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Abstract: Sea horizon line (SHL) detection plays a pivotal role in the computational performance
improvement of computer applications for the maritime environment by dividing the image into sea
and sky regions. This division isolates the region of interest and reduces the computational cost of
further processing. Testing and performance evaluation of SHL detection methods require a robust
image dataset covering the maritime environment’s features at different geographical, seasonal, and
maritime conditions. However, publicly available maritime image datasets are developed under a
limited environment with slight-to-moderate variations in maritime features. This article proposes
a novel sea image dataset that fills this gap by incorporating various geographical, seasonal, and
maritime features. Across West Malaysia, one offshore and four geographically separated onshore
locations were selected. On ten different occasions, field observations were recorded using a visual-
range optical sensor and weather station. The data collection experiments were conducted between
February 2020 until April 2021. The collected data were preprocessed and SHL images were selected
based on their high feature diversity. Manual SHL annotation was applied on images, and a ground
truth matrix was generated, which serves as a performance benchmark for SHL detection methods.
As a result, the dataset presents 2673 high-definition (1920 × 1080 pixels) RGB images having
a combination of 36 different geographical, seasonal, and maritime features to test and evaluate
computer vision-based SHL detection methods.

Keywords: visual image dataset; sea horizon line; computer vision

1. Introduction

A sea horizon line (SHL) is a thin boundary that separates a maritime scene into two
major regions, i.e., the sea and the sky. This division helps isolate the area under observation
which eventually decreases the computational cost associated with any further image
processing task. For this reason, detection of the horizon line is considered a critical pre-
processing step for maritime computer applications related to the navigation of unmanned
aerial vehicles [1,2] and surface ships [3,4], collision avoidance [5,6], object detection [7]
and tracking [8], surveillance [9], distance estimation [10], and video stabilization [11,12].

SHL detection is a challenging task [13]. The presence of abundant features in a
maritime scene contributes to its complexity. At the forefront is foreground or background
objects and environmental conditions with strong linear features. Floating vegetation, algae,
wakes, waterborne vessels, cloud formation near the horizon, sea surface conditions, coastal
structures, and background landscape are sources of such strong linear features. Partial
occlusion of SHL due to foreground objects can also affect the continuous linear properties
of SHL as, generally, SHL is the most distinguishable continuous linear feature in a sea
image. In such a case, the horizon line may not run across the full width of an image and its
presence is limited to a small region or regions of an image. These conditions can challenge
the robustness of projection-based computer vision SHL detection methods as they look
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for the presence of linear features by applying edge detection and linear transformation
methods [11] to identify SHL in an image.

Another challenge for SHL detection methods is varying illumination levels across
sea surface, cloud cover and sea states [14]. This creates variation in surface glint and
glare levels. In some cases, when strong glint and glare are present, there is little color
difference between the sea and sky region. Moreover, at times, sky conditions can change
sea water’s color. For example, across the sea surface, a scattered cloud cover lets different
amounts of sunlight penetrate seawater, consequently creating multiple color bands across
its surface. Such color bands are also possible due to sea depth variations and the presence
of phytoplankton. The presented scenarios are specifically a challenge for SHL detection
methods which attempt to separate sea–sky regions by performing statistical analysis, such
as the probability distribution of color across the sea and sky region [14].

A method which attempts to solve the SHL detection problem requires a benchmark
image dataset of maritime scenes for testing and performance evaluation purposes. The
dataset serves as the sole standard to evaluate the robustness of the method in different mar-
itime scenarios. Researchers have proposed various maritime image datasets [8,11,15–17];
however, limitations in geographical, seasonal, maritime, and day conditions, variation in
SHL position and angle in images [8,11,15–17], absence of background objects [11], low-
resolution images and presence of compression artifacts [11,15], and lack of annotation
scheme [17] in these datasets creates a gap for further improvements. In this paper, we
present a novel sea image dataset that caters to the need by incorporating features that
are distinguishable due to their geographical, seasonal, and maritime scene diversity. In
general, the dataset focuses on computer vision and statistical analysis-based SHL de-
tection methods. In total, the dataset has 2673 high-definition (1920 × 1080 pixels) RGB
images. These images have a combination of 36 different geographical, seasonal, environ-
mental, and maritime features to test and evaluate SHL detection methods. To the best
of our knowledge, no other publicly available dataset presents such feature diversity in
their images.

