to stabilize the overall
system is demonstrated using the Lyapunov theorem. Finally, extensive simulations and analyses
in various working conditions, including the nominal working condition without disturbances, the
working condition with multiple uncertainties, and the conditions which better replicate the actual
environment, are performed to demonstrate the effectiveness, superiority, and robustness of the
designed controller.

Keywords: underactuated AUV; path-following; multiple uncertainties; extended state observers
(ESOs); nonlinear tracking differentiator (NTD)

1. Introduction

With the growth of marine operations, autonomous underwater vehicles (AUVs) have
become valuable tools in various applications, including water quality control, geological
sampling, underwater archaeology, underwater rescue, and oceanographic surveys [1–5].
During the mission execution mentioned above, various studies in recent decades have
been devoted to the path-following control of an AUV [6,7]. The path-following issue
involves establishing control strategies that allow a marine vehicle to track the desired tra-
jectory without time limitations [8,9]. The vehicle configuration determines the complexity
of the above-mentioned problem. For example, the path-following of an entirely actuated
vehicle is a straightforward problem. However, due to the weight, reliability, complexity,
and performance requirements, most popular AUVs are underactuated with fewer inputs
than degrees of freedom (DOFs). Lack of sway and heave actuation make the design of the
control system highly complicated, since most of the underactuated systems are strongly
coupled, time-varying, inherently extremely nonlinear among the movement of multiple
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DOFs, and include non-integrable acceleration constraints [10,11]. Additionally, the work-
ing environments of an underactuated AUV often bring unpredictable disturbances, such
as internal parametric uncertainties and external environmental disturbances, to the control
system, which might result in slow convergence speeds, or/and large steady-state errors,
and even cause instability of the closed-loop system [12].

In order to maintain stability and improve robustness in the presence of multiple
disturbances, many control strategies such as back-stepping control [13,14], sliding mode
control (SMC) [15,16], fuzzy control [17], neural network control [18,19], observer-based
method [20,21], model predictive control (MPC) [22], and their combinations [23,24] have
been widely utilized for path-following control of underactuated AUVs. In [25], an adaptive
switching supervisory control method was utilized to solve the trajectory-tracking problems
of underactuated vehicles suffering from large parametric uncertainties. In [26], a hybrid
parameter tuning strategy had been used to enhance the vehicle robustness, and the
proposed standard adaption strategy can only deal with the dynamic parameters in an
affine structure. In [18], dynamic surface control was adopted to design the controller, and
a neural network was employed to estimate the model uncertainties in the hydrodynamic
damping terms of underactuated AUVs. In [27], Lyapunov’s direct approach, back stepping,
and parameter projection strategies were adopted to establish a nonlinear robust adaptive
control scheme, forcing a 6-DOF underactuated AUV to follow the predefined path at an
intended speed under environmental disturbances. Unfortunately, unknown parameters
must be held constant in this method, which is unrealistic for the challenging marine
environmental conditions. In [28], the back-stepping approach and dynamical SMC theory
were utilized to construct a nonlinear path-following controller for an underactuated
surface ship. Although the modeling errors and external disturbances were considered in
the control system, the path curvature was not considered. Accordingly, only straight or
piecewise straight lines could be followed. By converting the trajectory tracking control
problem into a constrained standard quadratic programming problem, Zhang et al. [22]
proposed a novel three-dimensional trajectory tracking controller using MPC to address
the trajectory tracking problem of an AUV with the model uncertainties and time-varying
disturbances. However, the MPC methods require an accurate mathematical model of the
vehicle. As is well known, it is challenging to obtain an accurate mathematical model of
underactuated AUV due to the complex marine environment.

In practice application, due to the existence of the perturbations in the internal model
parameters and the external disturbances, it is an arduous task to perform precise path-
following control of an underactuated AUV. In recent years, extended state observer (ESO)
has been well developed to estimate the internal model uncertainties and/or the exter-
nal environmental disturbances [29,30]. Compared to other currently available observer
techniques, such as the unknown input observer (UIO), the uncertainty and disturbance
estimator (UDE), and other disturbance and uncertainty estimation techniques, it has been
proved that ESO requires minimum information about a dynamical system [31]. There-
fore, it is appealing to utilize ESO to estimate the unknown velocity and disturbances in
the underactuated AUVs [32–34]. In [33], an ESO-based disturbance rejection method,
combined with neurodynamic optimization method, was proposed for path-following
control of underactuated AUVs with velocity and input constraints, as well as internal
and external disturbances. Unfortunately, due to the relatively complex derivations and
decision-making process, the above-mentioned controller required substantial computa-
tional costs. In [35], a finite-time controller based on disturbance observer and command
filter back-stepping was proposed to avoid the differential expansion problem caused by
the traditional back-stepping calculation complexity. However, the parameter uncertainties
were not taken into consideration in the above control method, which is unrealistic in
practical applications.

