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Abstract: Breaching or overtopping of coastal dunes is associated with greater upland damages.
Reliable tools are needed to efficiently assess the likelihood of dune erosion during storm events.
Existing methods rely on numerical modeling (extensive investment) or insufficiently parameterize
the system. To fill this gap, a fragility curve model using a newly developed dune Engineering
Demand Parameter (EDP) is introduced. Conceptually, the EDP is similar to the Shield’s parameter
in that it represents the ratio of mobilizing terms to stabilizing terms. Physically, the EDP is a
measure of storm intensity over the dune’s resilience. To highlight potential applications, the
proposed EDP fragility curve models are fit to a spatially and temporally robust dataset and used to
predict dune response subjected to varying storm intensities including both extratropical and tropical
storm. This approach allows for the probabilistic prediction of dune impacts through an innovative,
computationally efficient model. Several different forms of the EDP are tested to determine the best
schematization of the dune resilience. The final recommended EDP is the Peak Erosion Intensity
(PEI) raised to the fourth power over the product of the dune volume and berm-width squared.
Including both storm intensity and resilience terms in the EDP enables comparison of different
beach configurations in different storm events fulfilling a need existing vulnerability assessors cannot
currently account for directly.

Keywords: erosion potential; dune erosion; New Jersey; fragility curves; probabilistic dune response;
coastal hazards

1. Introduction
1.1. Motivation

The performance of the combined beach and dune system subjected to coastal storms
is of importance to engineers, coastal managers and underwriters alike. Breaches, over-
wash or significant overtopping of a dune are associated with greater impacts to upland
infrastructures. This has in part led to the development and widespread use of categorical
scales for predicting/assessing storm impact such as the Sallenger [1] Storm Impact Scale.
Alternatively, dune and beach performance can be predicted numerically using models
of varying complexity and fidelity (e.g., DUROS, SBEACH, XBeach, CShore, etc.). How-
ever numerical methods require significant effort through model initialization (pre-event
bathymetry and topography), calibration and, for the 2D models over large domains, sig-
nificant computational run times. These traits require significant investment and preclude
the widespread implementation in real-time forecasting applications. Furthermore, per-
formance of cross-shore models is highly dependent on the calibration and even with a
calibrated model, the skill of a model may not be uniform if applied over wide range of
storm severity (e.g., moderate to severe events) [2]. Fragility curves, which have been
used extensively in the field of seismic design, have more recently been applied to coastal
engineering problems [3,4]. These methods allow for the consideration of probabilistic
estimates and can be extended beyond the binary ‘survive’ or ‘fail’ models.
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Despite extensive advancements in numerical simulations, there is still a demonstrated
need to predict dune impacts in storm events using analytic or index-based equations.
However, the approaches available in the existing literature have one or more deficiencies
that can broadly be categorized as follows:

1. The parameters account for either the dune resilience parameters or the storm intensity,
but not both;

2. Provide a categorical response only (e.g., the scale is not a continuous number which
limits the usefulness in statistical fitting);

3. Incomplete parameterization of the resilience terms (e.g., consider dune volume but
not position of the dune);

4. Incomplete consideration for storm intensity parameters (e.g., account for peak storm
intensity but not duration effects).

A summary of current approaches is presented in the following subsections, where
they are grouped according to the interdependence of beach width and volume in the
design of coastal defense projects (Section 1.2), widely used parameters to describe dune
resilience (Section 1.3) and lastly parameterization of storm intensity (Sections 1.4 and 1.5).

Here, the dune EDP is proposed to fulfill the need for a single variable that simulta-
neously parameterizes both the storm intensity and the resilience of a beach and dune in
a physically meaningful way. The EDP is ideally suited to applications within a fragility
curve framework by preserving the underlying physics and not exclusively relying on
a statistical fit. The parameter considers both the mobilizing terms (intensity) and the
stabilizing terms (resilience) to capture the demand placed on the dune. Characterizing
the demand enables better estimation of the vulnerability over a range of storm intensities
and beach configurations. The intended application of the EDP is in the evaluation of
dunes with incomplete or partially defined data (e.g., cases where the dune volume may be
estimated but offshore bathymetry is unknown). While the methods do not, and should
not, replace numerical modeling, they have uses in forecasting, rapid or regional scale
assessments, and as a design tool in conceptual design.

1.2. Quantifying the Combined Effects of the Beach Width and Dune Volume

The protective benefit afforded by the dunes and berm in the broader beach system
are deeply intertwined. However, despite the consensus that dunes are a primary defense
feature to coastal storms, the design and quantification of the protection afforded by dunes
and, more specifically, the combined effect of beach width and dune volume is limited
in the existing literature. Consider that in Dean’s textbook [5], appropriately considered
the seminal work in the beach nourishment design, the benefit of dunes is not included in
either the chapter or appendix dedicated to quantification of the benefit of nourishment.
Instead, the quantification of benefit is focused exclusively on beach width. Additional
gold standards for consulting engineering including [6–8] provide an excellent description
of the physical processes and role of dunes as a reserve volume in the beach–dune system.
However, none provide explicit guidance on the design of dunes in relationship to the
beach width. Bruun [9] highlighted the necessity for the beach and dune to be considered
comprehensively and described considerations for geometric shape and placement. The
often cited FEMA 540-rule [10] is used in assessment of existing dunes for the National
Flood Insurance program, though has been adapted to provide guidance for construction
as well [11]. Some of the most relevant quantification on dune design stems from The
Netherlands starting with Vellinga [12] and resulting in technical guidance, e.g., [13]. A
more expansive summary can be found in [14].

1.3. Resilence or Vulnerbility Assessors

One of the first comprehensive methods to identify areas with increased susceptibly
to storm-driven morphology changes (e.g., breaches, overtopping, etc.) at a regional scale
was performed by Morgan and Stone [15]. Morgan and Stone developed the Storm Wave
Susceptibility Quotient (SWS), an index used to quantify the vulnerability of sandy coasts
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located along Florida’s barrier islands. The schematization of the wave climate was simple
but precludes assessment to a specific storm or event.

First-order estimates, such as the 540-rule rule [10] are delightfully simple to apply.
However, they poorly resolve the risk of dune failure for return periods above or below
100-years, fail to account for the position of the dune (setback) and do not quantify the
uncertainty and spread in possible outcomes. Consequently, guidance for best practice
has been to double the expected median eroded volumes to account for the significant
uncertainty [11].