1.1. Related Work

For this study, we have reviewed the maritime image datasets which are publicly
available for download and used for SHL detection problem. These datasets are the buoy
dataset [11], Mar-DCT [15], Marine Obstacle Detection Dataset (MODD) v1.0 [16], IPATCH
Dataset [17], and Singapore Maritime Dataset [8]. In this section, we have presented those
dataset’s objectives, attributes and identified their shortcomings.

The buoy dataset [11] is a low-resolution visible-range color video dataset captured
from a buoy-mounted forward-looking camera. The dataset is primarily developed to test a
ship detection and tracking system in a maritime environment. It offers videos at 25 frames
per second at 800 × 600 pixels. The lack of diversity in the maritime environment and
weather conditions, absence of coastline and infrastructures, and presence of compression
artifacts are some of the issues that make this dataset less suitable for evaluating modern
SHL detection methods.

The Mar-DCT dataset [15] is a collection of visible-range color and infrared range
video datasets. The published dataset focused on a boat classification, detection and
tracking problem. A subset of this dataset has been used for SHL detection research [18].
The publicly available dataset consists of low and variable-resolution videos in the range
between 352 × 288 to 704 × 576 pixels. The frame rate also varies between 10 to 25 frames
per second. In total, 410 s of video are available. These videos are captured from a fixed
platform, and occasional zoom, pan, and tilt operations have been performed. The dataset
offers some variations in time of the day, illumination level, and background. However,
due to its low resolution and monotonous environment features, the dataset does not cover
the wide range of features present in different maritime environments.

The Marine Obstacle Detection Dataset [16] in essence was developed to focus on ob-
stacle detection issues in a maritime environment. The dataset offers 4454 images captured
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from a near-to-sea-surface moving camera at a standard definition, i.e., 640 × 480 pixels. A
limited variety of maritime scenes with changing backgrounds are present in the dataset.
Since the dataset is created using a small, unmanned surface vehicle (USV) thus its ge-
ographical coverage is extremely limited. Additionally, the dataset does not offer great
variations in camera height and movement which is essential for capturing an important
feature, i.e., variation in angle and elevation of the horizon line. Moreover, similar sea
conditions, background features, and lack of environmental noise such as fog or haze limit
the features of the dataset.

The IPATCH dataset [17] fundamentally addresses the need for computer vision re-
search in maritime surveillance. The videos are recorded from a tug ship in a coastal
area using multiple visible and thermal sensors. The visible-range videos are recorded
using a five-megapixel camera, and thermal range videos are recorded at 640 × 480 pixels
and 640 × 512 pixels. This dataset is entirely focused on object detection and tracking,
and no annotation scheme is given to address SHL detection problem. We find it unsuit-
able for SHL detection research for reasons such as the absence of a detailed annotation
scheme, lack of versatility in geographical, environmental, maritime conditions, and dataset
accessibility issues.

The Singapore Maritime Dataset [8] is a collection of visible and near-infrared band
videos captured under geographically limited, moderate weather condition variations and
a high maritime traffic environment. The dataset consists of 19,734 high-definition images,
i.e., 1920 × 1080 pixels, extracted from captured videos. The dataset is focused on the
presentation of high marine traffic scenes for SHL detection, object detection, and tracking.
Since the dataset is created in a limited geographical boundary, uniformity in the features
across different videos is present.

Table 1 presents a summary of the discussed dataset’s targeted domain and image attributes.

Table 1. Discussed dataset’s targeted domains and image attributes.

Dataset Targeted
Domain Video Type Video Quality Image Source

Buoy Dataset [11] Ship detection
and tracking Visible range 800 × 600 pixels Video

Mar-DCT [15] Maritime surveillance Visible and
infrared range

352 × 288 pixels,
704 × 576 pixels Video

Marine Obstacle
Detection Dataset [16]

Obstacle detection in
maritime environment,
Sea-Sky segmentation

Visible range 640 × 480 pixels Video

IPATCH [17] Maritime surveillance Visible and
thermal range

5 mega pixels,
640 × 480 pixels,
640 × 512 pixels

Video

Singapore Maritime
Dataset [8]

Maritime object and sea
horizon line detection

Visible and
near-infrared range 1920 × 1080 pixels Video

1.2. Problem Statement

Many SHL detection methods have been proposed in the literature. They may be
categorized into four major domains, i.e., (i) computer vision, (ii) statistical analysis, (iii) ma-
chine learning, and (iv) hybrid approaches. Computer vision-based methods usually detect
the edges in a targeted image. They then apply line detection algorithms such as the Hough
transform, Radon transform, or least-squares regression methods to identify SHL [18]. A
statistical analysis approach identifies SHL using techniques such as probability distribu-
tion of color to find SHL [14]. An approach based on machine learning applies machine
learning models such as SVM, J48, or Naïve Bayes classifiers to classify pixels which belong
to the SHL [19]. A combination of the mentioned approaches is categorized as a hybrid
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approach. For example, a combination of projection method and statistical analysis to
determine SHL [11].