Motivated by the above considerations, a back-stepping controller augmented by
reduced-order ESOs and NTD is designed to achieve path-following control of an underac-
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tuated AUV with multiple uncertainties in the vertical plane. The main contributions of
the current study are summarized as follows:

(1) To relax the requirement of having an accurate estimation of the model parameters,
and reduce dependence on the precise mathematical model, the unknown time-
varying attack angular velocity in the dynamic model of the path-following error
is treated as kinematic uncertainty, while the linear superposition of the external
environment disturbances, the perturbations in the internal model parameters, and
other unmodeled dynamics in the dynamic model is treated as the lumped dynamic
uncertainties. Four reduced-order ESOs are introduced for an accurate estimation of
the kinematic and dynamic uncertainties. Compared with previous studies [36,37],
which are based on the assumption that the attack angle was neglected or regarded as
constant, the unknown time-varying attack angle is considered in this paper, which is
suitable for a challenging marine environment.

(2) To eliminate the effect of input saturation and handle the “explosion of complexity”
associated with a traditional backstepping method, an NTD is utilized to track the
virtual control signal and its derivative. Compared with the traditional dynamic
surface control method presented in [18,38], the NTD is a time-optimal solution that
provides the fastest tracking of the input signal [29].

(3) Based on the constructed reduced-order ESOs and NTD, an augmented back-stepping
controller is constructed to enhance the robustness against the external environment
disturbances, the perturbations in the internal model parameters, and other unmod-
eled dynamics. Compared with the previous study [39] on vertical path-following
control of underactuated AUVs, the proposed controller is simplified and is more
suitable for underactuated AUVs cruising in complex marine environment. Then, the
nominal working condition without disturbances, the working condition with multi-
ple uncertainties, and the conditions which better replicate the actual environment
are introduced to further evaluate the effectiveness, superiority, and robustness of the
mentioned controller.

This paper is organized as follows: Section 2 introduces the underactuated AUV
dynamics and problem formulation, and the nonlinear path-following control strategy is
described in Section 3. In Section 4, the closed-loop system stability is verified, followed by
the numerical simulations and discussions provided in Section 5. Section 6 contains the
concluding remarks of this paper and future research avenues.

2. Underactuated AUV Model and Problem Formulation

In this section, the three-DOF mathematical model of an underactuated AUV with
multiple uncertainties in the vertical plane is presented to formulate the path-following
control problem. The path-following problem in the vertical plane is described in Figure 1,
where the notations and the corresponding description are presented in Table 1.

Table 1. Notation.

{I} Earth-fixed frame
{B} Body-fixed frame
{SF} Serret-Frenet frame
[x, z, θ] Inertial position and orientation vectors of AUV
[u, w, q] Body-fixed velocity vector
[xe, ze, υe] Path following error vector
[xF, zF, υF] Position and elevation angle vector of virtual target P

α Attack angle of AUV
υ Course angle of AUV
U Total speed of AUV
∆ Look-ahead distance

υLOS Line-of-sight (LOS) angle
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Figure 1. The geometric description of vertical path following of an underactuated AUV.

2.1. The Underactuated AUV Model

The kinematic relations can be described as [17,39]:
.
x = u cos θ + w sin θ
.
z = −u sin θ + w cos θ
.
θ = q

(1)

Based on the previous studies [17,39] and considering the external environmental
disturbances, the perturbations in the internal model parameters and other unmodeled
dynamics, the dynamic model of an underactuated AUV in the vertical plane is modified as:

.
u = F11(u, w, q) + Fu

m11
+ du

.
w = F12(u, w, q) + dw
.
q = F13(u, w, q)− BL sin θ

m33
+

Fq
m33

+ dq

(2)

with
F11(u, w, q) = −m22

m11
wq− d11

m11
u− du2

m11
u|u| − du3

m11
u3

F12(u, w, q) = m11
m22

uq− d22
m22

w− dw2
m22

w|w| − dw3
m22

w3

F13(u, w, q) = m22−m11
m33

uw− d33
m33

q− dq2
m33

q|q| − dq3
m33

q3

where mii(i = 1, 2, 3) denotes the combined terms of mass and inertia parameters of the
AUV; dii(i = 1, 2, 3), di2(i = u, w, q), and di3(i = u, w, q) represent the nominal hydro-
dynamic parameters in the vehicle model; B is the buoyancy of the AUV; L denotes the
metacentric height; Fu and Fq represent surge control force and pitch control torque, re-
spectively; di(i = u, w, q) represents lumped dynamic uncertainties, including the external
environmental disturbances, the perturbations in the internal model parameters and other
unmodeled dynamics.

Remark 1. It is noted that there is no direct control force in the heave direction, so the vehicle is
considered underactuated.
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2.2. Path-Following Error Dynamics

As depicted in Figure 1, assuming that an underactuated AUV to track a predefined
path is located at (x, z), the path-following error equation constructed in the Serret-Frenet
frame is given by [17]: 

xe = (x− xF) cos υF − (z− zF) sin υF
ze = (x− xF) sin υF + (z− zF) cos υF
υe = υ− υF

(3)

Differentiating the above error equation and considering
.
υF = cc(s)

.
s, υ = θ − α, the

error dynamics can be written as follows [17]:
.
xe = −

.
s(1 + zecc) + U cos υe.

ze = cc
.
sxe −U sin υe.

υe = q− .
α− cc

.
s

(4)

where cc(s) denotes the path curvature of the predefined path.
.
s represents the velocity of

the virtual point P.

