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Abstract: The provenance of sediments in the Southern Okinawa Trough since the late Holocene
has been a controversial scientific issue during the past 20 years. Previous studies based on isotope
proxies generally indicated Taiwanese rivers as the primary source in the Southern Okinawa Trough
since the late Holocene. Based on the zircon U-Pb geochronology, this study identified how sediments
from the Yangtze River/East China Sea shelf had contributed significantly to the Southern Okinawa
Trough in the past 624 a BP. Notably, this study found two Paleoarchean zircon grains, which indicated
they originated from older orogenic belts. These data shed new light on the provenance of sediments,
and a partial supply from the mainland of China cannot be excluded.

Keywords: detrital zircon; sediment provenance; Okinawa Trough

1. Introduction

As a momentous “sink” in the East Asia continental margin, the Okinawa Trough
is a crucial area to study continental-oceanic interactions and “source-to-sink” processes.
Sediments in the Okinawa Trough record the evolutionary history of sea level, ocean circu-
lation, East Asian monsoon, and human activities since the late Pleistocene [1,2]. During the
Holocene, terrigenous sediments from various sources were deposited in the East China Sea
(ECS) shelf and Okinawa Trough, such as large rivers on the Chinese mainland (the Yangtze
River and Yellow River), the “mountain stream type” small and medium rivers on Taiwan
Island, and small rivers on the Korean Peninsula and the Ryukyu Island Arc [2–7]. Owing
to the sudden change in the Kuroshio Current to reach its present position approximately
7.1 ka [4], sediments in the Southern Okinawa Trough (SOT) record continuous climate and
ocean signals, which provides geological evidence for tracing the sedimentary response of
the evolution of Kuroshio Current. Simultaneously, the rapid deposition rate in the SOT
indicates high sediment supply [8–11]. Therefore, defining the provenance of sediments in
the SOT is essential to reveal the evolution of sedimentary environment.

In the last two decades, there have been several research projects conducted on prove-
nance of sediments in the SOT. However, these have not yet led to decisive results. Due to
the different research indicators, previous studies have obtained inconsistent conclusions
on the provenance of the SOT since the Holocene. For example, records of Sr-Nd isotopic
compositions indicate that the provenances of ODP-1202B and H4-S3 were mainly derived
from Taiwanese rivers during the past 3.0 ka BP [5,10]. However, a study based on the
Sr-Pb isotopic composition of the sediments of RC14-91 core argued that loess and the
sediments from the Yangtze River account for 40% of the total [12]. Moreover, the composi-
tions of the total organic carbon (TOC) and total nitrogen (TN), hydrocarbons, long-chain
n-alkanes, and fatty acids in surface sediments from the SOT are different from Taiwan

J. Mar. Sci. Eng. 2022, 10, 142. https://doi.org/10.3390/jmse10020142 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10020142
https://doi.org/10.3390/jmse10020142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse10020142
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10020142?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 142 2 of 14

river sediments [13,14], indicating that there may be other potential sources in the SOT.
Notably, under the ocean circulation system of the Western Pacific since the Holocene,
it seems improbable for the sediments from the Yangtze River or the ECS to enter the
SOT. Therefore, it is necessary to use more accurate provenance fingerprints to determine
whether the Yangtze River or the East China Sea are potential sources for the sediments of
the SOT.

The detrital zircon geochronology, which has been used in the ECS [6], the South China
Sea [15,16], and the Yellow Sea [17], has become one method used to trace the provenance
of sediments in the Chinese marginal seas. In this study, we also reconsidered previous
hypothesis, and report detrital zircon U-Pb age distributions from H4-S2, aiming to identify
the sediment provenance in the SOT since 624 a BP.

2. Regional Setting

The ECS has a wide continental shelf with complex terrain and hydrological conditions,
so sediments are commonly affected by two sources: large and medium rivers in the
southeastern China mainland (such as the Yangtze River, Oujiang, and Minjiang) and small
and medium rivers (such as Zhuoshui river) in Taiwan [18]. The sediment discharge of
the Yangtze River has reached 680 Mt/a historically [19], but with the construction of the
Three Gorges Dam, this amount has reduced to 100 Mt/a [20]. At the same time, Minjiang
and Oujiang, along the southeastern coast of the Chinese mainland, also have significant
sediment loads, contributing 17–20 Mt of sediments per year [21]. On the other side of
the Taiwan Strait, Zhuoshui river, the longest river in Taiwan, carries 54 Mt of sediments
per year into the ECS [22]. As an essential provenance area of SOT, Lanyang river in
northeastern Taiwan can transport 6–9 Mt of sediments to the SOT every year [23–25]. The
above rivers are the potential provenance areas of sediments in this study.