Regardless of their category, the testing and performance evaluation of SHL detection
methods requires a well-defined image dataset of diversified scenes [8,20]. For this purpose,
a challenging feature matrix can be constructed for quality and suitability evaluation of the
SHL image dataset. Such a matrix is presented in Table 2.

Table 2. A challenging feature matrix for SHL detection.

Challenging Feature for SHL Detection Potential Source

Background objects [21] City skyline, Hills, Irregular coastline

Blur horizon [22] Haze, Fog, Illumination, Sensor noise

False linear feature or Edge [3,18,20] Small or large objects on horizon, Sea waves,
Floating vegetation, Edges of cloud, Glint

Image resolution [23] Low resolution of optical sensor

Inseparable color distribution between sea
and sky

region [20], Absence of line features [13,20]
Haze

Fewer number of pixel attributes [19] Small dataset

Large area of occlusion [14,20] Foreground ships or objects

Researchers have proposed various maritime image datasets [8,11,15–17]. These
datasets are created from short video clips captured within the vicinity of a specific geo-
graphical location at different resolutions and frames per second. This way, a few seconds
of a video clip recorded at 60 frames per second can generate more than a thousand im-
ages. To its benefit, this approach yields a large volume of an image sequence, but on the
downside, the dynamics of foreground or background features do not change much in the
resultant images. Thus, similar features are repeated in thousands of images in the dataset,
which limits the feature diversity of the dataset. To judge the performance accuracy of
the SHL detection method, it is important that it be evaluated under dynamic conditions
(i.e., diversity of features) [3]. However, to the best of our knowledge, publicly available
SHL image datasets are limited in feature diversity as they are created from a large number
of images extracted from a source video, have limited geographical coverage, and do not
cover various wave forms (i.e., sea state).

To address this problem, in this paper, we propose the development of a sea horizon
line image dataset called Manzoor-Umair: Sea Image Dataset (MU-SID), which is created
using still images covering a wider range of environmental, weather, maritime, and sea
state conditions at five geographically distinct locations across the eastern and western
coasts of West Malaysia.

The prominent contribution of this dataset is the addition of the following features
diversity to the existing work.

1. Geographical diversity: extensive feature diversities related to foreground and back-
ground objects, sea states, and maritime traffic are subject to geographical location
and location of observation platforms. The proposed dataset presents SHL images
collected under two scenarios (i.e., offshore, and onshore) at five geographically sep-
arated locations across the eastern and western coasts of West Malaysia, covering
two separate water bodies (i.e., the Straits of Malacca and the South China Sea). As
a result, variations in foreground and background objects and maritime traffic are
captured. Additionally, by collecting data from two different bodies of the sea, five
sea states (i.e., from sea state 0 to sea state 4) are present in SHL images. To the best
of our knowledge, no other sea horizon line image dataset covers five geographical
locations and two bodies of sea in its studies.
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2. Temporal diversity: features such as illumination levels, glint, glare, haze, fog, and
cloud cover change across the day and season. If image collection experiments last
for different times of the day and across all seasons of the year, a wide range of such
features can be incorporated into a dataset. As a result of ten data collection field
trips targeting separate weather and seasonal conditions, the proposed dataset covers
various times of the day (i.e., late morning, noon, afternoon, evening, and late evening)
and yearly tropical seasons (i.e., summer and monsoon).

The paper is organized as follows: The “Materials and Methods” Section explains the
steps taken to capture and construct the proposed dataset. The “Dataset Creation” Section
explains the steps taken to preprocess the raw images, the selection of final images and
their annotation. Section “Dataset Description and Statistics” discusses the features and
statistical properties of the dataset. The “Discussion” Section compares the presented work
with previous studies and highlights its novelty. In Section “Applications of MU-SID”, we
have identified potential application use of the dataset, and finally, the “Conclusion and
Future Work” Section presents the concluding remarks and directions for future work.