Remark 2. It is noted that the third equation of the error dynamic model (Equation (4)) involves
the calculation of

.
α. According to the definition of the attack angle α = arctan(w/u) and the

total speed U =
√

u2 + w2, it can be deduced that
.
α = (u

.
w − w

.
u)/U2. However, due to the

existence of the lumped dynamic uncertainties di(i = u, w, q), and cannot be obtained from the
dynamic model (Equation (2)). Thus,

.
α is unknown and coupled with the pitch speed q. To address

this problem,
.
α is treated as the kinematic uncertainty, and the reduced-order ESO is utilized to

observe it.

The third equation of the dynamic model of the path-following error is modified as:

.
υe = q− dυ − cc

.
s (5)

where dυ =
.
α is the kinematic uncertainty to be estimated.

2.3. Problem Formulation

To facilitate the design of the path-following controller, the reasonable assumptions
taken into consideration are summarized as follows:

Assumption 1. dυ and
.
dυ are bounded, i.e.,

∣∣∣ dldυ

dtl

∣∣∣ ≤ dυ (l = 0, 1), where dυ is an unknown
positive constant [34,40].

Assumption 2. The unknown time-varying lumped dynamic uncertainties are bounded, i.e., du, dw,
and dq satisfy ‖di‖ ≤ di, (i = u, w, q), where di(i = u, w, q) is unknown positive constants [41].

Assumption 3. A finite desired path is considered, such that xF, zF,
.
xF, and

.
zF are bounded [41].

Assumption 4. The position vector (x, z), the velocity vector (u, w, q), and the pitch angle θ
are measurable.

Remark 3. Firstly, the kinematic uncertainty dυ is determined by
.
α, and the limited external

disturbances mainly influence the attack angle α. Therefore, it is reasonable to assume that the dυ

and
.
dυ are bounded in Assumption 1. Secondly, since external disturbances, the perturbations in

the internal model parameters, and unmodeled dynamics are bounded in practice, Assumption 2 is
reasonable. Finally, due to the limited movement space of AUV, Assumption 3 is practical.

According to the above assumptions and analyses, the formulation of the control
objective of the current research can be described as follows:
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Considering the dynamics of AUV and path-following error dynamics described by
Equations (2) and (4), design an appropriate controller which can force the underactuated
AUV to follow a given geometric path at the desired surge speed ud in the limitations
described by Assumptions 1–4, such that

sup
t∈[t0,∞]

‖xe‖ ≤ ε, sup
t∈[t0,∞]

‖ze‖ ≤ ε, sup
t∈[t0,∞]

‖υe − υLOS‖ ≤ ε, sup
t∈[t0,∞]

‖u− ud‖ ≤ ε

where ε is a small positive constant and desired bound among the controlled output and
the reference signal.

3. Path-Following Controller Design

In this section, a novel robust path-following control scheme for the underactuated
AUV subject to multiple uncertainties is established. The structure of the proposed con-
troller is shown in Figure 2. The nonlinear controller can be divided into two parts: speed
control subsystem and attitude control subsystem. Two sets of reduced-order ESOs are
designed to estimate the kinematic and dynamic uncertainties, and the estimated values are
used in the design of the speed control subsystem and the attitude control subsystem. In
the attitude control subsystem, the attitude control law is designed to generate the desired
pitch angular velocity. Then, the angular velocity control law is designed to generate the
pitch moment, so that the pitch angular velocity can converge to the desired pitch angular
velocity. To resolve the problem of “explosion of complexity” inherent in the traditional
back-stepping method, the NTD is utilized to obtain the derivative of the desired pitch
angular velocity. In the speed control subsystem, the surge velocity control law is designed
to generate the surge force, so that the surge speed can converge to the desired surge speed.
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3.1. Design of Reduced-Order ESOs

As mentioned previously, the advantage of an ESO is that it needs only the mini-
mum effective information of the dynamical system [32]. Moreover, compared with the
conventional ESO, the reduced-order ESO produces faster transient response in the same
bandwidth [42]. Therefore, four reduced-order ESOs are designed for estimating the
kinematic uncertainty dυ in the dynamic model of the path-following error and lumped
dynamic uncertainties di(i = u, w, q) in the dynamic model. The following four specific
reduced-order ESOs are designed as follows [30]:{ .

p1 = −ω1 p1 −ω2
1u−ω1

[
Fu

m11
+ F11(u, w, q)

]
d̂u = ω1u + p1 , ω1 > 0

(6a)
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{ .
p2 = −ω2 p2 −ω2

2w−ω2F12(u, w, q)
d̂w = ω2w + p2 , ω2 > 0

(6b){ .
p3 = −ω3 p3 −ω2

3q−ω3

[
F13(u, w, q)− BL sin θ

m33
+

Fq
m33

]
d̂q = ω3q + p3 , ω3 > 0

(6c)

{ .
p4 = −ω4 p4 −ω2

4υe −ω4
(
q− cc

.
s
)

d̂υ = −(ω4υe + p4) , ω4 > 0
(6d)

where d̂u, d̂w, d̂q, and d̂υ are estimations of the dynamic and kinematic uncertainties,
pi(i = 1, 2, 3, 4) denotes the observe auxiliary state, and ωi(i = 1, 2, 3, 4) describes the
bandwidth of reduced-order ESOs.

Remark 4. Considering that the internal dynamics F11, F12, and F13 are available before design,
their models are included in the observers to reduce its estimation burden.

