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Abstract: Tripod bucket jacket foundation is an alternative foundation solution for deep-sea wind
farms. This paper analyzes and compares the bearing characteristics of two tripod bucket jacket
foundations with different height-diameter ratios, the tripod suction pile jacket foundation (TSPJF)
and tripod bucket jacket foundation (TBJF), under different monotonic loads. The bearing modes
of the two foundations under the vertical loads are different. The ultimate vertical load is mainly
borne by the inside frictional resistance for the TSPJF, while it is mainly borne by the lid resistance for
the TBJF. The foundations will take place translation and rotation under horizontal load. Under the
positive x-axis loading, the vertical resistance of the TSPJF and TBJF is mainly composed of the soil
resistance on the 1# bucket lid, the inside and outside frictional resistance. Under the negative x-axis
loading condition, the vertical resistance is mainly composed of the inside and outside frictional
resistance of buckets. The ultimate moment capacities of the TSPJF and TBJF in loading of the single
bucket in compression is significantly larger than that in loading of the single bucket in tension. The
failure mode of the TSPJF and TBJF in loading of the single bucket in tension is the pull-out failure of
the bucket in tension.

Keywords: tripod bucket foundation; monotonic load; ration of height to diameter; bearing
characteristics

In recent years, the offshore wind industry in China has developed rapidly. However,
as the national subsidy policy for offshore wind power will be abolished after 2021, cost
reduction and efficiency increase will be the inevitable trend for the future development
of the offshore wind industry in China [1]. The construction and installation costs of
foundations for an offshore wind turbine is a significant fraction of the overall cost (about
20–40%). The selection of a reasonable foundation type for the offshore wind turbine
is essential for the parity development of the offshore wind industry. The factors such
as water depth, soil conditions, and installed capacity of wind turbine should be fully
considered in the foundation selection. The main foundation types for wind turbines
include monopiles, jacket foundations, bucket foundations, gravity foundations, high pile
cap foundations, and floating foundations [2–5]. Among them, the jacket foundations have
large stiffness, which can transfer the overturning moment into axial push–pull force to
improve the overturning resistance. A bucket foundation is a promising option for its
convenient offshore construction [6–8]. Bucket jacket foundation (BJF) is a new type of
foundation for supporting offshore wind turbine that combines jacket foundation and
bucket foundation [9–11]. Because of its strong overturning resistance, convenient, and
efficient offshore installation, BJF is well suited for deep-sea wind farms, and it has been
widely adopted as a current wind turbine foundation with water depth ranging between
20 m to 60 m [12,13].

The BJF for offshore wind turbine is subjected to the vertical load from the dead
weight of the structure, the horizontal loads from wind, wave, currents and upper loads
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from the wind turbine, and overturning moments caused by these horizontal loads. It is
essential to study the uniaxial capacities of the BJF. In recent years, several experimental
studies and finite element analyses have been carried out on the bearing capacity of the
BJF. Wang et al. [14] compared the lateral monotonic and cyclic behavior of monopod
and tripod by a series of centrifuge tests in medium sand. It is found that the tripod has
higher initial later stiffness than the monopod under monotonic lateral loading. In addition,
different from the monopod, the tripod will “self-heal” under the action of lateral cyclic
load, which makes it better than the monopod in cumulative rotation and dynamic stiffness.
Faizi et al. [15] designed a hybrid tripod bucket foundation consisting of a conventional
tripod bucket and three large circular mats attached to each bucket. A series of model
tests were conducted under 1 g in loose sand to study the behavior of the foundation
and the influence of bucket spacing on the overturning capacity. Tran et al. [16] studied
the bearing capacities of tripod bucket foundations in medium and dense sands using
numerical analyses and proposed bearing capacity equations in consideration of multiple
parameters.

The bearing capacity of the bucket is obviously affected by the ratio of the bucket
height to the bucket diameter, and this paper designs two kinds of tripod structures, a
tripod suction pile jacket foundation (TSPJF), and a tripod bucket jacket foundation (TBJF).
TSPJF is a narrow and deep foundation, while TBJF is a wide and shallow foundation. In
this paper, the bearing characteristics of the TBJF and TSPJF are studied and compared
under monotonic loads in sand using FE analyses.