2. Materials and Methods
2.1. Sensors Detail
2.1.1. Optical Sensor

The MU-SID is primarily focused on the testing and performance evaluation of visible-
range sea horizon line detection methods. In similar maritime visual-range image dataset
development studies, a single or an array of high-definition visual-range cameras were
successfully employed to capture the source videos [8,11,15–17]. A similar approach is
adopted in this study as well, by employing a Nikon D3400 visual-range digital camera.
The camera’s CMOS image sensor has 24.2 million effective pixels and a high ISO sensi-
tivity of between 100 and 25,600. The shutter speed of the camera is 1/4000 to 30 s. The
captured image is saved in standard RGB color space and has a maximum dimension of
6000 × 4000 pixels at 300 dpi.

2.1.2. Weather Sensor

To report precipitation and prevailing sea state (based on the Beaufort wind force
scale and existing wind conditions) in the proposed dataset, the experiment requires in situ
reading of weather parameters. To achieve this objective, a weather station can be deployed
at an observation site. For this study, a Vantage Vue wireless weather station is selected,
primarily for its ability to record wind speeds as low as 1.7 knots per hour and at a smaller
interval of 2.5 s. Additionally, the weather station can record rain, temperature, humidity,
and atmospheric pressure data at an interval of 1 min. At each observational site, the setup
of the weather station requires updating values such as time, date, longitude, latitude, and
the weather sensor’s height above sea level. Figure 1 depicts the setups of both sensors
during onshore and offshore data collection experiments.

Figure 1. Cont.
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Figure 1. (a) Offshore optical sensor setup; (b) onshore optical sensor setup; (c) offshore weather
station setup; (d) onshore optical sensor setup.

2.2. Experimental Design and Considerations
2.2.1. Geographical Diversity

The selection of an observation site is a major factor that affects the feature dynamics
in an SHL image. For example, observation sites near a strait or a nearly enclosed sea are
subject to less wind–water interaction, resulting in relatively calm sea conditions. However,
a site facing a partially enclosed or open sea exhibits dynamic sea conditions due to the
larger surface area of the water being exposed to wind. Keeping this fact in consideration,
five geographically distinct locations across West Malaysia were selected for data collection
experiments. To capture open sea and calm sea state conditions, two locations (one offshore,
one onshore) were selected in the Straits of Malacca, while the remaining three locations (all
onshore) were facing the South China Sea to capture dynamic sea state conditions. Further
details on these locations are presented in Figure 2 and Table 3.
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Table 3. Details of geographical locations selected for observations.

Nature of Location Name Geographical
Coordinates Corresponding Sea Number of

Observations

Offshore Open sea off the coast of George Town 5.69 N, 100.08 E Straits of Malacca Two
Onshore Coast of Batu Ferringhi 5.46 N, 100.24 E Straits of Malacca Four
Onshore Coast of Tanjung Balau 1.61 N, 104.26 E South China Sea One
Onshore Coast of Kuala Nerus 5.37 N, 103.12 E South China Sea Two
Onshore Coast of Kampung Kempadang 3.75 N, 103.32 E South China Sea One
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2.2.2. Temporal Diversity

Meteorological conditions change across the year. These changes are the sources of
various challenging weather and environmental features such as illumination levels, cloud
cover, precipitation, fog, and haze, etc. To cover a fair proportion of these features over
the year, the field data collection experiments in this study were planned and executed at
different times of the day (i.e., late morning, noon, afternoon, evening, and late evening)
and from February 2020 to April 2021.

2.2.3. Maritime Scene Diversity

One of the challenging scenarios in an SHL image is the presence of false linear features,
which can be mistakenly identified as SHL or part of an SHL. The sources of these false
linear features are foreground objects such as maritime traffic, wakes, floating vegetation,
or background objects such as hills, city skylines, etc. To capture these false features, two
data collection experiments were conducted on a ship which travelled 45 miles into the
open sea. During these experiments, the city skyline, hills, and a variety of maritime traffic
and wakes were captured in images. Additionally, four experiments were conducted at
an onshore location (5.46 N, 100.24 E) during which small boats, wakes, hills, ships on the
horizon, and cloud formation near the horizon were captured.