Sallenger [1] introduced the Storm Impact Scale for barrier islands that categorically
classified impacts for both tropical and extra-tropical storms based on wave runup. Four
regimes are classified as ‘swash’, ‘impact’, ‘overwash’ and ‘inundation’. Each regime
characterizes when different physical processes dominate, and the magnitude of impacts
change dramatically. The category is determined between the ratio of the maximum run-
up elevation and the dune toe and crest elevations. The scale is useful in qualitatively
describing the dominant physics, but it does not consider duration, the volume of the dune,
nor does it a provide the magnitude of the expected consequences (e.g., dune volume loss).
The scale has been tested in hindcasting historical storms by Stockdon, et al. [16]. Leaman,
et al. [17] expanded this scale to create a storm hazard matrix including the effects of storm
duration and thus erosion-dominated events.

The Sallenger [1] Storm Impact Sale has been used by the U.S. Geological Survey
(USGS) to predict shoreline changes through the Coastal Change Hazard Portal [18]. The
portal is unique in that it is one of the few available sources for forecasting storm impacts
during storm events. When applied through forecasting, the model uses LiDAR mea-
surements for pre-storm dune elevations and real-time forecasts of wave and water level
conditions. However, consistent with the original Storm Impact Scale, the USGS model is
based on peak run-up and does not consider duration effects. This shortcoming has been
acknowledged by USGS and has been attributed as a potential cause of the underprediction
of overwash regimes [19]. At the time of this writing, updates to the Coastal Change Hazard
Portal are expected to be released in the near future to improve the performance. Recent
advances include applications of machine learning to estimate the likely beach impacts [20]
by combining both the storm intensity and vulnerability of the beach–dune system.

Judge, et al. [21] assessed the vulnerability parameters to characterize the performance
of coastal dunes subjected to a Category 3 (SSHWS) hurricane at 110 profiles along the
coast of North Carolina. Dune performance was assessed categorically as ‘failed’ (greater
than 50% eroded volume) or ‘survived’ (less than 50% eroded volume). Vulnerability
parameters included median erosion [10], erosion potential [22], Strom Impact Scales [1],
and traditional dune geometries including crest height, dune centroid and a new Erosion
Resistance (ER) term (Equation (1)). Use of the ER term improved the prediction of survival
and failure classification. The ER parameter is a surrogate for mass moment of inertia and
accounts for the dune’s cross-sectional area (A) and the centroid (Zc) in reference to mean
high water.

It is worth noting alongshore transects were spaced at approximately 300 m. Along-
shore variation in storm intensity was not quantified. While the paper includes estimates of
Hurricane Fran’s storm surge, wave heights and duration, these parameters are not directly
accounted for in the ER parameter.

ERDUNE = (Zc)
2(A) (1)

1.4. Storm Intensity Measures

Numerous indices or scales exist to quantify and communicate storm intensity. How-
ever, most of these indices cannot be used in fragility functions. Often, the scales are not
continuous and, in some cases, are not representative of the physics of the hazard. For
example, application of the ubiquitous Saffir–Simpson Hurricane Wind Scale (SSHWS) ap-
plied to dune erosion is neither continuous (although wind-speed is), nor does it represent
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the principal hazard (elevated water levels, wave heights) as it relates to dune erosion. It is
therefore unsurprising that the SSHWS storm classification is poorly corelated with dune
erosion, e.g., [23] and only loosely correlated with monetary damages [24].

A summary of available storm intensity parameters is presented in Table 1. Note they
are separated by storm type (i.e., tropical, extratropical or both) and intensity measure
(peak, cumulative or both). The only parameters suitable for use with fragility functions
that have a continuous numeric scale, are physically based and consider both duration and
peak effects are the COSI [25] and SEI parameters. While either could be utilized within
a fragility function framework, SEI was chosen due to its demonstrated use in literature
including spatial and temporal considerations.

Table 1. Summary of available measures of Storm Intensity and key characteristics. Note variables
are identified in ‘Parameters Considered’ column.

Parameter Storm
Type

Intensity
Measure Equation Output Units Parameters Considered Source

Saffir–Simpson
Hurricane
Wind Scale

Tropical Peak N/A Category
(1–5) - Windspeed Schott et al.

(2012) [26]

Hurricane Intensity
Index (HII) &

Hurricane Hazard
Index (HHI)

Tropical Peak
HII =

(
Vmax

Vmax0

)2

HHI =

(
R

R0

)2 ( Vmax
Vmax0

)3( S0
S

) - - Windspeed (V), Radius (R) and translation speed (S),
0 designates reference values

Kantha
(2006) [27]

Integrated Kinetic
Energy (IKE) Tropical Peak IKE =

∫
v

1
2 ρU2dV - - Wind speed (U), Storm Volume (V)

Powell and
Reinhold

(2007) [28]

Hurricane
Severity Index Tropical Peak Size + Intensity 50-point scale - Wind speed, Radius Hebert et al.

(2010) [29]

Surge Scale (SS) Tropical Peak SS = (2.43E − 4)∆pL30mψx

(
R33

L30m

)
surge m Pressure (∆p), Wind Radius

(
R33

)
,

Bathymetry (L30m ), Storm size (ψ )
Irish and Resio

(2010) [30]

Cyclone Damage
Potential Index

(CDP)
Tropical Peak

CDP = 4

[(
vm
65

)3
+5

(
Rh
50

)]
vt

- - Wind speed (vm), Radius (Rh ),
forward speed (vt )

Done et al.
(2015) [31]

Dolan and
Davis Scale

Extra-
tropical Peak P = (Hs )2 td - m2-s Wave Height (Hs) duration (td )

Dolan and Davis
(1992) [32]

Mendoza et al.
(2011) [33]

Shoreline Risk Index Extra-
tropical Peak I = SH

(
tD
)0.3 - m2-s0.3 Wave height (H), Surge (S),

number of tidal cycles (tD)
Kriebel et al.
(1996) [22]

Storm Erosion
Potential Index

(SEIP)

Extra-
tropical Cumulative SEPI =

tD
∑

t=0
S2SD (t) HMHHW (t)∆t - m3 Storm surge (S and H), tide duration (t) Zhang et al.