The estimation error of reduced-order ESOs for disturbances has been widely investi-
gated in previous studies [42]. Therefore, the following conclusion can be obtained [43]:

‖E0‖ ≤
max(dj)

min(|ωi|)
, j = u, w, q, υ, i = 1, 2, 3, 4 (7)

where E0 = [ d̃u d̃w d̃q d̃υ ]
T
= [ du − d̂u dw − d̂w dq − d̂q dυ − d̂υ ]

T .

Remark 5. Equation (7) indicates that the observer gains ωi(i = 1, 2, 3, 4) can be adjusted to
ensure the estimation errors is within an arbitrarily narrow bound.

3.2. The LOS Guidance Law Design

In this subsection, the LOS guidance law is constructed to calculate the desired LOS
angle. The LOS guidance issue and the interrelated essential variables are described in
Figure 1. The maneuvering features of the vehicle change significantly concerning the
look-ahead distance (∆). Hence, algorithms with a time-varying ∆ are implemented to
ensure flexible behavior. Here, in order to reduce the overall complexity of the problem, a
fixed ∆ is considered and the LOS guidance law is given by:

υLOS = arctan
( ze

∆

)
, ∆> 0 (8)

Remark 6. The value of ∆ affects the guidance performance, for instance, a lower value of ∆
induces more aggressive steering, whereas a larger value of ∆ induces milder steering. Therefore,
the value of ∆ is usually chosen between 1.5 and 2.5 of the AUV length.

3.3. The Kinematic Controller Design
3.3.1. The Virtual Target Movement Control Law Design

In this subsection, the virtual target movement control law is constructed to overcome
the strict constraints that the initial position of the underactuated AUV must be in a narrow
bound near the desired path. As proposed in [26,44], the virtual target movement control
law is constructed as follows:

.
s = U cos υe + k2xe (9)

where k2 is a positive constant.
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3.3.2. Attitude Control Law Design

In this subsection, the attitude control law is constructed to calculate the desired pitch
speed qd. The desired dynamic features of the pitch angle error υe can be represented
as follows:

.
υe =

.
υLOS − k1(υe − υLOS) (10)

where k1 is a positive constant.
According to the linear feedback design process, inserting Equation (10) into

Equation (5), results in:

qd = cc
.
s +

.
υLOS + dυ − k1(υe − υLOS) (11)

where qd denotes the desired pitch speed.
With the kinematic uncertainty obtained by the reduced-order ESO (Equation (6d)),

the desired pitch speed can be modified as:

qd = cc
.
s +

.
υLOS + d̂υ − k1(υe − υLOS) (12)

3.4. Dynamic Controller Design
3.4.1. Angular Velocity Control Law Design

In this subsection, the angular velocity control law is constructed to generate the
control moment Fq, so that the pitch speed q can converge to the desired pitch speed
qd obtained by the attitude control law. The desired dynamics of pitch speed can be
represented as follows:

.
q =

.
qd − k4(q− qd) (13)

where k4 is a positive constant.
Substituting Equation (13) into the third equation of Equation (2), together with the

estimation d̂q generated by the ESO (Equation (6c)), the angular velocity control law can be
obtained as:

Fq =
[
−k4(q− qd) +

.
qd − d̂q − F13(u, w, q)

]
m33 + BL sin θ (14)

It is noted that the angular velocity control law represented by Equation (14) involves
the calculation of the derivative (

.
qd) of the desired pitch angle qd. However, the complex

expression d̂υ (Equation (6d)) is included in qd, which results in the problem of “explosion
of complexity”. Therefore, an NTD is introduced to obtain the derivative of the desired
pitch speed. The discrete form of NTD is provided as follows [29]:

f h = f han(qc(k)− qd(k),
.
qc(k), r, h)

qc(k + 1) = qc(k) + T
.
qc(k).

qc(k + 1) =
.
qc(k) + T f h

(15)

where qc is the fastest tracking of qd and
.
qc is the derivative of qc; T denotes the sampling

period, r is an acceleration parameter, and h is the filter factor. A description of f han(·) and
a detailed explanation about the NTD have been presented in [29].

The theoretical results about the NTD convergence in [30,43] can be utilized to derive
the following results:

Corollary 1. If the input signal qd is differentiable and bounded, there are arbitrarily small values
of a, ε1, ε2 > 0, such that:  lim

q→∞
|qc − qd| ≤ ε1

lim
q→∞

∣∣ .
qc −

.
qd
∣∣ ≤ ε2

t ∈ [a, ∞) (16)
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Therefore, with the availability of qc and its derivative
.
qc, the angular velocity control

law (Equation (14)) can be further modified as:

Fq =
[
−k4(q− qc) +

.
qc − d̂q − F13(u, w, q)

]
m33 + BL sin θ (17)

3.4.2. Surge Velocity Control Law Design

In this subsection, the surge velocity control law is constructed to generate the control
force Fu, so that the surge speed u can converge to the given desired surge speed ud. The
desired dynamics of the surge speed can be represented as follows:

.
u =

.
ud − k3(u− ud) (18)

where k3 is a positive constant and
.
ud = 0.

