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Abstract: In this study, the tsunami-induced bottom boundary layer was investigated based on
actual waveforms obtained by the GPS buoys along the coast of the Tohoku region during the 2011
Great East Japan Earthquake tsunami. The k-ω model was utilized for the numerical analysis in this
study. As a result, the tsunami boundary layer thickness was found to be extremely thin compared to
the water depth. The velocity distribution was similar to that of the bottom boundary layer under
wind-generated waves. The flow regime is located in the transition from smooth turbulence to
rough turbulence. Because of this, the gradient of the flow across the layer is much greater than the
gradients in the steady flow direction. Therefore, the bottom friction is underestimated if the steady
friction factor, such as in the Manning formula, is used. This study proposes a new simple method
for calculating the bottom shear stress due to an irregular tsunami based on the wave friction law,
and the k-ω model results are used to validate the proposed methods.

Keywords: the 2011 Tohoku Tsunami; bottom boundary layer; bottom shear stress; turbulence;
k-ωmodel; flow regime; friction coefficient

1. Introduction

One of the most distinct differences in wave-induced bottom boundary layers com-
pared with steady open channel flow is an extremely thin boundary layer thickness with
a steep velocity gradient near the sea bottom. In most wave theories, inviscid treatment
ignoring the shear stress effect is sufficient, even for practical engineering applications.
However, when we consider phenomena related to the frictional impacts, such as wave
height attenuation and sediment movement, the inviscid theories are insufficient, and con-
sideration of bottom friction is essential. For this reason, after the pioneering experiment
by [1] using an oscillating tunnel, many investigations have been undertaken regarding the
bottom boundary layer formed by wind waves.

In contrast to the wind-induced wave boundary layers, Manning’s roughness coeffi-
cient has generally been utilized in numerical simulations of tsunami to plan and design
disaster prevention structures in various practical situations. However, according to the
recent investigation by the authors, even if the wave motion is fully classified into a long
wave condition, the boundary layer thickness can exhibit similar behavior under the or-
dinary wave boundary [2,3]. Furthermore, during the 2010 Chilean Earthquake Tsunami,
typical characteristics of the wave boundary layer were observed from the measurement
of the flow velocity distribution under the tsunami [4,5]. In addition, [6,7] found that the
boundary layer near the tsunami source area is surprisingly in the laminar flow regime.
However, in investigating the tsunami boundary layers, the waveform is usually assumed
to comprise sinusoidal waves or solitary waves, which are totally different from the actual
irregular tsunami waveform.
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According to the linear long wave theory, the waveform of a water surface and a flow
velocity waveform is the same. Moreover, according to boundary layer approximation, the
pressure gradient that acts in a boundary layer can be replaced by the acceleration obtained
from the flow velocity waveform. Therefore, the pressure gradient in the boundary layer
under the actual tsunami, which has an irregular waveform, generally shows a complicated
time variation. For this reason, it differs from the pressure gradient based on the simple
waveform described by sinusoidal waves or solitary waves. It is well known that the
turbulent flow transition in a boundary layer is generally greatly dependent on a pressure
gradient [1].

This study presents a numerical analysis of the turbulent structure of the tsunami
bottom boundary layer using the measured 2011 Tohoku Tsunami waveform using the data
at several observation points of the GPS wave gauge.

2. Materials and Methods
2.1. GPS Wave Gauge Data

This investigation used tsunami data [8] from six locations, as shown in Figure 1a. The
result for each measuring point is illustrated using the station number shown in Table 1. It
is to be noted that Figure 1b,c is explained in detail later.
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Figure 1. (a) Location of the GPS station, (b) boundary layer thickness, (c) Reynolds number.

Table 1. GPS wave gauge data used in this study.