(2001) [34]

Balsillie Regression
Analysis Both Peak Qavg = 1

1622

(
g1/2 tr S2

)4/5 Volume (Q) m3 Surge (S), Tide Rise (tr ) Balsillie
(1986) [35]

Maximum Wave
Run-up (Rmax ) Both Peak

Rmax = Ho2.32ξo
where ξo = tan β√

Ho
Lo

Wave
Run-up (R) m

Wave height (Ho ), period
(

Tp
)

,

water level, shoreline slope (β )
Kraus and Wise

(1993) [36]

Coastal Storm
Impulse Parameter

(COSI)
Both Cumulative Is =

∫ [
f p(t) + M(t)

]
dt Impulse (Is ) kg-s per m

Total Horizontal momentum, surge (fp( t) ) and
Wave (M(t) ) (wave height, period, surge, duration)

Basco and
Mhmoudpour

(2012) [25]

Storm Erosion
Potential Index Both Both SEI =

∫
t IEI

(
ti
)
= W∗

(
ti
)[ 0.068Hb

(
ti
)
+S
(
ti
)

B+1.28Hb
(
ti
) ] cross-shore

distance m Water level (S), wave height (Hb )
and duration (t), Berm elevation (B)

Miller and
Livermont (2008)
[37] Lemke and

Miller (2020) [38]

1.5. Storm Erosion Index (SEI)

SEI developed by Miller and Livermont [37] and refined by Lemke and Miller [38]
combines the three primary drivers of coastal erosion (wave height, total water level, and
storm duration) into a physically meaningful index. The index is both continuous and
physically based, enabling evaluation of storms based on their erosion potential. The
storm’s erosion potential is defined by the sum of an instantaneous erosion intensity (IEI)
over the duration of the storm (td):

SEI = ∑
td

IEI(ti) = ∑
td

W∗(ti)

[
0.068Hb(ti) + S(ti)

B + 1.28Hb(ti)

]
(2)

where Hb is the depth-limited breaking wave height (Hb = 0.8 hb), W* is the width of the
active surfzone (approximated as the distance to the breakpoint), B is the berm height, S is
the water level height above the mean sea level, and ti is a time index.
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The foundation of the Storm Erosion Index (SEI) is the physical response of a beach
profile due to increased water levels. SEI is based on a form of the well-known Bruun
Rule [39] modified by Dean and Dalrymple [6] to predict the equilibrium shoreline recession
due to an increase in water level, and cross-shore varying wave set-up due to breaking
waves. Miller and Dean [40] utilized a time-varying form of this modified Bruun Rule to
predict equilibrium shoreline change based on wave height, water level, and storm duration.
Miller and Livermont [37] suggested that the time varying form could be interpreted as
the Instantaneous Erosion Intensity (IEI) and that the maximum value of IEI represented a
measure of storm intensity they termed the Peak Erosion Intensity (PEI).

Notably, IEI has units of length and represents a theoretical landward progression of
the equilibrium shoreline position if storm conditions were to persist indefinitely. While
it is not realistic to expect SEI or IEI to directly represent shoreline change, it provides
a quantifiable metric for erosive potential; including both instantaneous and duration
effects. Though subtle, this is important for parameterization of the physics involved.
Numerous studies have found the primary factor for predicting structural damages is
the cross-shore distance from the mean sea level elevation or shoreline (e.g., Walling,
et al. [41], FEMA [11], Dean [5]). Thus, using a quantifiable metric that represents a
theoretical landward progression of the shoreline position in terms of a length scale provides
a physically meaningful parameter.

Unlike many other indices, IEI/PEI/SEI makes no distinction between tropical and
extratropical storms. It has been successfully applied to a number of locations, including
but not limited to, the Gulf of Mexico [42]; Atlantic coast of Florida [43,44]; Gulf coast of
Florida [45]; North and South Carolina [46]; New Jersey [37,38,47,48]. SEI has been shown
to be more closely related to observed erosion than traditional indices.

2. Study Area and Storm Climate

The New Jersey coast provides a rich blend of high-quality datasets over a spatially
diverse domain exposed to both tropical and extra-tropical storms. The oceanfront coast of
New Jersey extends roughly 210 km over a predominately sandy coast including natural
and nourished beaches, and both undeveloped and developed barrier islands. Lemke
and Miller [38] characterized the climate of the region’s storms through the lens of the
erosion potential over a 34-year period. The historical record of storms [38] is provided at
13 Segments located along the New Jersey Coast. An extensive collection of beach surveys
is available through the New Jersey Beach Profile Network (NJBPN) collected bi-annually
by the Coastal Research Center at Stockton University. The extents of these segments and
the locations of the individual profiles from the NJBPN are shown in Figure 1.

Typical attributes of the beach including dune crest elevations, berm widths, slopes
and dune volumes associated with these segments are presented in Figure 2. Median grain
sizes range from 0.2 mm to 0.6 mm. Typically, the region experiences three to four storms
per year [38]. A list of notable storms is provided in Table 2 with corresponding averaged
return periods based on SEI. The aggregated observed impacts of each storm (limited to
dune volume loss) is presented in Figure 3.

Storms within the region have been classified into Categories representing inten-
sity [38]. The scale ranges from 1 (low intensity) to 5 (high intensity). The numerical break
points for each category and the associated annual probability of exceedance are presented
in Table 3. These Categories are used throughout this paper.
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Figure 1. Study area location. Alternating red and yellow lines depict NJ Shoreline Segments utilized
by Lemke and Miller [38] to produce the storm erosion potential climatology. Segments are numbered
from north to south with #1 at Sandy Hook and #13 at Cape May. NJ coastal are counties labeled
accordingly. Black + markers depict NJBPN survey locations. Map coordinate system is NAD83/UTM
Zone 18N in kilometers. Courtesy of [20].

Figure 2. Spatial variance for select Resilience parameters by segment. (a) Dune crest elevation;
(b) Dune volume; (c) Berm width; (d) Beach slope. Presented by segment, south (13) to north (1). Red
horizontal bar—median value, blue box—25th and 75th percentiles. Outliers defined by 1.5 × IQR
away from 25th/75th percentiles. Courtesy of [48].
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Table 2. Average SEI and PEI values, and associated return periods (tr), for eighteen historical storms in
New Jersey. Storm data from [20]. Return periods are based on frequency of occurrence curves by [49].