Ocean currents affect the transport of sediments in the ECS. For example, sediments
from the Yangtze River, under the action of the Zhejiang-Fujian Coastal Current (ZFCC)
and Changjiang Diluted Water, affect the composition of sediments in most areas of the
East China Sea [26]. Meanwhile, most of the sediments from the Changjiang are confined
to the East China Sea shelf by the Taiwan Warm Current, forming the mud wedge, and are
difficult to transport to the area east of 123◦ E [26,27].

The area around SOT has developed complex topography characterized by the ECS
slope, the North Mien-Hua Canyon, the Mien-Hua Canyon, Keelung Valley, and I-Lan
Ridge (Figure 1). The hydrologic environment in this region is influenced by ocean large-
scale and mesoscale ocean dynamic processes, including the Kuroshio Current, internal
tides, upwelling, and cyclonic eddies (Figure 1b) [28–32].
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Figure 1. (a) Currents, cores, and potential provenance areas distribution in the East China Sea 
(modified from references [5,8,26,33–35]), and (b) the location of cores in the Southern Okinawa 
Trough. YTR, the Yangtze River (Changjiang) mouth; OU, Oiujiang; MIN, Minjiang; ECS-T, ECS-M, 
and ECS-B, East China Sea shelf; WTWR, Zhuoshui river mouth; ETWR, Lanyang river mouth. 
CDW, Changjiang Diluted Water; ZFCC, the Zhejiang-Fujian Coastal Current; TWC, the Taiwan 
Warm Current; KC, Kuroshio Current. Y B, the Yangtze Block; C B, the Cathaysia Block; JSF, Jiang-
Shao Fault; ZDF, Zhenghe-Dapu Fault. The location of upwelling dome, valley, ridge, and canyon 
modified from reference [8]. The pathways of currents and upwelling dome in this figure are not a 
representation of the actual location. The potential provenance areas are represented by red dia-
monds, with specific latitude and longitude from the references [6,33,36,37]. Cores in the Southern 
Okinawa Trough are represented by red crosses, with specific locations from the references [8,10,12]. 
Topographic data comes from https://www.gebco.net/ (accessed on 2 December 2021). 

3. Materials and Methods 
3.1. Samples and Age Model 

H4-S2, a 477 cm core on the ocean floor at 1505 m in depth, located in the SOT (Figure 
1b). This study focused on the detrital zircon from five layers in H4-S2 (26–66 cm, 112–152 
cm, 192–232 cm, 332–372 cm, and 402–442 cm) (Figure 2). The depositional age at 477 cm 
is 624 a BP (Figure 2). 

Figure 1. (a) Currents, cores, and potential provenance areas distribution in the East China Sea
(modified from references [5,8,26,33–35]), and (b) the location of cores in the Southern Okinawa
Trough. YTR, the Yangtze River (Changjiang) mouth; OU, Oiujiang; MIN, Minjiang; ECS-T, ECS-M,
and ECS-B, East China Sea shelf; WTWR, Zhuoshui river mouth; ETWR, Lanyang river mouth. CDW,
Changjiang Diluted Water; ZFCC, the Zhejiang-Fujian Coastal Current; TWC, the Taiwan Warm
Current; KC, Kuroshio Current. Y B, the Yangtze Block; C B, the Cathaysia Block; JSF, Jiang-Shao Fault;
ZDF, Zhenghe-Dapu Fault. The location of upwelling dome, valley, ridge, and canyon modified from
reference [8]. The pathways of currents and upwelling dome in this figure are not a representation of
the actual location. The potential provenance areas are represented by red diamonds, with specific
latitude and longitude from the references [6,33,36,37]. Cores in the Southern Okinawa Trough are
represented by red crosses, with specific locations from the references [8,10,12]. Topographic data
comes from https://www.gebco.net/ (accessed on 2 December 2021).

3. Materials and Methods
3.1. Samples and Age Model

H4-S2, a 477 cm core on the ocean floor at 1505 m in depth, located in the SOT
(Figure 1b). This study focused on the detrital zircon from five layers in H4-S2 (26–66 cm,
112–152 cm, 192–232 cm, 332–372 cm, and 402–442 cm) (Figure 2). The depositional age at
477 cm is 624 a BP (Figure 2).