No. Measuring
Station Lattitude (deg.) Longitude

(deg.)
Water Depth

(m)

1 North Iwate 40.1167 142.0667 125
2 Central Iwate 39.6272 142.1867 200
3 South Iwate 39.2586 142.0969 204
4 North Miyagi 38.8578 141.8944 160
5 Central Miyagi 38.2325 141.6836 144
6 Fukushima 36.9714 141.1856 137

In order to investigate the tsunami-induced bottom boundary layer characteristics,
the estimated tsunami-induced velocity was based directly on the measured water surface
elevations at the GPS stations, as similar to [6]. The equation can be expressed as follows:

U(t) = η(t)
√

g
h

(1)
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where U(t) is the flow velocity, η(t) is the water surface elevation, h is the still water depth,
and g is the gravitational acceleration.

Figure 2 shows the flow velocity results from Equation (1) for six stations, which
indicate a highly irregular waveform.
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Figure 2. The estimated tsunami-induced flow velocity from the measured water surface elevation.

2.2. Numerical Analysis Using the k-ω Turbulence Model

The present study used the same k-ω model as in the previous study by [2,9]. For the
1-D incompressible unsteady flow, the equation of motion within the boundary layer can
be expressed as follows:

∂u
∂t

= −1
ρ

∂p
∂x

+
1
ρ

∂τ

∂z
(2)

where u is the horizontal velocity in the boundary layer, t is the time, p is the pressure, ρ is
the fluid density, τ is the shear stress, x is the horizontal coordinate, and z is the vertical
coordinate taken as positive upward from the bottom surface.

At the location outside of the boundary layer, the pressure gradient term is equal to
the temporal variation free-stream velocity, U(t), obtained from Equation (1). In addition,
the shear stress for turbulence flow is calculated by introducing the eddy viscosity model.
Hence, Equation (2) can be rewritten as follows:

∂u
∂t

= −1
ρ

∂U
∂x

+
1
ρ

∂

∂z

{
(ν+ νt)

∂u
∂z

}
(3)

where ν is the molecular kinematic viscosity, and νt is the eddy viscosity.
Although the nonlinear advection term is not considered in Equation (3), this linearized

boundary layer equation has been successfully employed and validated even for nonlinear
wave-induced boundary layers by imposing a pressure gradient under the nonlinear
waves, such as hyperbolic wave [10], solitary wave [11–13], saw-tooth wave [14], and
cnoidal wave [15]. In addition, the same Fortran code that was developed and validated by
our group [12,15,16] was utilized in this study to ensure the reliability of the model results.

The system is closed using the standard two-equation k-ω model proposed by [17]
and further developed by [18]. The transport equations for turbulent kinetic energy k and
the specific dissipation rate of the turbulent kinetic energyω can be expressed as follows:

Turbulent kinetic energy (k):

∂k
∂t

=
∂

∂z

{
(ν+ νtσkω)

∂k
∂z

}
+ νt(

∂u
∂z

)
2
− β∗kω (4)
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Specific dissipation rate (ω):

∂ω

∂t
=

∂

∂z

{
(ν+ νtσω)

∂ω

∂z

}
+ γ(

∂u
∂z

)
2
− βω2 + 2(1− F1)σω2

1
ω

∂k
∂z

∂ω

∂z
(5)

From k and ω, the eddy viscosity can be calculated as

νt =
k
ω

(6)

where the values of the model constants are given as σkω = 0.5 and β∗ = 0.09, which
describes the nonlinear transition of a flow regime from a laminar flow to a turbulent flow
in Menter’s model, σω = 0.5, γ = 0.553, and β = 0.075 respectively, and F1 is a blending
function, given as:

F1 = tanh(arg4
1) (7)

where

arg1 = min

[
max(

√
k

0.09ωd1
,

500ν
d2

1ω
),

4σω2k
CDkωd2

1

]
(8)

in which d1 is the distance of the cell to the nearest surface, and CDkω is the positive portion
of the cross-diffusion term of Equation (5) defined as:

CDkω = max(2σω2
1
ω

∂k
∂z

∂ω

∂z
, 10−20) (9)

Thus, Equations (3)–(5) were solved simultaneously using the free stream velocity,
U, angular frequency, σ, kinematics viscosity, ν and water depth, h. An implicit finite-
difference scheme with exponentially increasing grid spacing is used to solve the governing
equations, allowing for more precise numerical analysis near the bottom [2]. It is determined
for a detailed velocity distribution near the bottom by making a mesh interval exponentially
increase from the surface of a wall to a numerical computation using an implicit scheme
finite difference method. One period is divided into 150,000 as a temporal decomposition,
and the magnitude of the mesh is made to increase in the vertical direction in a geometric
series towards the upper part so that about ten calculating points may be arranged in a
viscous sublayer. The total number of vertical layers is 101. Because the details of the
calculation methodology are explained by [16], the detailed explanations are not described
here. The uniform median bed sediment is set to d = 0.3 mm, and ks = 2d is the Nikuradse
equivalent roughness estimation [19].