1. Numerical Simulation

Referring to the loading conditions of a typical 8 MW offshore wind turbine, two kinds
of tripod structures, TSPJF and TBJF, are established based on ABAQUS finite element
software, as shown in Figure 1. Figure 1 also shows the loading point, coordinate system
and bucket number, etc. The foundation parameters are shown in Table 1, and the soil
numerical model is shown in Figure 2. The distances between soil boundaries and the
foundation bottom are 4D in horizontal and 4H in vertical. The horizontal displacements
of soil lateral boundaries are constrained, and the soil bottom boundary is fixed. The soil is
modeled by the eight-node linear brick, reduced integration continuum element C3D8R,
and follows the Mohr–Coulomb failure criterion. The main parameters of soil are shown
in Table 2. The suction pile and the bucket foundation are modeled by the shell element
using steel with a Young’s modulus of 206 GPa and a Poisson’s ratio of 0.3. The interaction
between soil and buckets is set as frictional contact in the tangential direction and hard
contact in the normal direction, allowing separation of the soil and bucket after contact.
The displacement-controlled loading method was applied to obtain the load–displacement
curve at the loading point, the center of the flange top surface.
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Table 1. Main parameters of the foundations.

Foundation

Diameter of
Suction

Pile/Bucket,
D (m)

Height of
Suction

Pile/Bucket,
H (m)

Thickness of
Lid, t1 (m)

Thickness of
Skirt Wall, t2

(m)

Ration of
Height to
Diameter

TSPJF 10 20 0.05 0.04 2
TBJF 17 17 0.05 0.04 1
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Table 2. Soil parameters.

Item
Saturated Bulk

Density, γ
(kN·m3)

Modulus of
Elasticity, E

(MPa)

Cohesion c
(kPa)

Internal
Friction Angle

ϕ(◦)

Value 19 30 2.6 30

2. Comparison of Bearing Characteristics of the TSPJF and TBJF under Vertical Load

Figure 3 shows the vertical load–displacement curves of the TSPJF and TBJF. Since
both load–displacement curves have obvious inflection points, the loads corresponding
to the inflection points can be regarded as the ultimate bearing capacity. The vertical
bearing capacities of TSPJF and TBJF are 197.94 MN and 193.80 MN, respectively, and
the corresponding vertical displacements are 0.72 m and 0.46 m, respectively. The differ-
ence between the ultimate bearing capacity of the TSPJF and TBJF is very small, but the
corresponding vertical displacement of TBJF is significantly smaller than that of TSPJF.
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Figure 4 shows soil equivalent plastic strain contours at the 2# and 3# bucket central
section for TSPJF and TBJF under the ultimate vertical load. As shown in the figure, the
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maximum equivalent plastic strain of soil appears at the bucket end for TSPJF, and the
plastic failure develops along the depth direction, eventually forming an asymmetrical “V-
shaped” plastic failure zone. Similar to the failure mode of TSPJF, the maximum equivalent
plastic strain of soil also appears at the bucket end of TBJF and expands along the depth.
However, the soil at the end of the bucket of TBJF does not form a continuous “V-shaped”
plastic failure zone under the ultimate vertical load.
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Figure 4. Soil equivalent plastic strain contours at the 2# and 3# bucket central section for the TSPJF
and TBJF under the ultimate vertical load. (a) TSPJF, (b) TBJF.

Figure 5 shows the distribution of the earth pressure inside and outside skirt wall at the
positions of P1 and P2 of 1# bucket (see Figure 1c) along the skirt height. The comparison of
inside and outside earth pressure at positions P1 and P2 of 1# bucket of the TSPJF and TBJF
along the bucket height is displayed in Figure 6. In general, the earth pressure of the two
foundations has similar variation trends. The earth pressure inside the bucket is generally
higher than the earth pressure outside the bucket, which is mainly because the soil inside
the bucket is constrained by the bucket skirt. For the two foundations, the earth pressure
inside the bucket generally increases with the increase in depth, and the increase in TSPJF
is more significant. The outside earth pressure of 1# bucket of the TSPJF at P1 and P2 first
increases and then decreases with the increase of depth, and the change of outside earth
pressure at P1 is relatively small. Different from the TSPJF, the outside earth pressure of 1#
bucket of TBJF does not decline at P1, but increases with the increase of depth. The reason
may be that the plastic failure zone of the soil at the end of the bucket is different in the
ultimate bearing state (see Figure 4), and the plastic failure of the soil outside the bucket
around the end of the bucket of the TSPJF is more serious in the ultimate state.
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Figure 6. Comparison of earth pressure along the depth between the TSPJF and TBJF. (a) earth
pressure on inner skirt of 1# bucket at P1; (b) earth pressure on inner skirt of 1# bucket at P2; (c) earth
pressure on outer skirt of 1# bucket at P1; (d) earth pressure on outer skirt of 1# bucket at P2.