Event SEI SEI tr [yr] PEI PEI tr [yr]

October 1991 1534 5.2 67.3 5.2
January 1992 1017 2.2 64.4 4.1

December 1992 3326 24 90.8 20
December 1994 869 1.7 57.5 2.3

January 1996 719 1.3 51.1 1.4
February 1998 1434 4.5 67.0 5.0

September 2003 1040 2.3 53.8 1.8
12 October 2005 1779 6.8 54.3 1.8
25 October 2005 866 1.7 60.0 1.4
September 2006 964 2.0 50.3 1.4
November 2007 670 1.2 60.4 2.9

May 2008 998 2.1 53.4 1.7
September 2008 1714 6.4 54.3 1.8

November 2009 (Vets) 2986 18 74.8 9.1
March 2010 1220 3.2 58.7 2.5

September 2010 581 1.0 62.9 3.6
August 2011 (Irene) 788 1.4 73.3 8.2

October 2012 (Sandy) 3056 19 119 49

Figure 3. Aggregated summary of quantity of profiles available and corresponding dune volume
loss percentage by storm for the New Jersey coast. Courtesy of [20].

Table 3. Storm Categories based on SEI and PEI including parameter value, return period (Tr) and
annual probability of exceedance. Storm categories determined by [38], return period calculated
from [49].

SEI PEI

Category Value Tr Annual Prob. Value Tr Annual Prob.

2 730 1 77.1% 23 <1.0 >99.9%
3 1510 5 19.8% 58 2 41.5%
4 2300 10 9.5% 93 22 4.7%
5 3080 19 5.2% 128 62 1.6%

3. Methodology

This paper can be broken down into two components:

1. Development of the EDP;
2. Application of the EDP to develop probabilistic fragility curves of dune impacts in

storm events.



J. Mar. Sci. Eng. 2022, 10, 234 8 of 22

This workflow is visually summarized in Figure 4. This paper makes extensive use
of two existing datasets characterizing the storm intensity measures (IM) [38] and beach
morphology parameters [20]. Morphology parameters include both the Resilience (Rf)
parameters (e.g., beach characteristics including width, volume, etc.) and the Impact
(i.e., observed dune volume loss for a given storm). The data are recast into the EDP by
combining the IM and Rf from previously published datasets. The EDP is then used as a
physically based parameter to fit fragility curves to predict the observed Impact classes.
The EDP is the argument, and the probability of class is the return.
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3.1. Development of the Engineering Demand Parameter

In the most general from, the EDP is a non-dimensional parameter representing the
ratio of Storm Intensity (‘IM’) to the Resilience factors (‘Rf’). The general form of the EDP is
presented in Equation (3) with arbitrary variables. In theory, any combination of any Rf or
IM parameters may be included in an EDP with corresponding power variables (e.g., ‘i’, ‘j’,
‘k’) selected to ensure non-dimensionality.

In all, 21 different IM, Rf and Impact parameters were considered. Reduction of
variables was selected based on two guiding principles. The first was to ensure the most
physically meaningful parameters were included both from a qualitative and quantitative
means. The second was to the extent possible, include only parameters that are easily mea-
sured or estimated without specialized tools or equipment. This is a necessary compromise
to make the curves more useful in real-time forecasting with limited time and resources to
collect data.

Quantitative comparison was completed using Spearman correlation between the
parameters and impact (i.e., dune loss percentage). In the cases of highly correlated
parameters (e.g., berm volume and berm width) only the most easily measured parameter
was used. A summary of parameters used is presented in Table 4.

Several forms of the EDP were considered. The EDPs and underlying parameters are
presented in the third column of Table 5. Care has been taken to ensure the selection of
parameters used in the various cases of the EDP are physically meaningful and not based
exclusively on best fit.

EDP = IM
R f

= IMi

R f a
j , R f b

k ...R f n
m

with IM = Storm Intensity Measure (e.g., PEI)
R f = Resilience Factor (e.g., dune volume, berm width, etc.)

(3)
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Table 4. Reduced parameters of interest. Note FB denotes freeboard or vertical distance between
parameter and mean sea level, WL—water level, vol—volume, Hb—breaking wave height, cumE—
cumulative energy (H2), Z denotes elevation, Max denotes the maximum hourly value over a single
storm duration and Bslope/Islope denote beach and intertidal slope.

Type Parameter
Name Symbol/Abbreviation Units Highly

Correlated

Intensity
Measure

Peak Erosion
Intensity PEI Length (m)

MaxWL, MaxHb,
cumE, DL,

DLvol

Resilience Berm Width Bwidth Length (m) Berm Vol

Resilience

Crest Width
(cross-shore

distance from
dune toe to crest)

Fwidth Length (m) Fvol, Dvol,
Fslope−1

Resilience
Dune volume
(volume from

toe to heel)
Dvol Volume per

length (m3/m)
CrestZ, ToeZ,

CrestFB

Resilience
Foredune

volume (volume
from toe to crest)

Fvol Volume per
length (m3/m)

Fwidth, CrestZ,
Dvol, CrestFB,

Fslope−1

Resilience Dune Crest
Elevation CrestZ Length (m)

Dvol, Fvol, ToeZ,
CrestFB, ToeFB,

Bslope,

Resilience Dune Toe
Elevation ToeZ Length (m)

CrestFB, ToeFB,
d50, ISlope,

BSlope, CrestZ

Impact Dune Loss
Percent DL % (-) DLvol

Table 5. Considered EDPs, underlying parameters (IM and Rf) and physical meaning.

Case Parameters EDP Physical Proxy

1 PEI, Berm Width PEI
(Bwidth) Setback

2 PEI, Berm Width,
Dune Crest Width

PEI
(Bwidth+Fwidth) Setback

3 PEI, Dune Volume PEI2

(Dvol) Volume

4 PEI, Foredune
Volume

PEI2

(Fvol)
Volume |
‘540-rule’

5 PEI, Berm Width
and Dune Volume

PEI2

(Bwidth2+Dvol)
Shear

6 PEI, Berm Width
and Dune Volume

PEI3

(Bwidth × Dvol)
Moment

7 PEI, Berm Width
and Dune Volume

PEI4

(Bwidth2 × Dvol)

Simplified
Mass-moment of

Inertia

8 PEI, Berm Width
and Dune Volume

PEI4[(√
(Bwidth+Fwidth)2+( 1

3 (CrestZ−ToeZ))
2
)2

× Dvol

]Mass-moment of
Inertia

3.2. Physical Meaning of Various EDP Cases

EDP cases 1 through 4 isolate the Resilience as function of a single parameter (i.e.,
setback or volume). Two common measures of dune volume are tested. Cases 5 and 6 model
the resilience of the dune in a conceptually similar method to shear (L2) and moment (L3).
Cases 7 and 8 model the dune as a mass-moment of inertia (L4) with the distinction being
Case 7 that uses a simplified measure of the moment arm (neglects vertical component of



J. Mar. Sci. Eng. 2022, 10, 234 10 of 22

the moment arm), whereas Case 8 estimates the centroid of the dune by modeling the dune
as a triangular shape. The vertical location of the centroid is then estimated as one third the
difference between the crest and toe elevations. The resultant centroid is estimated using
the Pythagoras theorem; adding the berm width and the crest width together. The equation
shown in Case 8 in Table 5 shows the redundant square of the square-root for clarity. This
is a slightly simplified approach of the Erosive Resistance (ER) parameter introduced by
Judge, Overton and Fisher [21].