2.2.4. Observation Platforms and Sensors’ Placement

In an open sea, sea waves cause a movement of six degrees of freedom. On a small boat
or ferry, this movement is noticeable. However, a large ship generally remains stable under
moderate sea conditions. For accurate readings, it is important to place the weather station
on a stable surface. Therefore, a large cruise ship was selected for open sea data collection
experiments. The ship is 160.3 m long and 22.8 m wide, with a gross tonnage of 15,653. As
depicted in Figure 2b, the ship goes 45 km into the open sea. At its mid-journey position
(5.69 N, 100.08 E), the reported sea depth is 50 m. The weather station was mounted on
the forward deck of the ship, where minimal interference due to the movement of the
ship was observed. For the onshore data collection experiments, sites having platforms
stretching into the sea (5.46 N, 100.24 E and 1.61 N, 104.26 E) or flat surfaces next to the
shoreline (5.37 N, 103.12 E and 3.75 N, 103.32 E) were chosen to install a weather station
and optical sensors.

2.3. Data Collection
2.3.1. Image Data Collection

It is important that the captured images present optimal variations in geographical,
temporal, and maritime features. The study covers (i) offshore and (ii) onshore SHL image
collection experiments. Thus, separate methods are followed to capture images. For
offshore image collections, the images are captured from the bridge-roof, upper and lower
decks of the ship. Additional variation is achieved in combination with the bow, starboard,
and port side of the ship. By following this protocol, variations in height, illumination,
background objects, and an overall 270-degree view of SHL are captured from the ship.

Since a variety of viewpoints are not available from an onshore observation site, sensor
zoom, pitch, yaw, and roll are more extensively applied during onshore experiments.
Regardless of the nature of the observation point, the optical sensor is either mounted on
a tripod or held in hand while capturing the images. In total, 3184 super high-definition
standalone images at 6000 × 4000 pixels are captured. These images have a spatial dot
density of 300 dpi, a bit depth of 24, and an sRGB color representation.

2.3.2. Weather Data Collection

Weather data is collected at each site to monitor precipitation and wind. For every
experiment, the weather station is setup prior to the image capturing experiment. The
standard setup relays wind data at an interval of 2.5 s. Additionally, every minute, weather
parameters are internally stored in a CSV format. A half-hourly average wind speed
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is calculated and mapped on the Beaufort wind force scale [24] to estimate the current
sea state.

3. Dataset Creation
3.1. Image Selection

As a first step toward dataset creation, a subset of images with unique maritime
features is manually selected from raw images using the following two stages. Firstly,
location-wise images are clustered based on their time signatures. Secondly, an image that
represents the maximum feature diversity in its cluster is manually selected and removed
from the cluster. Step two is repeated if necessary. This way 1299 images are selected from
a total of 3184 images.

3.2. Sub-Image Extraction and Selection

Since the raw images are captured at a super high definition of 6000 × 4000 pixels,
thus from a single image, it is possible to extract multiple sub-images of high definition at
1920 × 1080 pixels using a sliding window. By applying this approach, nine sub-images
are extracted from each raw image. An extracted image is named by coupling source raw
image’s name and a postfix value mentioning the extracted image’s order in the extraction
sequence. For example, a sub-image named “DSC_0035_3.JPG” indicates that it’s the third
sub-image extracted from a raw image named “DSC_0035.JPG”. As a result, a pool of
sub-images is available for further pre-processing. At this stage, sub-images with high
blur, undesirable artifacts and visually missing SHL (e.g., Figure 3b,c,e,f,h,i) are removed.
The remaining sub-images are used to construct the proposed dataset. An example of the
sub-image extraction and selected SHL images are presented in Figure 3.

Figure 3. Cont.
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Figure 3. (a) Source raw image; (b–j) Extracted sub-images; (d,g,j) Selected images with visible SHL.

3.3. Ground Truth Scheme

The ground truth (GT) value identifies the actual position of an object of interest in
an image. To create GT values for the sea horizon line, we have referred and modified the
GT scheme presented by Prasad et al. [8]. The modified GT scheme is depicted in Figure 4.
Here, P1(x1,y1), and P2(x2,y2) are the starting and ending coordinates of sea horizon line.
M is the middle point of the sea horizon line. D is the distance from the starting point of
normal to M. The angle of sea horizon line with reference to the normal passing through M
is denoted with θ.
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3.4. Image Annotation

The final set of images are annotated manually using the desktop version of Super-
Annotate. The annotation serves two purposes; firstly, it identifies SHL; secondly, it is
used as a reference for performance evaluation of an SHL detection algorithm. For each
image, the sea horizon line is manually drawn and labeled to the best of our ability. The
annotation software generates a JSON file from which the starting and ending points of
SHL are retrieved, and the proposed GT values are calculated. The final GT values and its
corresponding image file name is presented in a single CSV file. Figure 5 shows the manual
annotation process using SuperAnnotate software.