The vertical capacity of the TSPJF and TBJF is composed of four parts: the friction along
the inside bucket skirt, the friction along the outside bucket skirt, the vertical resistance
on the bucket lid, and the end resistance. Figure 7 shows the resistance provided by each
part of the foundations at different vertical loads. For the two foundations, the vertical load
is mainly borne by the inside and outside frictional resistance when the vertical load is
small. With the continuous increase of the vertical load, the inside frictional resistance and
the vertical resistance from the bucket lid increase significantly, showing a nearly linear
increase. The growth rate of the inside frictional resistance of TSPJF is higher than that
of the resistance on the bucket lid. Different from TSPJF, the resistance provided by the
bucket lid of TBJF increases more than the inside frictional resistance. The outside frictional
resistance increase is relatively small, and with the increase of the vertical load, the outside
frictional resistance gradually tends to gentle growth.

Figure 8 shows the bearing proportion of each part of the foundations at different
vertical loads. The proportion of the outside frictional resistance and lid resistance of TBJF
is always higher than that of TSPJF, while the proportion of the inside frictional resistance
of TBJF is always smaller than that of TSPJF. The bearing proportion of the end resistance
of the TSPJF and TBJF is very small, and it decreases with the increase of vertical load.
As shown in Figure 9, in the ultimate vertical bearing state, the proportion of the inside
frictional resistance, outside frictional resistance, lid resistance, and end resistance in the
total resistance is 57.0%, 15.3%, 27.5%, and 0.3% for TSPJF, and they are 37.1%, 19.9%,
42.7%, and 0.3% for TBJF. Therefore, the vertical ultimate load is mainly borne by the inside
frictional resistance for the TSPJF, a narrow and deep bucket foundation, while, for the
TBJF, a wide and shallow bucket foundation, it is mainly borne by the bucket lid resistance.
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Figure 10 shows the circumferential distribution of earth pressure on the inside and
outside skirt of 1# bucket of TSPJF and TBJF at different depths. As shown in Figure 10a,c,
the earth pressure on the inside skirt of TSPJF and TBJF in different directions is almost
equal, and it increases with the increase of depth. The circumferential distribution of earth
pressure on the outside skirt of 1# bucket of TSPJF is symmetrical along the x-axis. The
maximum and minimum soil pressures at the depths of 1 m and 10 m appear at 0◦ (positive
x-axis) and 180◦ (negative x-axis), while the distribution law of earth pressure at the depth
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of 19 m, near the bucket end, is exactly the opposite of the former. The circumferential
distribution law of earth pressure on the outside skirt of 1# bucket of TBJF is similar to that
of the TSPJF.
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Figure 10. Circumferential distribution of earth pressure on the inside and outside skirt of 1# bucket 

of TSPJF and TBJF at different depths. (a) earth pressure on the inside skirt of 1# bucket of the TSPJF, 

(b) earth pressure on the outside skirt of 1# bucket of the TSPJF, (c) earth pressure on the inside skirt 

of 1# bucket of the TBJF, (d) earth pressure on the outside skirt of 1# bucket of the TBJF. 

3. Comparison of Bearing Characteristics of TSPJF and TBJF under Horizontal Load 

Two loading directions are considered in the analysis of monotonic horizontal bear-

ing characteristics, including positive x-axis loading and negative x-axis loading. 

3.1. Positive x-Axis Loading 

Figure 11 shows the horizontal load–displacement curves of TSPJF and TBJF when 

the loading direction is along the positive x-axis. There are obvious inflection points in the 

two curves, and the loads corresponding to the inflection points can be regarded as the 

ultimate horizontal bearing capacity, so the horizontal bearing capacities of TSPJF and 

TBJF are 19.35 MN and 24.83 MN, respectively. 