In the present study, the bottom shear stress results from the k-ωmodel are assumed
as the true values, and other proposed methods will be compared with the k-ω model
results to discuss the accuracy.

3. Results and Discussion
3.1. Transition from Laminar to Turbulence in the Tsunami Boundary Layer

In most of the current conventional tsunami numerical models, the tsunami wave is
assumed as a longwave, and the shallow water equation can be applied. In this theory, the
flow regime is classified as a turbulent flow regime, and the boundary layer thickness is
developed up to the water surface. However, [6,7] found that the boundary layer near the
tsunami source area is surprisingly in the laminar flow regime. Therefore, the use of the
steady flow theory may not be applicable for the tsunami case. In addition, the development
of a flow regime under a tsunami wave has not been studied before. In this study, the k-ω
model was applied to provide detailed time variations of vertical velocity profiles.

As mentioned in [20]’s paper, Kondo [21] developed the laminar solution of the
oscillating flow boundary layer under asymmetric flow velocity waveform using Laplace
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transformation. Although the details are omitted here, the theoretical solution is written
as follows:

u(t, z) = U(t)−
t∫

0

z

2
√

πν(t− ξ)3
exp(− z2

4ν(t− ξ)
)U(ξ)dξ (10)

where u(t, z): mainstream flow velocity, U(t) is free-stream velocity, ν: kinematic viscosity
coefficient, t: time; ξ is dummy integration variable. It is possible to obtain an arbitrary
flow velocity waveform by numerically integrating the above equation.

Figure 3 shows the comparison results between the k-ω model and Kondo’s analytical
laminar solution under the No.4 GPS tsunami wave at selected phases. In order to quan-
titatively analyze the difference between the k-ω model and the analytical solution, the
periodic averaged deviation, ε, which was introduced by [22], is utilized and is written
as follows:

ε =

 M

∑
i=1

{Ui(lam)

Um
−

Ui(kω)

Um

}2

/M

1/2

(11)

where the subscripts (lam) and (kω) denote the analytical and k-ω model, respectively; i is
the time index in a wave; Um is the maximum velocity at the wave crest; M = 101 is the
number of vertical layers.
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Figure 3. Comparison of the velocity profile for the case No. 4 between the k-ω model and the
analytical laminar solution.

Figure 4 shows the time variation in the deviation difference between the k-ωmodel
and the analytical laminar solution. The k-ω model result perfectly agrees with the laminar
flow regime condition solution within 100 s of the initial stage of tsunami arrival, indicating
the flow regime is laminar flow. After that, the k-ωmodel velocity profile tends to deviate
compared to the laminar solution in the boundary layer. The flow transforms to a turbulent
flow regime in an actual tsunami condition.
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Figure 4. Time variation in the deviation difference between the k-ωmodel and the analytical laminar
solution results.

For determining the transition to turbulence, the spatial and temporal kinetic energy,
k can be computed by the k-ω model, and is shown in Figure 5. The average value of
turbulent kinetic energy is normalized by the quadratic of the amplitude velocity under
the crest, Um. Figure 6 shows the time variation in the total molecular viscosity, ν, and
eddy viscosity, νt, at several elevations near the bottom. The computed values of k and
total viscosity remained nearly constant until the suddenly increased transition point to
turbulence around 100 s.
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The transition from laminar to turbulence conditions can also be observed by analyzing
the bottom boundary layer thickness development. Using the dimensional analysis for
the partial derivative of Equation (2) for a steady flow, many studies have shown that the
boundary layer under a laminar condition is proportional to the squared root of kinematic
viscosity, ν, and time as δ =

√
νt. Under a turbulent flow, the thickness of a boundary layer

development can be estimated as δ =
√
νtt.