3.2. Methods
3.2.1. Detrital Zircon U-Pb Age and Th/U Analysis

We collected five samples from H4-S2 (Figure 2) to investigate the provenance of the
detrital zircons. The details of the samples are provided in Table S2. Since samples are rare,
only 400 g of sediment for each sample were processed. Zircon grains were extracted from
the sediments by using conventional heavy liquid and magnetic separation procedures.

For detrital zircon U-Pb age analysis samples, more than 1000 grains were selected. A
subset of 400 grains was randomly selected under a binocular microscope, fixed, transferred
to an epoxy mount, and polished to expose the midsection. Cathodoluminescence (CL)
images were used to obtain the internal structure of grains and aid in selecting dating points.
The above work was completed at the Institute of Resources of the Chinese Academy of
Geological Sciences.

https://www.gebco.net/
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Figure 2. The sedimentological column of the H4-S2. The level of detrital zircon sample is marked 
by red stars and gray rectangles with red boundaries, and its depth placed on the right. The grain 
size and dating data of H4-S2 are sourced from reference [38]. 
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system (Elemental Scientific Lasers, Omaha, NE, USA) is equipped with a Coherent Ex-
cistar 200 excimer laser and a Two Volume 2 ablation cell. The ablation system was cou-
pled to an Agilent 7900 ICP-MS (Agilent, Santa Clara, CA, USA). An external energy meter 
was used to ensure that the input laser fluence value matched the actual energy of the 
sample well before analysis. The zircon mounts were cleaned ultrasonically in ultrapure 
water. Before analysis, the mounts were cleaned again using AR-grade methanol, and 
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contamination. The analyses were performed using a 25 μm diameter spot size at 5 Hz, 2 
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the primary standard, and GJ-1 and Plešovice were used as secondary standard. The 91500 

Figure 2. The sedimentological column of the H4-S2. The level of detrital zircon sample is marked by
red stars and gray rectangles with red boundaries, and its depth placed on the right. The grain size
and dating data of H4-S2 are sourced from reference [38].

Zircon U-Pb dating and Th/U analysis were conducted using the LA-ICP-MS in-
strument in the Mineral and Fluid Inclusion Microanalysis Laboratory of the Institute of
Geology, Chinese Academy of Geological Sciences, Beijing. The NWR 193UC laser ablation
system (Elemental Scientific Lasers, Omaha, NE, USA) is equipped with a Coherent Excistar
200 excimer laser and a Two Volume 2 ablation cell. The ablation system was coupled to an
Agilent 7900 ICP-MS (Agilent, Santa Clara, CA, USA). An external energy meter was used
to ensure that the input laser fluence value matched the actual energy of the sample well
before analysis. The zircon mounts were cleaned ultrasonically in ultrapure water. Before
analysis, the mounts were cleaned again using AR-grade methanol, and each spot was
preablated for five shots (~0.3 µm in depth) to remove potential surface contamination. The
analyses were performed using a 25 µm diameter spot size at 5 Hz, 2 J/cm2 laser fluence.

The Iolite software package was used for data reduction. Zircon 91500 was used
as the primary standard, and GJ-1 and Plešovice were used as secondary standard. The
91500 standard was analyzed twice, and both GJ-1 and Plešovice were analyzed once every
10–12 analyses for the sample. Typically, 35–40 s of the sample signals was acquired after
20 s of gas background measurement. The exponential function was used to calibrate
the downhole fractionation. NIST 610 and 91Zr were used to calibrate the trace element
concentrations as external reference materials and internal standard elements, respectively.
The measured ages of the reference materials in this batch are listed as follows: 91500
(1061.5 ± 3.2 Ma, 2σ), GJ-1 (604 ± 6 Ma, 2σ), and Plešovice (340 ± 4 Ma, 2σ), which agreed
with the nominal values well within uncertainty.
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ICPMSDataCal9.2 was used to process the experimental data obtained through the
above method [39]. For detrital zircon with a 207Pb/206Pb age less than 1400 Ma, 206Pb/238U
ages with a degree of concordance greater than 90% were selected, and for detrital zircons
with a 207Pb/206Pb age greater than 1400 Ma, 207Pb/206Pb ages greater than 90% were
selected [40–42].

3.2.2. Visual Analysis of the Detrital Zircon Age Distribution

The detrital zircon U-Pb age distribution was visualized as kernel density estimation
(KDE) plots with an adaptive bandwidth of 30 Ma, and multidimensional scaling (MDS)
map by using an R package for statistical provenance analysis [43]. The above method can
transform the differences in age distribution into the shape of the curve and the distance in
two-dimensional space. The more similar the distribution is, the more similar the shape
will be and the smaller the distance will be.