Substituting Equation (18) into the first equation of Equation (2), together with the
estimation d̂u generated by the ESO (Equation (6a)), the surge velocity control law can be
obtained as:

Fu =
[
−k3(u− ud)− d̂u − F11(u, w, q)

]
m11 (19)

According to the above derivations and analyses, the kinematic controller and dynamic
controller are summarized as follows:

qd = cc
.
s +

.
υLOS + d̂υ − k1(υe − υlos)

Fu =
[
−k3(u− ud)− d̂u − F11(u, w, q)

]
m11

Fq =
[
−k4(q− qc) +

.
qc − d̂q − F13(u, w, q)

]
m33 + BL sin θ

(20)

Remark 7. u, w, q, and θ are assumed to be measured by the sensors; d̂u, d̂w, and d̂q are estimated
by the designed reduced-order ESO; m11, m33, B, and L are the AUV model parameters, which
are known; k1, k3, and k4 are control gains to be designed; qc and

.
qc are obtained by the NTD

(Equation (15)).

4. Stability Analysis of the Closed-Loop System

In this section, the stability of the closed-loop system, under the proposed novel robust
controller, is established. The tracking errors of the closed-loop system are defined as:

E1 =
[

υ̃e q̃
]T

=
[

υe − υLOS q− qd
]T , E2 = ũ = u− ud, and E3 =

[
xe ze

]T .

Theorem 1. Consider the underactuated AUV model (Equations (1) and (2)) with multiple
uncertainties, and suppose that Assumptions 1–4 are satisfied. If the kinematic uncertainty and
the lumped dynamic uncertainties are estimated by Equation (6a–d), the desired LOS angle is
calculated by Equation (8), the parameter of desired path is updated by Equation (9), the derivative
of the desired pitch speed is obtained by Equation (15), and the control laws are obtained from
Equation (20), then the following proposition holds:

(1) The tracking errors E1, E2, and E3 ultimately converge to an arbitrarily narrow bound
around zero.

(2) The heave velocity which is not controlled directly is uniformly ultimate bounded.

Proof. The proof includes three parts.
Firstly, we show that the tracking error E1 tends to narrow bound around zero using

NTD (Equation (15)), ESOs (Equation (6c,d)), and the control law (Equations (12) and (17)).
The following Lyapunov function candidate is considered:

V1 =
1
2
(υe − υlos)

2 +
1
2
(q− qd)

2 =
1
2

υ̃e
2 +

1
2

q̃2 (21)
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Considering Equations (2) and (5), the time-derivative of Equation (21) can be de-
scribed as:

.
V1 = (υe − υLOS)(

.
υe −

.
υLOS) + (q− qd)(

.
q− .

qd)

= (υe − υlos)(q− dυ − cc
.
s− .

υLOS) + (q− qd)(F13 +
Fq

m33
+ dq − BL sin θ

m33
− .

qd)
(22)

Substituting Equations (6c,d), (12), (15), and (17) into Equation (22), results in:

.
V1 = (υe − υLOS)(q̃ + cc

.
s +

.
υLOS + d̂υ − k1(υe − υlos)− (d̃υ + d̂υ)− cc

.
s− .

υLOS)

+(q− qd)

(
F13 +

(−k4(q−qc)−d̂q+
.
qc−F13)m33+BL sin θ
m33

+ d̂q + d̃q − BL sin θ
m33

− .
qd

)
= −k1υ̃2

e + q̃υ̃e − d̃υυ̃e + q̃
[
−k4(q− qc)− d̂q +

.
qc + d̂q + d̃q −

.
qd

]
= −k1υ̃2

e + q̃υ̃e − d̃υυ̃e + q̃
[
−k4(q− qd + qd − qc) +

.
qc + d̃q −

.
qd

]
= −k1υ̃2

e + q̃υ̃e − d̃υυ̃e − k4q̃2 + q̃
[
k4(qc − qd) + (

.
qc −

.
qd) + d̃q

]
≤ −k1υ̃2

e + q̃υ̃e − d̃υυ̃e − k4q̃2 + q̃(k4ε1 + ε2 + d̃q)

(23)

According to Young’s inequality [45], the following relationship holds:

.
V1 ≤ −k1υ̃2

e − k4q̃2 + 1
2 q̃2 + 1

2 υ̃e
2 + q̃(k4ε1 + ε2 + d̃q)− d̃υυ̃e

= −
[

υ̃e q̃
][ k1 − 1

2 0
0 k4 − 1

2

][
υ̃e
q̃

]
+
[

υ̃e q̃
][ −d̃υ

k4ε1 + ε2 + d̃q

]
= −E1

TGE1 + E1
TK ≤ −‖E1‖2‖G‖+ ‖E1‖‖K‖

= −‖E1‖(‖E1‖‖G‖ − ‖K‖)

(24)

We set k1 > 1
2 and k4 > 1

2 to ensure that G is a positive definite matrix. Thus, during a
limited time, the norm of the tracking error E1 is bounded by:

‖E1‖ ≤ ‖K‖
‖G‖ ≤

λmax(K)
λmin(G)

=
k4ε1+ε2+d̃q

min(k1,k4)− 1
2

≤
k4ε1+ε2+

max(dq)
min(|ω3|)

min(k1,k4)− 1
2

(25)

where λmin(G) indicates the smallest eigenvalue of G, and λmax(K) describes the maximum
eigenvalue of K.