Figure 7 shows the log-plot analysis results of the bottom boundary layer thickness
development from both the k-ω model and the analytical solution. Because of the absence of
overshooting velocity during the accelerating phase, the bottom boundary layer thickness
is consistently defined as the distance away from the bed surface where the velocity reaches
99% of the positive free-stream velocity and 101% of the negative free-stream velocity.
During the first 100 s, the boundary layer thickness develops in an exponential of 1/2 with
time, and thus confirms the flow is in laminar flow. The result of the boundary layer
thickness by the k-ω model when transitioning to turbulent flow shows that it is very
similar to the squared function of the time. Based on the above formula for turbulent
boundary layer thickness, in order to obtain this quadratic relationship, the eddy viscosity
νt should be proportional to the cubed function of the time in the turbulent flow. Figure 6
clearly suggests this relationship.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 6. Time variation of the total molecular viscosity and eddy viscosity at several elevations 

near the bottom. 

The transition from laminar to turbulence conditions can also be observed by analyz-

ing the bottom boundary layer thickness development. Using the dimensional analysis 

for the partial derivative of Equation (2) for a steady flow, many studies have shown that 

the boundary layer under a laminar condition is proportional to the squared root of kine-

matic viscosity,  , and time as td =  . Under a turbulent flow, the thickness of a 

boundary layer development can be estimated as ttd =  . 

Figure 7 shows the log-plot analysis results of the bottom boundary layer thickness 

development from both the k-ω model and the analytical solution. Because of the absence 

of overshooting velocity during the accelerating phase, the bottom boundary layer thick-

ness is consistently defined as the distance away from the bed surface where the velocity 

reaches 99% of the positive free-stream velocity and 101% of the negative free-stream ve-

locity. During the first 100 s, the boundary layer thickness develops in an exponential of 

1/2 with time, and thus confirms the flow is in laminar flow. The result of the boundary 

layer thickness by the k-ω model when transitioning to turbulent flow shows that it is very 

similar to the squared function of the time. Based on the above formula for turbulent 

boundary layer thickness, in order to obtain this quadratic relationship, the eddy viscosity 

t  should be proportional to the cubed function of the time in the turbulent flow. Figure 

6 clearly suggests this relationship. 

 

Figure 7. Transitional behavior from laminar flow regime to turbulent flow regime. 

1 10 100 1000

10-6

10-5

10-4


+


t 
(m

2
/s

)

t (s)

 z*=2.64´10-03

 z*=3.54´10-03

 z*=5.22´10-03

 z*=7.67´10-03

 z*=1.13´10-02

1.0

3.0

1 10 100 1000
0.01

0.1

1

10   Laminar solution

 k- model

d
 (

m
)

t (s)

0.5

1.0

2.0

1.0

Figure 7. Transitional behavior from laminar flow regime to turbulent flow regime.



J. Mar. Sci. Eng. 2022, 10, 173 8 of 15

As discussed above, the velocity profile from the k-ωmodel result excellently agrees
with the analytical laminar solution within 100 s of the initial stage of tsunami arrival,
indicating the flow regime is in a laminar flow. Hence, the k-ωmodel velocity profile tends
to deviate from the laminar solution in the boundary layer to transform to a turbulent
flow regime in an actual tsunami condition. Although the transition from laminar flow to
turbulence in the tsunami boundary layer exists, its duration is negligible.

3.2. Characteristics of the Turbulent Structure of Tsunami Bottom Boundary Layer Using the 2011
Tohoku Tsunami Waveform
3.2.1. Inspection of the Depth-Limitation Condition

The thickness of the wave boundary layer is calculated using the full range equa-
tion [23,24]. However, to apply this equation to non-sinusoidal waves such as the surveyed
tsunami waveform, it is necessary to assume a certain equivalence.