Figure 10. Circumferential distribution of earth pressure on the inside and outside skirt of 1# bucket
of TSPJF and TBJF at different depths. (a) earth pressure on the inside skirt of 1# bucket of the TSPJF,
(b) earth pressure on the outside skirt of 1# bucket of the TSPJF, (c) earth pressure on the inside skirt
of 1# bucket of the TBJF, (d) earth pressure on the outside skirt of 1# bucket of the TBJF.

3. Comparison of Bearing Characteristics of TSPJF and TBJF under Horizontal Load

Two loading directions are considered in the analysis of monotonic horizontal bearing
characteristics, including positive x-axis loading and negative x-axis loading.

3.1. Positive x-Axis Loading

Figure 11 shows the horizontal load–displacement curves of TSPJF and TBJF when
the loading direction is along the positive x-axis. There are obvious inflection points in the
two curves, and the loads corresponding to the inflection points can be regarded as the
ultimate horizontal bearing capacity, so the horizontal bearing capacities of TSPJF and TBJF
are 19.35 MN and 24.83 MN, respectively.
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ure 12. The distribution of earth pressure of the two foundations is similar along the skirt 

height, but the earth pressure on the TSPJF is relatively small in value. 

Figure 11. Horizontal load–displacement curve of the TSPJF and TBJF at the loading points.

Figure 12 shows soil equivalent plastic strain contours at the 1# and 2# bucket central
section for TSPJF and TBJF under the ultimate horizontal load. As shown in Figure 12a, no
plastic failure occurs in the soil around the 2# bucket of TSPJF. The plastic strain of the soil
under the ultimate horizontal load is similar to that under the ultimate vertical load, and
it mainly occurs at the end of the 1# bucket and extends downward to form a continuous
“V-shaped” plastic failure zone. In addition, due to the extrusion of the bucket, there is
also a certain plastic failure in the outer and upper soil of the 1# bucket on the forward
side. As shown in Figure 12b, the soil equivalent plastic strain contour of TBJF is obviously
different from that of the TSPJF. There is no continuous “V-shaped” plastic failure zone
at the end of the 1# bucket. The plastic damage of the soil mainly occurs on the outside
and end of the 1# bucket on the forward side. Therefore, the TSPJF resists the horizontal
load mainly by reaction generated in forward and backward buckets acting in tension and
compression, respectively, while the TBJF resists it mainly by single bucket horizontal and
bending resistance.
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Figure 12. Soil equivalent plastic strain contours at 1# and 2# bucket central section for the TSPJF and
TBJF under the ultimate horizontal load. (a) TSPJF, (b) TBJF.

The distribution of earth pressure inside and outside skirt wall at the position of
P1 and P2 of 1# bucket and 2# bucket along the skirt height is shown in Figure 13. The
distribution of earth pressure is consistent with the distribution of plastic strain shown in
Figure 12. The distribution of earth pressure of the two foundations is similar along the
skirt height, but the earth pressure on the TSPJF is relatively small in value.
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Figure 13. Distribution of earth pressure inside and outside TSPJF and TBJF along the skirt height 

under ultimate horizontal load. (a) 1# bucket of the TSPJF, (b) 2# bucket of the TSPJF, (c) 1# bucket 

of the TBJF, (d) 2# bucket of the TBJF. 

Figure 14 shows the lateral soil resistance on the inside and outside skirt walls of 

TSPJF and TBJF at different horizontal loads. The direction of the soil resistance is positive 

with the positive x-axis. The lateral soil resistance curves of the two foundations have 

similar trends with the change of horizontal load. The magnitude and trend of soil re-

sistances on the skirt wall of 2# and 3# buckets of TSPJF and TBJF are similar under the 

different horizontal loads, and the soil resistances on the 2# and 3# buckets are all smaller 

than that of 1# bucket. The lateral soil resistance of the TSPJF and TBJF under horizontal 

load mainly comes from the soil resistance on the outside skirt wall of 1# bucket; more 

precisely, it comes from the passive earth pressure area on the forward side and the outer 

of 1# bucket, which can also be shown from the plastic strain contours under the ultimate 

horizontal load. 