Secondly, we show that the tracking error E2 converges to a narrow bound near zero
using the control law (Equation (19)) and ESO (Equation (6a)). Consider the following
Lyapunov function candidate:

V2 =
1
2
(u− ud)

2 =
1
2

ũ2 (26)

Considering Equations (2), (6a), and (19), the time-derivative of Equation (26) can be
computed as follows:

.
V2 = (u− ud)(

.
u− .

ud)

= (u− ud)
(

F11 +
Fu

m11
+ du

)
= (u− ud)

(
F11 +

m11[−F11−d̂u−k3(u−ud)]
m11

+ du

)
= −k3ũ2 + d̃uũ

(27)

where k3 is a positive constant. It has been proved that the estimation error satisfies

d̃u ≤ max(du)
min(|ω1|)

. This means that d̃u is finite. Accordingly,
.

V2 < 0 can be realized when the
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control gain k3 is large enough. The decrease in V2(t) finally forces the closed-loop system

trajectories within ‖E2‖ ≤ d̃u
k3

.
Finally, we show that the tracking error E3 converges to a narrow bound near zero

using the control law (Equation (9)). Consider the following Lyapunov function candidate:

V3 =
1
2

(
xe

2 + ze
2
)

(28)

Considering Equations (4), (8) and (9), the time-derivative of Equation (28) can be
written as follows:

.
V3 =

(
xe

.
xe + ze

.
ze
)

= xe
[
− .

s(1 + zecc) + U cos υe
]
+ ze

[
cc

.
sxe −U sin υe

]
= −k2xe

2 − zeU sin υe
= −k2xe

2 − zeU sin υLOS cos υ̃e + zeU sin υ̃e cos υLOS
≤ −k2xe

2 − zeU ze√
∆2+z0

2
cos υ̃e + zeU sin υ̃e

= −
[

xe ze
][ k2 0

0 U√
∆2+z0

2
cos υ̃e

][
xe
ze

]
+
[

xe ze
][ 0

U sin υ̃e

]
= −E3

T NE3 + E3
T M ≤ −‖E3‖2‖N‖+ ‖E3‖‖M‖

= −‖E3‖(‖E3‖‖N‖ − ‖M‖)

(29)

where k2 is a positive constant. It is assumed that ze is bounded, that is, |ze| ≤ z0, where z0
is a positive constant. It has been demonstrated that υ̃e tends to a neighborhood near zero.
Thus, the norm of the tracking error E3 is bounded by:

‖E3‖ ≤
‖M‖
‖N‖ ≤

λmax(M)

λmin(N)
=

U sin υ̃e

min(k2, U cos υ̃e√
∆2+z0

2
)

(30)

where λmin(N) denotes the minimum eigenvalue of N, while λmax(M) denotes the maxi-
mum eigenvalue of M.

Consider the following Lyapunov function candidate:

V4 =
1
2

m22w2 (31)

Differentiating Equation (31) with respect to the time, and combining Equation (2),
yields:

.
V4 = m22w

.
w

= m11uwq− d22w2 − dw2|w|w2 − dw3w4 + m22wdw
≤ m11|uq||w| − d22w2 − dw2|w|w2 − dw3w4 + m22|w|dw

=
(

m11|uq|+ m22dw

)
|w| − d22w2 − dw2|w|w2 − dw3w4

(32)

where m11, u, q, and dw are bounded and the hydrodynamic parameters d22, dw2, and dw3
are positive constants. According to [46], the indirectly controlled heave velocity of the
underactuated AUV is ultimately uniformly bounded. �

5. Numerical Simulation and Comparative Analysis

In the current section, comparative numerical simulations and robustness analyses are
introduced to demonstrate the effectiveness, superiority, and robustness of the presented
controller. The performance of the presented controller (named as Controller 1) is compared
with the back-stepping controller (named as Controller 2) presented in [39] and the fuzzy
sliding mode controller (named as Controller 3) proposed in [17]. Three different scenarios
are presented in Sections 5.1–5.3. For a fair comparison, we adopt a specific underactuated
AUV with a length of 5.56 m and a mass of 1089.8 kg [17,39,47,48] for numerical simulations.
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The values of the AUV model parameters employed in these comparative simulations are
shown in Table 2 [39,47].

Table 2. Rigid body and hydrodynamic parameters of the AUV.

m11 = 1116 kg, m22 = 2133 kg, m33 = 4061 kgm2, d11 = 25.5 kgs−1, d22 = 138 kgs−1, d33 = 490 kgm2s−1

du2 = 0, du3= 0, dw2 = 920.1 kgm−2s, dw3 = 750 kgm−3s2, dq2 = 0, dq3 = 0, B = 10690.9 N,
L = 0.0065 m

Remark 8. For the underactuated AUV used in numerical simulations, q and θ can be measured
by Attitude and Heading Reference System (AHRS), u and w can be measured by Doppler Velocity
Log (DVL), x can be measured by Inertial Navigation System (INS), and z can be measured by the
depth sensor [48].