4. Results
4.1. Detrital Zircon Grain-Size and U-Pb Age Distribution of the Southern Okinawa Trough over
the Past 700 Years

Most zircon grains are igneous in origin according to oscillatory zoning (Figure 3a)
and Th/U > 0.1 (Figure 3b) [33,44,45]. Thus, 75–93 valid ages (427 in total) were obtained
for each sample (Table S1).
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Figure 3. Cathodoluminescence images and U-Th ratios of detrital zircon grains from sediments in
H4-S2. (a) Cathodoluminescence images; (b) U-Th ratios. Red circles indicate the dating points.

Since the plot of 25 µm was selected, the size of the zircon grains was relatively fine.
The equivalent spherical diameter (ESD), which is the cube root of the product of lengths
of the three axes [46], was distributed from 36.21–89.18 µm and mainly distributed from
36.21–62.92 µm. The mean ESD of analyzed zircon grains in OTS-1 to OTS-5 are 50.83, 48.89,
52.47, 53.07, and 61.08 µm, respectively (Table S2).

All samples show seven primary groups: 200–100 Ma, 300–200 Ma, 500–400 Ma,
900–700 Ma, 1.1–1.0 Ga, 2.0–1.8 Ga, and 2.7–2.5 Ga (Figure 4). However, there are some
differences between each sample; for example, the main peaks in OTS-1 and OTS-5 appear
in the 200–100 Ma group, while peaks in OTS-2 and OTS-4 lie from 300 to 200 Ma, and the
peak of OTS-3 is older than others and falls in the 900–700 Ma group. Moreover, OTS-4
has more grains distributed in the range of 1.2–1.0 Ga, while other samples did not show
a similar situation. Furthermore, Cenozoic grains all appear in five samples, including
OTS-1-92 (28.53 ± 0.86 Ma), OTS-2-94 (29.12 ± 0.3 Ma), OTS-3-83 (58.6 ± 1.6 Ma), OTS-4-83
(9.73 ± 0.43 Ma), and OTS-5-65 (13.75 ± 0.64 Ma) (Table S1). Paleoarchean grains are only
found at OTS-2-31 (3597 ± 16 Ma), and OTS-4-51 (3282 ± 12 Ma) (Table S1).
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4.2. Detrital Zircon U-Pb Age Distribution from the Potential Provenance of the Southern
Okinawa Trough

Recent studies have shown that detrital zircon from sediments in modern rivers
may well reproduce the expected age distribution of the zircon-bearing bedrock source
area [33,48]. To better define the provenance of detrital zircon grains in the southern
Okinawa Trough, we consider the East China Sea shelf, Yangtze River, Lanyang river,
Zhuoshui river, Minjiang, and Oujiang as potential provenance areas (Figure 1a).

The U-Pb age distribution of the detrital zircon in the potential provenance areas is
mainly characterized by the following characteristics (Figure 5): (1) The detrital zircon
in the sediments of the Lanyang river and Zhuoshui river is represented by seven main
age groups: 200–100 Ma, 300–200 Ma, 550–360 Ma, 850–700 Ma, 1.1–0.9 Ga, 2.0–1.8 Ga,
and 2.6–2.4 Ga. The age distribution of the Zhuoshui river is relatively simple, with a
higher proportion of Phanerozoic zircons, but the Zhuoshui river has a more complex age
composition and more Precambrian zircons [33]. (2) The detrital zircon of Changjiang-
derived sediments shows five major age groups: 300–100 Ma, 600–400 Ma, 900–700 Ma,
2.0–1.7 Ga, and 2.6–2.2 Ga [36,49]. The distribution characteristics of Changjiang-derived
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and Huanghe-derived sediments are completely different, with four main age groups:
500–200 Ma, 1000–800 Ma, 2.0–1.5 Ga, and 2.8–2.2 Ga [50]. In addition, the age peak
of the Huanghe-derived sediments appeared in the Paleoproterozoic, which is also an
important signal to distinguish the two provenance areas (Changjiang and Huanghe).
(3) The age distribution of the detrital zircon in Oujiang is simple, distributed in the ranges
of 200–60 Ma and 2.4–1.8 Ga; (4) Minjiang is mainly distributed in the range of 1.0 Ga–60 Ma,
and the remaining particles were distributed in the range of 3.3–1.2 Ga [36,37,51]. The age
ranges of Oujiang and Minjiang are obviously younger than those of Changjiang and
Huanghe, which also provides a basis for distinguishing different provenance areas for this
study. (5) Due to the different locations, the age distribution of the East China Sea shelf
is different. ECS-B has four main age groups: 600–60 Ma, 1.2 Ga–700 Ma, 1.9–1.6 Ga, and
2.7–2.4 Ga; ECS-M has two main age groups: 500–3 Ma and 1000–600 Ma; and ECS-T has
three main age groups: 1.2 Ga–100 Ma, 2.1–1.8 Ga, and 2.6–2.4 Ga [6].
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5. Discussion
5.1. Detrital Zircon Provenance of the Southern Okinawa Trough in the Past 700 Years