The flow velocity waveform calculated by Equation (1) is shown in Figure 2. The
maximum flow velocity at the outer edge of the wave boundary layer, Um, is estimated
from the first wave; and the representing length in a wave boundary layer is not the water
depth, h, but the maximum water particle excursion length, am. In the case of sinusoidal
waves, the following equation can be applied:

am =
Um

σ
(12)

where σ: the angular frequency. However, Equation (12) cannot be used in this investigation.
Therefore, a method developed by [25] was utilized. The am is calculated by integrating the
positive flow velocity of the first wave, and am is computed by dividing the integration by
2. The formula is written as.

am(t) =
1
2

t∫
t0

U(t)dt (13)

where t0 is the time of the previous zero crossing of the free stream velocity.
Using Equation (13), the dimensionless boundary layer thickness (δ/h) can be com-

puted, and the result is shown in Figure 1b. According to this, the ratio δ/h ranges from
0.011 to about 0.034, which means the boundary layer does not span the entire water surface
for all six cases. Therefore, applying the steady friction law, such as the Manning formula,
is invalid.

3.2.2. Inspection of the Transition to Turbulence

In this section of the study, we examined the turbulent flow transition in a wave
boundary layer. According to the investigation of the hypothetical tsunami-induced flow
regime of the bottom boundary layer by [7], it has been reported that a boundary layer is in
a laminar flow regime near the tsunami source area. For this reason, it is crucial to clarify
the location where the transition flow happened.

As previously mentioned, the relevant length in a wave boundary layer is the maxi-
mum water particle excursion length am. Therefore, the Reynolds number is calculated by
the following equation:

Re =
Umam

ν
(14)

The result is shown in Figure 1c. According to [26,27], it has been reported that the
critical Reynolds number that changes to a turbulent flow is Re = 2.5× 105. It was found
that all cases are larger than this critical value, and the Reynolds number shown in Figure 1c
is in a turbulent flow region.
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3.2.3. Inspection of the Flow Regime of the Boundary Layer

Figure 8 shows the flow regime for each measuring GPS station. Here, the flow regime
classification of [23] was used. According to this, all the cases belong in the transition
region from a smooth turbulent flow to a rough turbulent flow.
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3.2.4. Inspection of the Transitional Characteristics of the Boundary Layer Thickness and
Friction Factor

Using the full range equation of [24], the dimensionless boundary layer thickness
(δ/h) and wave friction factor can be estimated and are illustrated in Figures 9 and 10,
respectively. It is again confirmed that all six cases are located in the turbulent transitional
region from a smooth turbulent flow to a rough turbulent flow. Therefore, the judgment of
the flow regime is important in the boundary layer under a tsunami. In addition, under the
actual tsunamis, the friction coefficient of a transition region has a small value compared
with the friction coefficient of a rough turbulent flow.
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3.2.5. Tsunami-Induced Velocity

The flow velocity distribution obtained by numerical computation is shown in Figure 11.
The dimensionless vertical coordinates and the flow velocity are normalized by the water
depth, h, and the maximum flow velocity Um. The acceleration phase in Figure 11a consists
of a uniform flow above the boundary layer and logarithmic distribution inside the bound-
ary layer. The development characteristic of the wave boundary layer is similar to that of
an infinite flat plane. However, the velocity distribution of the acceleration phase differs
significantly from the well-known periodic wave boundary layer (e.g., [28,29]). Instead, it
is similar to the velocity distribution of a monotonous boundary layer.
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Figure 11. Flow velocity distribution under the observed tsunami at the GPS No.4 during (a) the
accelerating phase and (b) the decelerating phase.

Moreover, δ/h = 0.05, and the log-law distribution is not developed for the water
surface like in an open channel and a large velocity gradient near the bottom. It is clear
that the friction law of steady flows, such as the Manning formula, cannot be used.