The significance of the physical proxy (shear, moment, etc.) has implications to
potential optimization of the dune configuration. Consider an analogy between a dune and
a beam. If shear controls, then the cross-sectional area of the beam must be increased. Now,
consider if the moment controls and two separate beams, each with identical cross-sectional
areas but with different W-shapes. The beam with a deeper section will be able to span a
greater distance even if the total material is the same by taking advantage of the geometric
properties. Now, consider the berm (depth) and dune volume (area) as the web and the
flange of a beam, respectively. If the volume of the dune is analogous to the cross-sectional
area of steel and both an indicator of material cost, then a more efficient geometric shape
can potentially imply more cost-effective dunes.

3.3. The Fragility Model

The fragility models have been developed using the EDP as the argument. The
fragility curves are fit to a long-term and spatially diverse record. The observational record
was developed and first presented by Lemke [20,48]. This record is the combination of
two datasets parameterizing both storm intensity and dune morphology, respectively.
Historical storms are extracted from the dataset published by Lemke and Miller [38].
Dune morphology, including pre- and post-event indicators, are based on bi-annual beach
surveys. The combination of each of these respective datasets allows for the characterization
of the beach parameters pre and post storm, quantifiable measures of storm impacts and
parameterization of the responsible storm intensity.

This dataset provides a unique long-term (>20-year) and spatial diverse (200-km)
dataset to fit the model to. However, the dataset has some limitations identified by
Lemke [48]. The median time between the ‘storm’ and pre/post- surveys was approxi-
mately 5 months. This introduces some uncertainty around the quantification of the loss
(e.g., percent volume loss) and the resilience parameters (particularly berm width which
fluctuates seasonally) that were present at the time of the storm.

To reduce the influence of this uncertainty, the fragility models are fit to predict categor-
ical response of the dune impacts for a given storm intensity in lieu of a regression analysis
(e.g., predicting percent dune loss or volume loss). Categories for response are based on
the percentage of dune volume loss as presented in Table 6 and are identical to those estab-
lished by Lemke and Miller [20]. The Major threshold was based on empirical evidence in
the aftermath of Hurricane Sandy dunes with volume losses greater than 40% generally
exhibited evidence of overwash, as characterized by a lowering of the post-storm dune
crest elevation. The onset of overwash is attributed with greater impacts (damages) to
upland assets and, thus, a useful delineation in the prediction of storm damages.

Table 6. Classification of storm-induced dune impacts based on quantitative changes.

Damage Class Definition

Major Dune volume loss > 40%
Moderate Dune volume loss 5–40%

Minor Dune volume loss < 5%

3.4. Fragility Function and Fitting Techniques

Two forms of fragility functions were considered. The first, is a fragility curve based
on a log-normal cumulative distribution function. This form is commonly used to represent
fragility functions for structural dynamic analysis, particularly in applications predict-
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ing the probability of collapse during seismic events, e.g., [50]. Herein, the return of
the argument is the probability of the respective damage classification. Each categorical
classification (e.g., Moderate, Major) has its own curve which is a function of the EDP.

The log-normal distribution is shown in Equation (4). The left-hand side of the equation
states that the probability of category can be estimated by the EDP. The probability is
estimated as the log-normal cdf evaluated at a given EDP and two fit parameters, θ and
β. The parameters θ and β define the median of the distribution (i.e., the EDP measure
corresponding to 50% probability classification) and the standard distribution (commonly
referred to as the dispersion), respectively.

These parameters are estimated by fitting observed classifications using a multiple
stripe analysis (MSA). In MSA, the data are binned into groups for similar intensity mea-
sures. The percentage of observed moderate and major categories within each bin is plotted
against the EDP and are then fit using the Maximum Likelihood Estimation (MLE) method.

Using MSA, the curve is fit to the percent observations corresponding to each classifi-
cation in each bin. The advantage is that all data from the record are retained. In traditional
curve fit failure analysis, only the cases in which an observed failure (or classification in
this context) are used. For the dataset used herein, approximately 15% of the available data
are classified as Moderate or Major.

P

(
C

∣∣∣∣∣ IMR f
= EDP

)
= Φ

 ln
(

EDP
θ

)
β

 (4)

As an alternative to the log-normal distribution, a Weibull distribution was fit to the
Moderate and Major classifications using only the observations corresponding to each
classification. The CDF of the two-parameter Weibull function, as modified to use the EDP,
is shown in Equation (5):

P

(
C

∣∣∣∣∣ IMR f
= EDP

)
= 1 − exp

(
−EDP

λ

)κ

(5)

The two fit variables of the distribution are the scale (λ) and shape (κ). The scale factor
shifts the distribution, with the shape parameter influencing the shape. Parameters are
estimated using the MLE fitting techniques.

The Weibull distribution is one of the most commonly applied distributions to model
predicted failure. The distribution has been shown to be remarkably flexible, with the
ability to characterize the failure based on multiple inputs (e.g., time to failure, length of
elongation, stress, cycles, number of units, etc.). There are only two limitations in fitting a
Weibull distribution to the data that are of particular concern to the data presented.

• The confidence of the fit distribution is proportional to the number of samples at
failure. With the consensus that more than 20 samples are needed to have reasonable
performance. Each sample must be independent.

• The samples must be tested to failure, with the demand (i.e., value of ‘x’) at failure known.

Two separate distributions and fitting techniques were used to assess the influence of
asymmetry in the distribution. Advantages and limitations of each method is discussed
further in Section 5.2.

3.5. Data Screening, Fitting Techniques and Sensitivity Analysis

The original data [20] contained 865 datapoints and were screened to eliminate smaller
local storms and beaches that were clearly manipulated between surveys.

The first condition was the identification of morphologic changes but for a storm
intensity so low (i.e., low water level and/or wave heights) that the storm fails to meet the
criteria of a storm based on the definitions provided by Lemke and Miller [38]. This occurs
when the spatial variation in the storm is such that it may qualify as a storm in either the
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northern sections or southern limits of the state, but not both. This phenomenon occurred
only for two storms in the dataset and reduced the dataset to 852 points.