5.1. Comparative Analysis of the Path-Following Performance in the Nominal Working Condition
without Disturbances

In the current subsection, the effectiveness of the presented controller is verified
through comparison with Controller 2. The initial conditions of the underactuated AUV in
the nominal working condition and the designed controller parameters are listed in Table 3.
For a fair comparison, the desired path is parameterized as [39]:

xF(v) = v

zF(v) =

{
50, v ≤ 150
45, v > 150

(33)

where v(s) can be estimated as:

dv

ds
=

1√[
(xF)

′
]2

+
[
(zF)

′
]2

(34)

where (xF)
′ = dxF

dv and (zF)
′ = dzF

dv .

Remark 9. The elevation angle of virtual target point P is υF(s) = − tan−1 (zF)
′

(xF)
′ , and the

curvature of the predefined path at the virtual target’s position can be obtained as cc(s) =
∂υF(s)

∂v
dv
ds .

Table 3. Initial conditions of the underactuated AUV in the nominal working condition and the
designed controller parameters.

Initial conditions of the
underactuated AUV

x(0) = 1 m, z(0) = 45 m, u(0) = 0 m/s, w(0) = 0 m/s,
q(0) = 0 rad/s, θ(0) = 0.05 rad, s(0) = 0 m, ud = 2 m/s

Controller parameters
k1 = 1, k2 = 10, k3 = 1,

k4 = 1, ω1= 20, ω2= 20, ω3= 20, ω4= 5, h = 0.01 s−1,
r = 100 m/s2, T = 0.001 s−1

The numerical simulations are presented in Figures 3–7. Figure 3 depicts the path-
following results of two controllers in the vertical plane. It is evident that both Controller
1 and Controller 2 can drive the underactuated AUV to accurately follow the given path,
but Controller 1 has a faster convergence rate than Controller 2. The corresponding path-
following errors and speed evolutions are displayed in Figures 4 and 5, respectively. It
is easily observed that the path-following errors of two controllers tend to a very narrow
band around zero rapidly. Moreover, the surge speed u rapidly converges to the given
surge speed ud = 2 m/s, while the heave and pitch speeds are kept bounded, which is
consistent with Theorem 1. However, Controller 1 has a shorter convergent time in position
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tracking than Controller 2. The control inputs Fu and Fq in the nominal working condition
are presented in Figure 6. It can be concluded from Figure 6 that both Controller 1 and
Controller 2 can guarantee that the control inputs remain in the boundary range.

According to the above analyses, both Controller 1 and Controller 2 are verified to be
effective for path-following in the vertical plane, but Controller 1 exhibits more satisfactory
performance than Controller 2 in the nominal working condition.
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For a fair comparison, the desired path is parameterized as [17]: 
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5.2. Comparative Analysis of the Path-Following Performance under Multiple Uncertainties

In practical applications, the performance of underactuated AUVs can be affected
by external disturbances, perturbations in the internal model parameters, and other un-
modeled dynamics. In this subsection, the superiority of Controller 1 under the unknown
multiple uncertainties is evaluated through comparison with Controller 3. The initial con-
ditions of the underactuated AUV with multiple uncertainties and the designed controller
parameters are presented in Table 4. The multiple uncertainties, which include both internal
model parameter perturbations and the external environmental disturbances, are generated
as follows [17]:

∆m11 = −0.2m11, ∆m22 = −0.2m22, ∆m33 = −0.1m33, ∆d11 = −0.1d11, ∆d33 = −0.3d33, ∆L = −0.3L.


∆Fu = (−0.2m11 cos θ − 0.1m22 sin θ) f (t)
∆Fw = (−0.2m11 sin θ + 0.1m22 cos θ) f (t)
∆Fq = −0.1m33 f (t)

(35)

where f (t) = 1 + 0.1 sin(2t).
For a fair comparison, the desired path is parameterized as [17]:{

xF(v) = v

zF(v) = 10
[
1 + 0.25tanh

(
v−75

15
)] (36)

Table 4. Initial conditions of the underactuated AUV with multiple uncertainties and the designed
controller parameters.

Initial position and posture of
the underactuated AUV

x(0) = 2 m, z(0) = 11 m, u(0) = 1.5 m/s, w(0) = 0 m/s,
q(0) = 0 rad/s, θ(0) = 0 rad, s(0) = 0 m, ud = 2 m/s

Controller parameters
k1 = 5, k2 = 5, k3 = 1,

k4 = 1, ω1= 20, ω2= 20, ω3= 20, ω4= 0.5, h = 0.01 s−1,
r = 100 m/s2, T = 0.001 s−1

The simulation results are shown in Figures 8–13. From Figure 8, it is easily ob-
served that both Controller 1 and Controller 3 can regulate the underactuated AUV to
accurately follow the predefined path. The path-following performance is presented in
Figures 9 and 10. It is evident that the path-following errors of two controllers converge
to the vicinity of zero, but Controller 1 has superior path-following accuracy and smaller
steady-state error than Controller 3. The reason is that Controller 1 has a faster convergence
rate than Controller 3. From Figure 11, it is evident that the control inputs of Controller 3
violate the input constraints during the transient phase, whereas Controller 1 can limit the
control inputs into a valid range. Figure 12 shows the estimated and actual values of the
kinematic uncertainty and the dynamic uncertainties, which demonstrates that the kine-
matic and dynamic uncertainties can be accurately and rapidly estimated by the designed
reduced-order ESOs, respectively. The desired pitch speed qd and the outputs (qc and

.
qc)

obtained by NTD are shown in Figure 14. It is evident that the output qc generated by NTD
rapidly tracks the desired pitch speed qd.