The overshooting of velocity is remarkable at t = 966 s during the decelerating phase,
as shown in Figure 11b. As mentioned above, the characteristic of the velocity distribu-
tion ranging from the acceleration phase to the decelerating phase is closely similar to
the experimental result of the velocity distribution in a boundary layer under a solitary
wave [30,31].
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3.2.6. Tsunami-Induced Bottom Shear Stress

Figure 12 shows the time variation in the bottom shear stress obtained using the k-ω
model at three measuring stations (No.2, No.4, and No.5) among the six stations in Table 1.
The methods used in the figures are discussed in a later section. From t = 0 s to t = 520 s,
the increase in shear stress is more rapid than the flow velocity.
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Figure 13 shows the relationship between the instantaneous bottom shear stress τ0(t)
and the boundary layer outer edge flow velocity U(t). The result confirms that the shear
stress is proportional to the squared flow velocity. Therefore, a loop-like relationship is
observed, as shown in Figure 13. However, the conventional expression for accurately
estimating the bottom shear stress is required for practical application instead of the k-ω
model. Therefore, we propose several simple methods in the next section.
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4. Simple Methods of Calculating Bottom Shear Stress

As discussed in previous sections, the tsunami-induced bottom shear stress needs to be
calculated using the wave friction theory instead of the steady friction theory. However, all
wave friction theories [11–16] are developed based on simple waveforms such as sinusoidal,
solitary, and cnoidal waves, and a few are based on an irregular wave [23,32,33]. Therefore,
we intended to develop simple methods to apply the wave friction factor, such as the full
range equation by Tanaka and Thu (1994), in practice without using a complex model such
as the k-ω model. One of the difficulties is how to determine the value of am. In this study,
three methods are proposed to calculate am, as shown in Table 2. Method 1 uses Equation
(13) for each wave crest phase and wave trough phase, then uses am1, am2, . . . to calculate
fw1, fw2, . . . for each phase. Method 2 applies Equation (13) for the first maximum positive
velocity phase to obtain am1 and fw1, then assigns these values to the subsequent phases.
Method 3 calculates am1 and fw1 based on the sinusoidal wave formula for the first wave,
and these values are applied to the subsequent phases. Method 4 uses the conventional
steady flow friction fc theory.

Table 2. Calculation method of bottom shear stress.

Method Explanation
k-ω model

(truth) Numerical solution using the turbulence model.

Method 1 Using am1, am2, . . . for each crest phase and trough phase from numerical
integration of the velocity, calculate fw1, fw2, . . . for each.

Method 2 Using am1 from the first positive wave, calculate fw1, and use this single value
for subsequent waves.

Method 3 Using the Um and T1 (duration of the first positive wave), calculate
am1 = UmT1/2π to obtain fw1, and use this single value for subsequent waves.

Method 4 Steady flow friction coefficient fc (from log law).

Finally, the bottom shear stress results from the k-ω model are assumed to be the true
values in the present study, and other proposed methods are compared with the k-ω model
results to discuss the accuracy.

Figures 12 and 14 compare these four methods’ tsunami-induced bottom shear stress
results with the k-ω model. As can be seen, Methods 1, 2, and 3 give good results in the
first positive wave phase. However, they are underestimated compared to the k-ω model
results in the subsequent negative wave phase. Nonetheless, Method 1 still provides better
comparison results. Method 4 always gives remarkably underestimated results compared
to the k-ω model in all phases.

For a more quantitative assessment of the methods’ accuracy, the root mean squared
error (RMSE) was calculated for the trough and crest flow velocity phases, as shown in
Figure 15. The underestimation in the subsequent trough flow velocity phase is more
remarkable even with the wave friction coefficient methods. The significant difference is
due to the limitation of the computation method that uses the knowledge of the sinusoidal
waves. Therefore, further investigation is needed to consider the wave-like characteristics
of such non-sinusoidal waveforms.
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5. Conclusions

The characteristics of the bottom boundary layer under a tsunami were examined
based on the surveyed tsunami waveform. Due to the irregularity of the tsunami waveform,
the bottom shear stress could not be estimated accurately using the knowledge of sinusoidal
waves. In this study, we proposed simple methods for calculating bottom shear stress
for a tsunami with irregular waveforms. The new methods are comparable with the k-ω
model results. In the future, the effect of the history of the reflecting waveform shape
should be considered in order to increase the accuracy of the tsunami-induced bottom
shear stress estimation.
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