The second screened condition were profiles with volume changes that indicated
post-storm manipulation. Volume changes indicating greater than or equal to 10% net
positive volume change (i.e., highly accretional events) were flagged as likely attributed to
beach scrapping or manipulation. Beach management within New Jersey typically falls
under local jurisdictions, with many local municipalities opting, or having previously
experimented, with beach scraping and winter dunes.

To reduce the influence of potential Type II errors attributed to beach manipulation,
all cases in which the dune loss returned a post-storm accretion of 10% or greater were
removed from the dataset. This amounted to 172 datapoints. The value of 10% was chosen
based on engineering judgement. The idea being that collision regime and/or berm rollover
events that could lead to accretional volumes at the toe of the dune would be allowed to
remain in the dataset while egregious volume accretions that would likely be attributed to
a measurement error or anthropogenic beach management activities (e.g., beach scraping)
would be removed from the dataset. This is a slight departure from the screening process
presented in Lemke [48].

3.6. Comparision of the EDPs and Evaluation of Curves
3.6.1. Log-Normal and MSA Curves

For the MSA, the dataset was split into a training and test dataset using a 70–30 split.
Evaluation metrics included: Mean Absolute Error (MAE); Bias; and Root Mean Squared
Error (RMSE). Sensitivity analysis on bin width was performed including variable and
constant bin widths. The selected model was determined by minimizing the RMSE for
training and testing datasets for each classification. MAE and Bias for the test and training
set are reported for context.

The error is calculated based on difference between the expected (predicted) proba-
bility of damage based on class and the observed fraction of damage class corresponding
to the bin. The error is calculated at each bin. Due to the variable width of the bin, the
median value of the EDP within the bin is used; not the mean value EDP of the bin. For
small values of EDP, in the well-resolved portion of the data, the mean EDP of the bin and
median EDP of the data contained within the bin are nearly identical. That is to say, the
EDPs of the binned samples are relatively evenly distributed over the bin. However, for
large values of EDP, the number of observations within each bin decreases while the bin
width increases. In these cases, the median EDP of the samples within the bin are used to
better characterize the data with the training and testing datasets.

3.6.2. Weibull Distribution

For the Weibull distribution, the curves were fit using only the observations corre-
sponding to classification (i.e., Moderate or Major). A 70–30 split in the data would not be
possible while maintaining sufficient datapoints for fitting each class.

4. Results
4.1. Preliminary Analysis

The observed dune loss percent vs. storm intensity for the entire dataset is presented
in Figure 5. Colored dots denote observed Major (red) and Moderate (blue) damage
classifications. Minimal impacts are denoted by x’s. Negative dune loss denotes accretion
of the dune. (Potential causes and the treatment of these datapoints are discussed in
Section 3.5). While the storm intensity measure alone (PEI) appears to separate the data,
use of the EDP (Figure 6) improves the clustering by damage classifications. In Figure 6, the
storm Categories (measure of PEI alone) are converted into an EDP using the median dune
volume and berm width. Other EDPs (Cases 1–6, 8) had similar effect. However, generally
speaking, clustering was improved for EDP cases that considered both berm width and
dune volumes.
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Figure 5. Observed dune loss percentage as a function of storm intensity (PEI) alone; each data point
represents observations from a single profile. X-axis is storm intensity (PEI). Storm categories are
denoted by colored vertical dashed lines. The Y-axis is dune loss percentage. Red circles indicate Major
loss (>40%), blue circles indicate Moderate (>5% but <40%). Negative dune loss indicates accretion.

Figure 6. Observed dune loss percentage as a function of EDP Case 7; each data point represents
observations from a single profile. X-axis is the EDP. Storm categories are denoted by colored vertical
dashed lines. Storm category PEI values converted to an EDP using median resilience parameters.
The Y-axis is dune loss percentage. Red circles indicate Major loss (>40%), blue circles indicate
Moderate (>5% but <40%). Negative dune loss indicates accretion.

Low values of EDP indicate a low demand placed on a beach through either extremely
resilient beaches (i.e., high volume and wide berms) or low intensity storms (i.e., low PEI
and, therefore, low water levels and wave heights). Conversely, high EDP values denote
high intensity storms or beach–dune systems that are very vulnerable.

Data corresponding to each classification were extracted and plotted in a Q-Q plot.
This was done for all EDP cases. Figures 7 and 8 illustrate these results using the Weibull
distribution for Moderate and Major classification, respectively. The performance of the
Major classification (Figure 8) is distorted by a single outlier. Removal of this datapoint
improves the fit drastically (Figure 9). Justification for this is discussed in Section 5.1.
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Figure 7. Weibull distribution quantile plots for all observations corresponding to Moderate classifica-
tion. (a) EDP 1—Berm Width; (b) EDP 2—Berm and Dune width; (c) EDP 3—Dune Volume; (d) EDP
4—Foredune Volume; (e) EDP 5—Shear; (f) EDP 6—Moment; (g) EDP 7—Simplified Mass-moment
of Inertia; (h) EDP 8—Mass-moment of Inertia.

Figure 8. Weibull distribution quantile plots for all observations corresponding to Major classification.
(a) EDP 1—Berm Width; (b) EDP 2—Berm and Dune width; (c) EDP 3—Dune Volume; (d) EDP
4—Foredune Volume; (e) EDP 5—Shear; (f) EDP 6—Moment; (g) EDP 7—Simplified Mass-moment
of Inertia; (h) EDP 8—Mass-moment of Inertia.
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Figure 9. Weibull distribution quantile plots removing maximum observation corresponding to
Major classification with a single datapoint removed. Only EDP cases 5 to 8 are shown for clarity.
(a) EDP 5—Shear; (b) EDP 6—Moment; (c) EDP 7—Simplified Mass-moment of Inertia; (d) EDP
8—Mass-moment of Inertia.

4.2. EDP Curves

The selected curves for both the log-normal and Weibull distributions are shown in
Figures 10 and 11, respectively. For brevity, only EDP Case 7 is shown. Note in Figure 10,
the fit curve describes the onset of damage. That is to say, the predicted probability and
fraction of observed classifications are in better agreement for low values of EDP than at
the upper EDP values.