Figure 5. Image annotation using SuperAnnotate software.

4. Dataset Description and Statistics

The SHL dataset presented in this work consist of 2673 high-definition (1920 × 1080 pix-
els) RGB images. The dataset offers 36 different features. A combination of these features
such as different day, weather, and environmental conditions, sea states, linear features,
partial occlusion, foreground and background objects, and artifacts present a challenge
for sea horizon line detection algorithms. These 36 features are categorically described in
Table 4.

Table 4. Features list of proposed dataset.

Day
Conditions

Weather
Conditions Sea States Environmental

Conditions
False Linear

Features Occlusion Presence of
Object Artifacts

1. Late
morning;
2. Noon;

3. Afternoon;
4. Evening;

5. Early night

6. Sunny;
7. Partially

cloudy;
8. Mostly
cloudy;

9. Overcast;
10. Drizzle

11. Flat surface;
12. Ripples;
13. Small
wavelets;
14. Large

wavelets with
few whitecaps

15. Small
waves with

frequent
whitecaps

16. Haze;
17.

Mild-to-strong
solar glare;

18.
Mild-to-strong

glint;
19. Variation in

sea surface
color;

20. Smooth
color transition

between sea
and sky region

21. Wakes;
22. Foam;

23. Sea waves;
24. Linear

color bands on
sea surface;
25. Linear

cloud
formation at

horizon

26. Partial
occlusion by

ship;
27. Partial

occlusion by
other objects

28. Hills;
29. City
skyline;

30. Shoreline;
31. Boats
and ships

32.
Variable-sea to

sky area
proportion;

32.
Variable-sea

skyline angles;
34. Blur;

35. Occasional
optical sensor

noise;
36. Grainy

noise
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The SHL is captured from different heights (2 to 20 m from sea level) and from different
angles thus a wide diversity in P1(x1,y1), and P2(x2,y2), SHL’s relative position (D) in the
image, and angle (θ) is present in the dataset. The details of these attributes are given in
Table 5.

Table 5. Sea horizon line statistics.

Values in Pixels Degree
x1 y1 x2 y2 D θ

Minimum 0 0 254 0 14 53.6
Maximum 1637 1080 1920 1080 1054 125.8

The dataset also offers a fair distribution of the occurrence of SHLs in 4 equally
distributed cross-sections of the images; thus, a variable sea-to-sky ratio is present. For
the interest of our reader, Table 6 represent SHL’s frequencies of occurrence in a specific
cross-section of images along with their percentages.

Table 6. Presence of sea horizon line in equally distributed cross-sections of images.

Image Cross-Section Frequency of SHL
Occurrence

Percentage of SHL
Occurrence

Top 756 28.3%
Upper Middle 699 26.2%
Lower Middle 593 22.2%

Bottom 625 23.4%

A wide deviation in SHL’s angle is essential to address the need for testing the SHL
detection algorithm in moving conditions. The proposed dataset offers SHL angles in the
range of 53 to 126 degrees. The overall distribution of SHL angles is presented in Table 7.

Table 7. Sea horizon line angle distribution.

Degree Greater than Degree Equal to or
Less than

Frequency of SHLs
in Given Range

Percentage of SHLs
in Given Range

53 90 1576 59%
90 126 1097 41%

As mentioned earlier, the images in the MU-SID dataset have a combination of 36 fea-
tures. Details on those features are mentioned in Table 4. In Figure 6, we present some of the
samples from MU-SID which shows a combination of features, such as overcast and shore-
line (Figure 6a), strong glare and sea state two (Figure 6b), haze and hilly terrain (Figure 6c),
partially cloudy evening (Figure 6d), background city skyline (Figure 6e), sea state three,
sea waves, and foam (Figure 6f), haze, foreground object and city skyline (Figure 6g), SHL
angle and position variation (Figure 6h), late evening and uniform sea-cloud color (Fig-
ure 6i), small objects on the horizon (Figure 6j), early night conditions (Figure 6k), partial
occlusion of SHL by close-to-camera object (Figure 6l), strong glint (Figure 6m), sea state
four (Figure 6n), and drizzle, wake and foreground object (Figure 6o).
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Figure 6. Sample images from MU-SID; (a–o) features such as different level of illumination, sky
conditions, strong glint and glare, foreground and background objects, false linear features, sea states,
partial occlusion, haze, variation in SHL angle and position in different cross-sections of images
are visible.