Figure 13. Distribution of earth pressure inside and outside TSPJF and TBJF along the skirt height
under ultimate horizontal load. (a) 1# bucket of the TSPJF, (b) 2# bucket of the TSPJF, (c) 1# bucket of
the TBJF, (d) 2# bucket of the TBJF.

Figure 14 shows the lateral soil resistance on the inside and outside skirt walls of TSPJF
and TBJF at different horizontal loads. The direction of the soil resistance is positive with
the positive x-axis. The lateral soil resistance curves of the two foundations have similar
trends with the change of horizontal load. The magnitude and trend of soil resistances
on the skirt wall of 2# and 3# buckets of TSPJF and TBJF are similar under the different
horizontal loads, and the soil resistances on the 2# and 3# buckets are all smaller than that
of 1# bucket. The lateral soil resistance of the TSPJF and TBJF under horizontal load mainly
comes from the soil resistance on the outside skirt wall of 1# bucket; more precisely, it comes
from the passive earth pressure area on the forward side and the outer of 1# bucket, which
can also be shown from the plastic strain contours under the ultimate horizontal load.
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Figure 14. Lateral soil resistance on the skirt wall of the TSPJF and TBJF at the different horizontal 

loads. (a) soil resistance on the inside skirt wall of the TSPJF, (b) soil resistance on the outside skirt 

wall of the TSPJF, (c) soil resistance on the inside the skirt wall of the TBJF, (d) soil resistance on 

the outside the skirt wall of the TBJF. 

In order to further explore the difference in the horizontal bearing characteristics be-

tween the TSPJF and the TBJF. The variation of the dimensionless vertical resistances, <!-
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Figure 14. Lateral soil resistance on the skirt wall of the TSPJF and TBJF at the different horizontal
loads. (a) soil resistance on the inside skirt wall of the TSPJF, (b) soil resistance on the outside skirt
wall of the TSPJF, (c) soil resistance on the inside the skirt wall of the TBJF, (d) soil resistance on the
outside the skirt wall of the TBJF.

In order to further explore the difference in the horizontal bearing characteristics
between the TSPJF and the TBJF. The variation of the dimensionless vertical resistances,
VL/H, Vf /H, provided by bucket lid, and inside and outside frictional resistance on the
buckets with dimensionless horizontal load, H/Hu, are demonstrated in Figure 15, where
H is the applied horizontal load; Hu is the uniaxial horizontal capacity. As shown in
Figure 15a, the vertical resistance on the 1# bucket lid of the TBJF is significantly higher
than that of the TSPJF under the same horizontal load. The vertical resistance is about 0.5
Hu for the TSPJF under the ultimate horizontal load, while it can reach 0.9Hu for the TBJF.
As shown in Figure 15b, the variation of the dimensionless vertical frictional resistance on
the outside skirt of 1# bucket of the TSPJF and TBJF is similar, and the ratio of the bucket
height to the bucket diameter has little effect on it. With the increase of the horizontal load,
the dimensionless vertical frictional resistance on the outside skirt of 1# bucket gradually
decreases, and the rate of decrease gradually slows down, and it is reduced to about 0.6 at
the ultimate horizontal capacity. However, the dimensionless vertical frictional resistance
on the outside skirt of 1# bucket of TSPJF is significantly larger than that of TBJF under
the same horizontal load. The difference in vertical frictional resistance on the inside and
outside skirt of the 2# bucket is small as shown in Figure 15c.
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Figure 15. Vertical resistance of each part of the foundations at different horizontal loads. (a) lid 

resistance of 1# bucket, (b) frictional resistance of 1# bucket, (c) frictional resistance of 2# bucket. 

3.2. Negative x-Axis Loading 

Figure 15. Vertical resistance of each part of the foundations at different horizontal loads. (a) lid
resistance of 1# bucket, (b) frictional resistance of 1# bucket, (c) frictional resistance of 2# bucket.