Figure 10. Example log-normal distribution for EDP 7 for calibration/training (triangular shapes)
and test datasets (square/diamond). Dashed curves represent MLE log-normal fit curves with red
denoting Major and blue denoting Moderate classification.
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Figure 11. Comparation of Weibull (solid line) vs. log-normal distribution (dashed) for EDP 7.
Observed fractions of classification are denoted by shapes and retained from previous figure to
illustrate performance. Red denotes Major, Blue denotes Moderate classification.

4.3. Comparison of EDPs and Fragility Functions

To enable comparison of the EDPs and the respective fitting techniques, the entire
dataset (combined training and test) is then re-grouped by storm intensity corresponding
to the PEI Categories defined by Lemke and Miller [38]. The mean hindcasted probabilities
and the observed fractions of each classification are presented. Figure 12 illustrates all EDP
cases using the log-normal distribution. In Figure 13, the most physically relevant EDPs
(5–8) are shown for both the log-normal MSA and the Weibull fitting technique.

Figure 12. Log-normal predicted and observed fractions of damage classification by storm category
(vertical columns). Each subplot corresponds to a damage classification: (a) Minimal; (b) Moderate;
(c) Major. Vertical bars correspond to EDP case (1 to 8 in each box), whiskers are standard deviation
in predicted probabilities for storms within the Category. Dashed red horizontal bar is the fraction of
observed classifications corresponding to the appropriate storm category.
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Figure 13. Comparison of Weibull (green/right) and log-normal (blue/left) models by storm category
(vertical columns). Each subplot corresponds to a damage classification: (a) Minimal; (b) Moderate;
(c) Major. Each vertical bar corresponds to an EDP case and model. Note only EDPs 5–8 are shown.
Whiskers are standard deviation in predicted probabilities for the corresponding category of storms.
Dashed red horizontal bar is the actual observed fraction corresponding to the appropriate storm
category.

Both figures display a 3 × 4 matrix, each row corresponds to the classification (i.e., Min-
imal, Moderate and Major). Each column corresponds to the storm category (i.e., Category
2, 3, 4 and 5). Each EDP case is represented by a vertical bar. The vertical bar represents the
estimated mean probability of the damage classification for the storms contained within
the respective storm category groups. The whiskers represent the standard deviation in the
predicted probabilities. The dashed red horizontal bar represents the fraction of observed
classification within the storm category.

The estimated best fit parameters are shown in Tables 7 and 8 for the log-normal and
Weibull distributions, respectively. Estimates of errors for the combined training and test
datasets are shown in Table 9.

Table 7. Best Estimate Normal Distribution parameters.

EDP
Moderate Major

θ (Median) β (Dispersion) θ (Median) β (dispersion)

5 1220 1.80 2058 1.10

6 702 1.51 1694 1.15

7 1839 1.99 45629 2.50

8 1260 2.34 7915 2.05

Table 8. Best Estimate Weibull Distribution parameters.

EDP
Moderate Major

λ (Scale) κ (Shape) λ (Scale) κ (Shape)

5 366 1.30 635 3.04

6 282 1.78 1012 2.16

7 570 1.14 4428 1.32

8 243 1.13 1697 1.35
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Table 9. Error metrics for log-normal MSA curves.

MAE Bias RMSE

Moderate Major Moderate Major Moderate Major

1 26% 16% −21% −16% 35% 26%

2 23% 13% −19% −13% 30% 20%

3 26% 17% −19% −16% 32% 24%

4 26% 15% −19% −14% 33% 21%

5 25% 16% −20% −16% 33% 25%

6 15% 9% −11% −8% 19% 12%

7 15% 18% −12% −18% 19% 28%

8 19% 15% −16% −15% 25% 22%

5. Discussion
5.1. General Assessment of the EDP

The relatively strong performance of a wide range of EDP cases in the Q-Q plots
shown in Figures 7–9 indicates the strength of the EDP in parameterizing the physical
demands placed on the beach and dune systems subjected to coastal storms. The dataset is
robust by combing both tropical and extra-tropical storms which extends the applicability
of the presented EDP.

However, the observational dataset has one import shortcoming—the temporal reso-
lution. It is impossible to discern the timestep within the storm that leads to onset of the
classification. Consideration for these cases can be depicted in the removal of a single point
from Figures 8 and 9. Note that removal of the datapoint prevents over-estimation of the
resilience of the beach–dune system. If the removed datapoint is used as an evaluation
point, the performance of the curves is substantially better than if the point is used to define
the onset of failure. The distinction is due to the use of the cdf used in the validation of
the curves vs. the assignment of failure at a defined EDP in the pdf. A subtle distinction,
however important.

The EDP represents the ratio of the peak intensity of the storm to the resiliency of the
beach and dune system. Consider a theoretical beach with low resiliency terms subjected to
a moderate event (PEI ~ 80) that results in an observed Major classification. Now, consider
the identical beach subjected to a more intense storm (say, PEI ~ 100) which results in Major
classification. However, using EDP 7, the change in EDP is ~2.5 larger for the second event.
The classification is assigned to this PEI. In reality, the beach–dune system is subjected to
a ramp up in the IEI over the course the storm. The limitation of the dataset is that it is
impossible to discern at which timestep the classification occurs. This is a limitation of the
dataset and not the EDP.

The implicit assumption is that the damage classification occurs at or nearly at the
peak of the storm. Mathematically, that is to say, the IEI resulting in classification is
approximately equal to the PEI. This is likely true for most events. However, for high value
EDPs, the likelihood increases that classification occurs at some IEI value less than the PEI.
This is the justification for removing the highest EDP values in the Weibull curve fitting
(i.e., Figures 8 and 9).

5.2. Fragility Model Performance

When presented using the Q-Q plots, outliers discussed above are more readily seen.
The concern becomes more apparent using the MSA analysis when individual events
become obscured by the binning procedure and data aggregation. Uncertainties within the
dataset can lead to miss-binning. The influence of this was attempted to be counteracted
through extensive sensitivity testing of the bin widths, including variable bin width sizing
which improved the fit slightly. However, the underprediction of Major classification seen
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in Figures 10 and 12 is a significant impediment to the applicability of the curves if not
accounted for.

Herein, the underprediction has been addressed by fitting a Weibull distribution
and removing the MSA. Use of the Weibull distribution allows for the more flexibility in
the shape of the distribution over a log-normal distribution. The performance for Major
impacts in severe storms (e.g., Cat 4 or 5) is markedly improved in Figure 12.