5. Discussion

In this paper, a novel visual-range sea image dataset for sea horizon line detection
is proposed. The dataset contributes towards the existing work by incorporating a new
approach to SHL image dataset creation. Rather than using a standard method of creating
an SHL image dataset by extracting similar-features image-frames from short video clips,
this study focused on capturing high-definition still images of SHLs at different times of the
day and across the seasons, resulting in visible changes in maritime scenery. Additionally,
to the best of our knowledge, this is the first study that covers five geographically distinct
locations and two separate water bodies, i.e., the Straits of Malacca and the South China
Sea, resulting in a variety of sea and weather conditions. Moreover, by utilizing a weather
station to report wind parameters to estimate sea state while capturing the SHL images, the
dataset reports a novel feature, i.e., the sea state in its images. Overall, the study reports
the presence of 36 distinct features.

6. Applications of MU-SID

The detection of SHL is the first step in various maritime computer applications.
The MU-SID contributes towards the addition of important features by incorporating
geographical, seasonal, and maritime diversities along with a wide range of challenging
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scenarios for testing and evaluating such applications. Some of the use cases for MU-SID
are presented in this section.

6.1. Sea Horizon Line Detection Applications

With a combination of 36 different features in its images, the MU-SID is a challenging
dataset for SHL detection methods. Characteristics such as variation in daylight and sky
conditions, presence of five sea states, foreground and background objects, false linear
features, the smooth color gradient in between sea and sky regions, partial occlusion of
SHL, environmental noise, and artifacts makes it a dataset to test the robustness of SHL
detection methods.

6.2. Coastal Surveillance Applications

Coastal environments are usually cluttered with features such as maritime traffic, city
skyline, complex terrain, and seashore. The presence of these features in a test dataset
helps in the performance evaluation of coastal surveillance applications. The proposed
dataset offers these features with variations in maritime traffic, illumination levels, different
background conditions and sea states.

6.3. Navigational Awareness Applications

Nowadays, unmanned aerial and surface vehicles, small and large boats, and ships rely
on fully or partially automated navigational systems. These systems examine image frames
from a video feed and suggest navigational corrections accordingly. In such scenarios, the
horizon line is considered as a reference for navigational awareness [1,3,4,6,16]. For these
applications, variation in optical sensor height from sea surface can be a feature of interest.
The images presented in MU-SID are captured from different heights (i.e., from the top
deck of a ship to 2 m above sea level). Additionally, different zoom, pitch, yaw, and roll
settings are applied to the optical sensor to represent maritime scenes better.

7. Conclusions and Future Work

Detection of SHLs is pivotal for any image processing task related to the maritime
scene. However, to test an SHL detection method, an image must represent a wide range
of maritime features. In this paper, we have presented the Manzoor-Umair: Sea Image
Dataset (MU-SID), which offers versatility in image feature set. Maritime scenes from one
open-sea and four on-shore locations across West Malaysia were captured during February
2020–April 2021. The images were captured at different heights from the sea surface, time of
the day, and by applying various camera zoom, pitch, yaw, and roll settings. As a result, the
dataset offers a combination of 36 features of interest. Some of the unique features of this
dataset, which distinguish it from previously presented datasets, are maritime scenes that
present diverse geographical, seasonal, and sea state conditions. The dataset consists of a
total of 2673 high-definition RGB images at 1920 × 1080 pixels. These images are manually
annotated, and ground truth values for starting and ending points of the sea horizon line,
the distance between the starting point of normal drawn to the mid-point of the SHL, and
the SHL’s angle with respect to the normal are given to evaluate the performance of SHL
detection methods. Potential application domains which can use this dataset for their
testing and performance evaluation purpose are also mentioned.

For future work, we recommend two directions for feature diversity improvement;
firstly, more dynamic sea state conditions can be added. This addition will increase the
complexity arising from much rough sea states where big waves, spray, foam, and wa-
ter splashes occlude the sea horizon line, and SHL no longer exhibits a linear property
across the horizon; secondly, open sea conditions with fog and light-to-heavy rain can be
considered for weather related feature enhancement of the dataset.
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