3.2. Negative x-Axis Loading

The horizontal bearing characteristics of the TSPJF and TBJF under negative x-axis
loading are different from those under positive x-axis loading. Figure 16 shows soil
equivalent plastic strain contours at the 1# and 2# bucket central section for TSPJF and
TBJF under the ultimate horizontal load. The plastic failure of soil around 1# bucket mainly
occurs at the end (in the passive region) and the top (in the active region) of the bucket
under positive x-axis loading. Due to the displacement of the bucket in the negative x-axis
direction, the outer soil on the forward side of 1# bucket is separated from the bucket
during the loading process, which progressively produces active failure that forms a large
plastic failure zone.
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Figure 16. Soil equivalent plastic strain contours at 1# and 2# bucket central section for the TSPJF and
TBJF under the ultimate horizontal load. (a) TSPJF, (b) TBJF.

The horizontal and vertical resistance of each part of the buckets of the TSPJF and
TBJF under ultimate horizontal load are shown in Figures 17 and 18, respectively. It can be
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seen from Figures 17a and 18a that the soil horizontal resistance on the inside and outside
skirt wall of buckets under the positive x-axis loading condition is greater than that under
the negative x-axis loading condition. Among them, the soil in the outer passive zone of
1# bucket provides the greatest resistance. As shown in Figures 17b and 18b, the vertical
resistance of the TSPJF and TBJF is mainly composed of the soil resistance on the 1# bucket
lid, the inside and outside frictional resistance of each bucket under positive x-axis loading
condition. For the TSPJF, the inside frictional resistance of 1# bucket is the largest, followed
by the outside frictional resistance of 1# bucket, and soil resistance on the 1# bucket lid,
while for the TBJF, the soil resistance on the 1# bucket lid is the largest, followed by the
inside frictional resistance of 1# bucket and the outside frictional resistance of 1# bucket.
Under the negative x-axis loading condition, the vertical resistance of the TSPJF and TBJF
is mainly composed of the inside and outside frictional resistance of each bucket, while the
soil resistance on the bucket lid is very small, especially for the TSPJF.
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Figure 17. Horizontal and vertical resistance of each part of the buckets of TSPJF under ultimate 

horizontal load. (a) horizontal resistance, (b) vertical resistance. 
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Figure 18. Horizontal and vertical resistance of each part of the buckets of TBJF under ultimate hor-

izontal load. (a) horizontal resistance, (b) vertical resistance. 
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Figure 18. Horizontal and vertical resistance of each part of the buckets of TBJF under ultimate
horizontal load. (a) horizontal resistance, (b) vertical resistance.

4. Comparison of Bearing Characteristics of TSPJF and TBJF under Overturning
Moment

The TSPJF and TBJF resist the overturning moment with the reaction generated in
windward and leeward bucket foundations acting in tension and compression, respec-
tively [15,17]. Two loading directions are considered to analyze the monotonic moment
bearing characteristics, including (1) 1# bucket in compression, and 2# and 3# bucket in
tension, namely single bucket in compression, (2) 2# and 3# bucket in compression, and 1#
bucket in tension, namely single bucket in tension.
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4.1. Single Bucket in Compression

Figure 19 shows the overturning moment-rotation plots of the TSPJF and TBJF, which
shows an inherently nonlinear growth with an elastic stiffness at small rotations. When
the rotation exceeds about 0.02 rad, the slope of the curve decreases significantly. There
are no obvious inflection points in the overturning moment–rotation curves. The ultimate
overturning capacity can be obtained using the tangent intersection method proposed by
Villalobos [18], and the ultimate overturning capacity of TSPJF and TBJF are 980.42 MN·m
and 1011.64 MN·m, respectively.
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Figure 19. Overturning moment-rotation plot for the TSPJF and TBJF. (a) TSPJF, (b) TBJF.