The above simulation results and analyses indicate the superiority of Controller 1
compared with Controller 3. Controller 1 provides improved performance under the given
multiple uncertainties. This improved performance is attributed to the precise estimation
of the kinematic and dynamic uncertainties in real time.
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5.3. Robustness Analysis for the Path-Following Performance in the Conditions Which Better
Replicate the Actual Environment

To evaluate whether Controller 1 can operate well in the actual working environment,
in this subsection, two different kinds of disturbances which better replicate the actual
environment, including complex segmented disturbances and more complex segmented
disturbances with high-frequency noise, are introduced to the control system, respectively.
The specific dynamic uncertainties are generated as follows [41]:

Case 1: 

du =

{
0.03 sin(0.1t− 0.1) t < 75s
0.03u cos(0.1t) + 0.04 sin(0.2t) + 0.03u2 − 0.03 t ≥ 75s

dw =

{
0.03 sin(0.1t− 0.2) t < 75s

0.04w sin(0.1t) + 0.03 cos(0.1 t)− 0.03w2 − 0.03 t ≥ 75s

dq =

{
0.03 cos(0.1t + 0.1) t < 75s
0.03q cos(0.1t) + 0.04 sin(0.2t)− 0.03q2 + 0.03 t ≥ 75s

Case 2:

du =

{
(0.03 + normrnd(0, 0.01)) sin(0.1t− 0.1 + normrnd(0, 0.01)) t < 75s
0.03u cos(0.1t) + 0.04 sin(0.2t) + 0.03u2 − normrnd(0, 0 .01) t ≥ 75s

dw =

{
(0.03 + normrnd(0, 0 .01)) sin(0.1t− 0.2 + normrnd(0, 0 .01)) t < 75s
0.04w sin(0.1t) + 0.03 cos(0.1t)− 0.03w2 − normrnd(0, 0 .01) t ≥ 75s

dq =

{
(0.03 + normrnd(0, 0 .01)) cos(0.1t + 0.1 + normrnd(0, 0 .01)) t < 75s
0.03q cos(0.1t) + 0.04 sin(0.2t)− 0.03q2 + normrnd(0, 0 .01) t ≥ 75s

The desired path is given as [41]:{
xF(v) = v
zF(v) = 10 + sin(0.1v)

The simulation results are shown in Figures 14–21. Figures 15 and 16 depict the
path-following results and their corresponding path-following errors, respectively. It is
evident that even for more complicated path and more actual environmental disturbances,
Controller 1 still effectively forces the AUV to follow the desired path, and all path-following
errors still quickly tend to narrow bound fields near the origin. Since the kinematic and
dynamic uncertainties are compensated via reduced-order ESOs in time, the steady-state
tracking errors of Controller 1 are maintained at a low level in the two different kinds of
disturbances. As shown in Figure 16, the surge speed can accurately and rapidly converge
to the given speed. The input force and torque are presented in Figure 18. Small fluctuations
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occur in the control inputs as the dynamic uncertainties with random noise are continuously
and abruptly varied in Case 2, which is reasonable because the input force and torque need
some time to adjust.

The estimated values of du, dw, dq, and dυ are shown in Figures 18–21. The dynamic
and kinematic uncertainties can be accurately estimated for a system with complex seg-
mented disturbances in Case 1 using the designed reduced-order ESOs in time. Moreover,
although the dynamic uncertainties with random noise are continuously and suddenly
changed, only a slight chattering can be observed in the estimation of du, dw, and dq in
Case 2, which is acceptable in complex sea conditions.

Remark 10. According to the above results and analyses, the proposed controller in this paper
provides satisfactory performance and enhanced robustness in the above two kinds of disturbances
due to the timely and accurate observability of the established reduced-order ESOs. As shown in
Figure 22, it is noted that with the increase in the bandwidth of the observer, the estimation accuracy
of the observer is improved, but it also becomes more sensitive to high-frequency noise. In reality,
satisfactory performance in the presence of random noise can be attained by adjusting the observer
bandwidth to make a tradeoff between the estimation precision and the sensitivity to noise.
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6. Conclusions

This paper presents a novel augmented back-stepping controller to solve the path-
following issue of an underactuated AUV with multiple uncertainties. Reduced-order
ESOs and NTD are employed to construct an augmented back-stepping controller. Four
reduced-order ESOs are designed to estimate the kinematic and dynamic uncertainties, and
an NTD is adopted to minimize the impact of the input saturation issue and overcome the
problem of “explosion of complexity” associated with traditional back-stepping method. A
stability analysis of the proposed controller is established through the Lyapunov theorem to
guarantee that the tracking errors uniformly tend to a narrow bound near zero. Extensive
simulations and robustness analyses are performed to verify the efficiency, superiority, and
robustness of the presented controller. It should be pointed out that due to the complexity
of the experiment setup and cost limitations, experimental verification is not carried out
in this paper. In future work, observers and stochastic control methods will be combined
further to improve the controller performance subject to disturbances with random noises.
We will extend the proposed path-following controller to the motion in 3-D space.
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