A recent study suggested that the detrital zircon may not be representative of the
provenance of bulk sediments [52]. Therefore, the provenance identification results of our
study may only indicate the provenance of detrital zircons.

The 700–900 Ma age component, especially the peak at ~761 Ma, is the diagnostic
characteristic of the Yangtze River [36]. This identification sign of the Yangtze River is
of great significance to distinguish other potential provenance areas of SOT, since there
is no significant peak at ~761 Ma in other provenance areas except the Yangtze River
(Figure 5). This component and peak prevail in OTS-3 and OTS-5 (Figure 4), indicating that
sediments from the Yangtze River and southern Okinawa Trough are of the same origin.
In addition to the 700–900 Ma age group, 100–200 Ma, 200–300 Ma, and 400–500 Ma are
also the primary age components in H4-S2 (Figure 4). These groups cannot be used to
accurately determine their sources since they coexist in the Lanyang river, Zhuoshui river,
Minjiang, and the East China Sea shelf (Figure 5). The same feature is also present in the
1.8–2.0 Ga and 2.5–2.7 Ga age groups. However, it is simpler due to the fact that only the
Zhuoshui river, the Yangtze River, and the East China Sea shelf provide for these groups.
Although the age distribution characteristics of the Yellow River and Oujiang are listed
in this study (Figure 5), they are not potential provenance areas for the following reasons:
(1) Oujiang-derived sediments only contain Mesozoic grains, which are not similar to any
H4-S2 samples; (2) the modern Yellow River estuary is so far away from the southern
Okinawa Trough that there is no evidence of sediments migrating to this region; and
(3) sediments from the Yellow River are characterized by high concentrations of Archean
zircon, which are completely different from H4-S2 (Figures 4 and 5). The MDS maps more
clearly show the source-sink relationship between H4-S2 and provenance areas (Figure 6).
OTS-2, OTS-3, and OTS-5 were close to YTR and ECS-T. OTS-1 and OTS-4 were closer to
ETWR (Figure 6). The results of MDS indicated that Lanyang river may be the source of
detrital zircon grains in OTS-1 and OTS-4. Grains in OTS-2, OTS-3 and OTS-5 may be
derived from the East China Sea shelf and Yangtze River. All of the provenance analyses
indicated that the detrital zircon, which was found in H4-S2 in the past 624 a BP, originated
from a mixture of sediment supplies from Taiwanese rivers, the East China Sea shelf, and
the Yangtze River. This understanding is consistent with previous provenance identification
results of geochemistry and mineralogy in this region [8,12,53,54]. Thus, it is believed that
detrital zircons in the SOT have consistently recorded sediment supplies from the Yangtze
River and the East China Sea shelf since 624 a BP.
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Most grains analyzed in this study have a size of 36.21–89.18 µm and are mainly
concentrated in the silty fraction, which is common in H4-S2 (Figure 2). In previous studies,
the grain-size effect on the detrital zircon age distributions was mentioned [55]. For the case
of this study, although the median grain size distributions of detrital zircon in OTS-1, OTS-2,
OTS-3, and OTS-4 are relatively finer than OTS-5, no specific correlation of zircon age and
grain size was noted (Figure 7). There was also no correlation between the grain size and
zircon age in the same sample, meaning that older zircon grains were not necessarily finer
(Figure 7).
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5.2. Paleoarchean Detrital Zircon: Singal or Noise?