Consider the two assumptions stated for the Weibull distribution. The presented
dataset has 865 independent observations, but only contains 88 instances of moderate
and 45 instances of major impacts. The number of observations (sample size) for each
category therefore exceeds the minimum number required even if ~20 observations would
be removed. However, the combined samples only account for roughly 15% of the total
data. Undoubtedly, meaningful information contained with those datapoints is ignored by
this fitting process.

5.3. Limitations of the Curves and Potential Improvements

Reduction of data is less than ideal, but necessary due to limitations of the temporal
resolution of the underlying observational data. The presented curves, particularly the
Weibull fits, are still useful given these limitations. This is particularly true because they fill
a niche exhibiting ease of application while providing probabilistic outputs. Consider the
proposed curves in comparison to the widely used methods such as the 540-rule [10].

It is postulated that the fragility curves using EDPs, particularly Cases 6, 7 and 8 could
be improved through the use numerical or physical tests that can resolve the temporal
response of the beach–dune system within the storm duration. Resolution on a storm time
scales (i.e., hourly) through numerical or physical modeling could better quantify duration
effects. The observational dataset used herein could then be used exclusively for evaluation
of the experimentally determined curves.

5.4. Comparing EDP Cases and the Physical Meaning

Despite the limitations of the dataset, the strength of the EDP is the physically mean-
ingful proxy. Similar to the methods presented by Judge, Overton and Fisher [21], the EDPs
are presented based on a physical surrogate. The results herein further substantiate the
findings by Judge, Overton and Fisher [21] that the resilience of the dune can be modeled
using the volume and berm widths as a surrogate for the mass-moment of inertia (EDP
Cases 7 and 8). With an eye towards extending the usefulness of the curves without the
need for specialized measurements, a simplified version (EDP 7) was tested with compa-
rable performance. In the simplified estimation of the centroid of the dune, the vertical
component is omitted. Thus, for cases where the berm width >> dune toe elevation, the
performance should be comparable. It should be noted that in the derivation of SEI, the
berm elevation is included, thus somewhat accounting for the erosive potential of the storm
as related to the position of the dune toe and berm height.

The performance gap between EDP 6 and 7 narrows and eventually even reverses
for high intensity storms (Figure 13, Table 9). Under Swash or Collision regimes, the
berm width would need to be significantly eroded to allow higher wave heights to impact
the dunes. However, during significantly elevated high-water levels associated with
Overwash and/or Inundation regimes, the berm will be fully submerged. It is postulated
that protective benefit of the berm is therefore reduced, while the importance of the dune
volume is magnified. This is conceptually similar to the reduced protection afforded by a
drowned offshore bar (or coastal structure) during elevated water levels. There appears to
be some evidence to support this in the performance of the single-parameter EDPs. EDPs
using setback alone (EDP 1 and 2) appeared better than volume alone (EDP 3 and 4) for
lower magnitude events (Category 2 and 3). However, the performance was narrowed or
even reversed for Category 5 storms (Figure 12). Admittedly, this is not exhaustive, but
conceptually shows the flexibility of the EDP in parameterizing the physics governing the
demands placed on a beach and dune system during erosive events.
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6. Conclusions
6.1. Thematic

The Engineering Demand Parameter has been introduced to address the need for a
physically based, continuous parameter that simultaneously accounts for the most impor-
tant Resilience terms (e.g., dune volume and setback) and the storm intensity (e.g., erosive
potential). The advantage of the presented form of the EDP is that it can, if needed, be easily
modified where additional parameters may be needed. The only explicit assumptions are:

1. The EDP must represent the ratio of storm intensity over the resilience terms;
2. Terms in numerator and denominator must be combined in a way that produces a

non-dimensional parameter.

To demonstrate the potential usefulness of the parameter, the EDP has been applied
to a categorical fragility model. The model is fit to a robust (but imperfect) observational
dataset that includes a wide range of storm intensities (moderate to severe); tropical and
extratropical storms; and a wide variation in beach/dune morphology. The relative skill of
the EDP is indicative of the robustness of the approach in parameterizing the physics in a
simple, yet meaningful way.

Several forms of the EDP with different fitting techniques and distributions were
tested. Curves were generated using MSA with log-normal distribution and a Weibull
distribution. Both curves were fit using MLE techniques.

6.2. Recommended EDP and Fragility Function

Based on the observed data, the recommended form the EDP is Case 7, which is the
PEI [37] over a modified version of the Erosive Resistance parameter [21]. In the event
Major impacts are the primary concern, the Weibull distribution (i.e., λ = 4428, κ = 1.32) is
the recommended form.

In general, the hindcasted probabilities of Major (i.e., dune volume loss > 40%) impacts
are well resolved by the Weibull distribution for all storm intensities (e.g., Cat 2 through
Cat 5). However, if the prediction of the onset of moderate impacts (i.e., dune volume
loss > 5% but <40%) during lower intensity storms (e.g., Cat 2 or 3) is of paramount concern,
the curves fit using the log-normal and MSA analysis are superior. The reason is not the
distribution but rather from the fitting technique. When using MSA the curve is fit to the
fraction of observations corresponding to the classification in the record. Consequently,
the fit dataset retains both ‘failed’ and ‘resilient’ observations whereas the Weibull distri-
butions only consider a limited subset of the full dataset and only those resulting in the
appropriate classification.

6.3. Limitations, Compromises and Potential Improvements

The development of the EDP has been specifically tailored for the application of
fragility function in a forecasting application. This need has led to necessary compromises
in the selection of underlying parameters. Care has been taken to include Resilience
parameters (e.g., volume, berm width) that are easily estimated with simple tools or remote
sensing (e.g., satellite, aerial photographs, UAVs, etc.). This has led to a conscious decision
to remove factors that are important (e.g., crest, toe, centroid elevations, slope, etc.) but
require expensive or specialized equipment (e.g., RTK GPS). Attempts to quantify the
impact of these omission (e.g., EDP Case 7 and 8) suggest the increased complexity may not
be warranted for the curves intended application (e.g., forecasting)—following the adage
of “everything must be made as simple as possible, but not simpler.”

At extreme events with high storm intensity, the resilience may decrease from EDP
Case 7 to 6 (i.e., the product of the dune volume and berm width vs. berm width squared).
It is hypothesized that at high water levels (therefore high PEI values and high EDPs), the
berm may be fully submerged, allowing higher wave heights to impact the dunes. This is
conceptually similar to attenuating protection afforded by a drowned offshore bar during
elevated water levels. Admittedly, this has not been conclusively tested, but warrants
further investigation.
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