Figure 20 displays the soil equivalent plastic strain contours at the 1# and 2# bucket
central section for the TSPJF and TBJF under the ultimate overturning moment. As shown
in Figure 20a, only the soil at the end of the 1# bucket has plastic failure occurring. The
failure mode is consistent with the failure mode of the single bucket under the vertical
load, which indicates that the displacement of the TSPJF under the overturning moment
is dominated by rotation, while the translational displacement is almost negligible. As
shown in Figure 20b, there is no obvious plastic strain at the end of 1# bucket (bucket in
compression) under the ultimate overturning moment, but the 2# bucket and 3# bucket
(buckets in tension) are pulled out, so the ultimate moment capacity is directly related to
the uplift capacity of the single bucket foundation.
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Figure 21 shows the diagram of the coordinates of the foundation rotation center at
different overturning moments for the TSPJF and TBJF. At the initial stage of loading, the
rotation center of the foundation is located at the midpoint of the line connecting the lid
centers of the two buckets in tension (2# bucket and 3# bucket) for the TSPJF and TBJF.
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With the increase of the overturning moment, the rotation center gradually moves to the
centroid of the foundation (x = 0) in the horizontal direction, and moves up and away from
the seabed in the vertical direction. The coordinates of the rotation center of the TSPJF and
TBJF are (−5.87 m, 0m, 1.67 m,) and (−3.41 m, 0m, 1.25 m) under the ultimate overturning
moment.
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4.2. Single Bucket in Tension

The ultimate moment capacities of the TSPJF and TBJF in loading of the single bucket
in tension are 495.5 MN·m and 641.14 MN·m, which is significantly smaller than that in
loading of the single bucket in compression. Figure 22 shows the soil equivalent plastic
strain contours at the 1# and 2# bucket central section for the TSPJF and TBJF under the
ultimate overturning moment. The plastic failure occurs in the soil around the top of the
buckets including the buckets in compression and tension. In addition, the plastic failure
area of the soil around the bucket in tension (1# bucket) is obviously larger than that around
the bucket in compression (2# bucket).
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The horizontal resistance on the TSPJF and TBJF is relatively small under the ultimate
overturning moment, so only the vertical resistances are analyzed. Figure 23 shows the
vertical resistance of each part of the buckets of the TSPJF in different loading directions.
Different from the single bucket in compression condition, the vertical resistance on the
bucket lid under the single bucket tension condition is very small, the overturning moment
is mainly borne by the inside and outside frictional resistance. Combined with the soil
equivalent plastic strain contours, it can be concluded that the failure mode of the TSPJF
and TBJF in loading of the single bucket in tension is the pull-out failure of the bucket in
tension.
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5. Conclusions

In this study, the bearing characteristics of two tripod bucket jacket foundations
with different height-diameter ratios, the TSPJF and TBJF, were compared under different
monotonic loads. The analysis results indicate that the ratio of the bucket height to the
bucket diameter has a great influence on the bearing performance and even the failure
mode. The key conclusions are summarized as follows:

(1) The bearing modes of the two foundations under the vertical loads are different.
The ultimate vertical load is mainly borne by the inside frictional resistance for the TSPJF,
and its proportion is about 57%. However, for the wide and shallow foundation, TBJF,
the ultimate vertical load is mainly borne by the lid resistance, and its proportion is about
42.7%.

(2) Two loading directions are considered to analyze the horizontal bearing charac-
teristics. The foundations will take place translation and rotation under horizontal load.
Under the positive x-axis loading, the horizontal resistance is mainly provided by the soil
in the outer passive zone of 1# bucket. The vertical resistance of the TSPJF and TBJF is
mainly composed of the soil resistance on the 1# bucket lid, the inside and outside frictional
resistance of each bucket. For the TSPJF, the inside frictional resistance of 1# bucket is the
largest, while, for the TBJF, the soil resistance on the 1# bucket lid is the largest. Under the
negative x-axis loading condition, the vertical resistance of the TSPJF and TBJF is mainly
composed of the inside and outside frictional resistance of each bucket, while the soil
resistance on the bucket lid is very small, especially for the TSPJF.

(3) The overturning moments on the TSPJF and TBJF are resisted by the reaction
generated in windward and leeward bucket foundations acting in tension and compression,
respectively. The horizontal resistance on the TSPJF and TBJF is relatively small under the
ultimate overturning moment. The ultimate moment capacities of the TSPJF and TBJF in
loading of the single bucket in compression is significantly larger than that in loading of
the single bucket in tension. Different from the single bucket in compression condition, the
vertical resistance on the bucket lid under the single bucket tension condition is very small,
and the overturning moment is mainly borne by the inside and outside frictional resistance.
The failure mode of the TSPJF and TBJF in loading of the single bucket in tension is the
pull-out failure of the bucket in tension.
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