Although there are only two Paleoarchean detrital zircon grains (OTS-2-31: 3597 ± 16 Ma
and OTS-4-51: 3282 ± 12 Ma), they may be important provenance indicators since the
provenance areas around the southern Okinawa Trough could not provide such old grains.
In order to find the source of these two grains, we collected the reported Paleoarchean
grains from the south China (the Yangtze Block and Cathaysia Block). Detailed locations,
data, and references are listed in Table S3. As shown in Figure 8, Paleoarchean zircon grains
appear to be distributed in various regions throughout the south China. Grains of similar
age exist in the sediments of the middle and upper reaches of the Minjiang river [37], which
should be direct evidence that Paleoarchean grains from the south China could through the
Minjiang river to the East China Sea. Another evidence is that Paleoarchean detrital zircon
has been found in the main stream of the Yangtze River (Hukou, Shigu and Panzhihua)
and its tributaries (Hanjiang and Ganjiang) [36,49].

Therefore, the two Paleoarchean grains in this study may not be noise, but weak signal
to indicate provenance. Although sporadic detrital zircon data from the East China Sea do
not contain such old zircons [6], ancient grains from the Yangtze River, Yangtze Block, and
Cathaysia Block may all be sources of OTS-2-31 and OTS-4-51.
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define the position of the Yangtze Block and the Cathaysia Block, respectively. Topographic data
comes from https://www.gebco.net (accessed on 1 December 2021).

5.3. Why the Yangtze River Zircons Appear in the Souerhtern Okinawa Trough?

Previous studies on the sediment sources of ECS indicated that ECS shelf received a
large number of materials from the Yangtze River, and the contribution rate of the Yangtze
River could reach 72% and even higher [6,56]. Similarly, physical oceanography and heavy
mineral studies have shown that the Yangtze River sediments can be transported southward
to the East China Sea Shelf via the ZFCC and transported further east by the puncture
front [26,57,58]. Moreover, the ECS shelf is characterized by the extensive development of
residual deposits [59]. With increasing offshore distance, the grain size of surface sediments
in the ECS shelf is gradually enhanced [26], and the content of stable minerals increased
significantly [60], indicating a large amount of Pleistocene residual sand accumulation on
the outer shelf and slope of the East China Sea. Hence, the sediments from the ancient and
modern Yangtze River may be jointly preserved in the outer shelf and slope of the ECS and
become the source for sediments in the SOT.

Previous studies have suggested that mass wasting and density currents caused by
occasional events, such as earthquakes, typhoons, and heavy floods, in the hinterland
resulted in the transport of sediments on the slope to the seafloor [23,61]. In addition,
the widely developed submarine canyon at the junction of the East China Sea shelf and
Okinawa Trough is a natural channel for sediment transport [62]. Particles from the shelf
are transported by grain flows through submarine canyons into the Okinawa Trough [63].
Many coarse-grained layers in H4-S2 record the extensive development of turbidity current
events in the past 624 a BP [38]. Therefore, the detrital zircons in H4-S2 are derived from
the sediments of the modern Yangtze River and the residual deposits on the ECS. ZFCC
may be an important mechanism for the transport of sediments from the Yangtze River to
the ECS shelf. Gravity flow may be the transport mechanism of sediment from the ECS
to the SOT. This could also explain the presence of Paleoarchean detrital zircons in H4-S2.
Since this study only reported zircon data from five layers, it is hard to verify whether this
transport process is continuous, especially with gravity flow.

6. Conclusions

Based on detrital zircon U-Pb geochronology provenance identification, our study
provides direct evidence that sediments from the Southern Okinawa Trough recorded

https://www.gebco.net


J. Mar. Sci. Eng. 2022, 10, 142 12 of 14

sediments from Taiwan rivers, the East China Sea shelf, and the Yangtze River in the last
700 years. At the same time, two Paleoarchean detrital zircon grains probably originated
from the Cathaysia Block and Yangtze Block in the south China and were transported
into the East China Sea by the Yangtze River or Minjiang river. Detrital zircon grains in
this study are mostly in the silty fraction and may only indicate the provenance of the silt
in the sediments or only the provenance of the detrital zircon. Detrital zircons from the
modern Yangtze River were transported by the Min-Zhejiang coastal current, and settled
on the East China Sea shelf. They and residual sediments in the East China Sea shelf were
transported by gravity flow through submarine canyons and eventually deposited in the
Southern Okinawa Trough.

Detrital zircon U-Pb geochronology is a powerful tool for distinguishing the sediments
from Taiwan rivers, the East China Sea shelf, and the Yangtze River. A deep understanding
of the quantitative provenance analysis and marine dynamics evolution in the Southern
Okinawa Trough may be improved by the availability of longer time-scale cores and more
grains of detrital zircon.
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