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Abstract: Compared to alternating current (AC) grids, direct current (DC) grids are becoming more
and more popular. A power distribution approach is suggested in order to solve the issue of uneven
power distribution of distributed generation (DG) in a ship DC microgrid. Power control is carried
out using a tracking differentiator (TD), while the output power change rate is not greater than the
maximum power ramp rate permitted by the battery, and state‑of‑charge balance is attained quickly.
The proposed strategy also reduces the communication pressure on the power grid. A distributed
hierarchical control model of a DC microgrid based on a consensus algorithm is created in order to
validate the suggested methodology. The simulation results demonstrate that the established model
is capable of simulating the DC microgrid accurately, that the states of charge values of the five
batteries gradually converge under the adjustment of the secondary strategy, and that the suggested
strategy is reasonable and efficient.

Keywords: ship DC microgrid; power distribution; tracking differentiator; consensus algorithm

1. Introduction
A microgrid is a self‑sufficient, sustainable system that uses distributed generation

and blends distributed renewable energy with local electrical loads [1]. Due to its benefits
of flexible operation, no synchronization issue with generator on/off, high power density,
and space saving, marine DC microgrid has grown in popularity recently [2–5]. Fuel con‑
sumption can be decreased by integrating the energy storage device into the DC grid eas‑
ily [5]. The method of paralleling converters is frequently employed, since powering the
DC grid with a single converter will make the system hotter and shorten its lifespan. There
are also several studies on parallel DC–DC converters [6–10].

The energy storage module typically uses voltage control, and the output properties
resemble those of the voltage source. Running in parallel, each converter’s different output
line impedance results in a significant variance in output current, which has an impact on
the power equalization between the energy storage modules. In order to solve this issue,
virtual resistors are added to distributed energy sources (DERs) in [11] in order to increase
the accuracy of output power sharing. However, the proposed solution is only appropri‑
ate for the dedicated lines of each DER to be connected directly to the point of common
coupling (PCC), and the load is only connected to the PCC, which is inconsistent with
the actual distribution system. In [12–14], hierarchical control is recommended, where the
higher layer employs secondary control in order to compensate for the bus voltage drop
andmaintain the bus voltage stability, while the bottom layer uses droop control to accom‑
plish precise current distribution. The droop curve was converted to a parabola by Liu
Haiyuan [15], who also suggested a two‑factor adaptive droop approach. On the basis of
the conventional droop control, the droop curve was transformed from a straight line into
a curve with a variable slope by raising the power factor. Under the premise that commu‑
nication is not added, the contradiction between the power distribution characteristics and
the DC bus voltage quality is resolved, and the DC bus voltage quality is enhanced. How‑
ever, the DC bus voltage will also deviate significantly when the output current exceeds
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the rated value. A parallel current sharing control strategy based on frequency injection
was proposed in [16], which adjusts the output voltage of each distributed power source in
accordance with the reactive power generated by the AC signal. This strategy successfully
solves the issue of power distribution brought on by differences in line impedance. The in‑
jection of the AC signal will, however, increase the output voltage ripple, which will have
an impact on the power quality. In order to address the issue of voltage ripple, Zhang Qin‑
jin [17] suggested a DC microgrid power distribution method based on active frequency
injection, adding a mode switching segment to the parallel current sharing control system
based on frequency injection, and the mode is ordinary droop control in steady state to
solve the problem of voltage ripple. Mehdi Baharizadeh [18] proposed a two‑layer con‑
trol scheme based on P‑dv/dt droop characteristics for precise power sharing and voltage
regulation of DC microgrids. The trade‑off between damping and sharing accuracy must
be taken into account while setting the rappel factor. Wen Wang [19] improved the droop
control based on the battery state of charge; the droop coefficient is inversely proportional
to the n‑time power of the SOC, which realizes the balance of the SOC during the battery
charging and discharging process under the condition of no communication. In [20], each
DER communicates with the central controller through a separate bidirectional commu‑
nication link in the hierarchical control. This link is utilized for both the transmission of
DER‑specific control commands from the central controller to the DER and the transmis‑
sion of measured signals from the DER to the central controller. Therefore, the total com‑
munication bandwidth of the central controller (equal to the sum of the bandwidths of
DERs) is much higher than that of traditional secondary control schemes [21]. Centralized
secondary control can eliminate voltage deviation and current sharing error. However,
there is a single point of failure (SPOF) problem in the central controller [13]. Additionally,
since a communication link from the central control to each local unit is necessary, com‑
munication costs are higher, and the reliability and flexibility are reduced as a result. This
work takes a fully distributed control strategy, which means that there are no single points
of failure and only communication links are needed between nearby units. Plug and play
functionality enhances system flexibility.

In previous distributed control strategies, in order to compensate for the voltage drop,
devices need to exchange their own voltage information with adjacent devices. To achieve
accurate current sharing, the equipment needed to exchange its own current information
with adjacent equipment. In order to balance the state of charge of the battery, the device
needs to exchange one or two messages with adjacent devices. In the control strategy pro‑
posed in this paper, the device only needs to exchange one or two messages with adjacent
devices. After sharing data, the unit modifies its output current through the tracking dif‑
ferentiator while the output power is constrained by its power ramp rate, so that its own
state of charge (SOC) closely tracks the average state of charge (SOCavg) of all units. The
four‑phase interleaved parallel circuit has the advantages of a simple structure principle
and small volume, and the mathematical model after coordinate transformation is similar
to the single‑phase model. This circuit is used in the energy storage booster circuit.

The rest of this paper is organized as follows: Section 2 introduces the converter and
its controller; Section 3 introduces the proposed strategy; Section 4 introduces the con‑
sensus algorithm and analyzes the dynamics and convergence of the algorithm; Section 5
simulates and analyses the feasibility of the proposed strategy; Section 6 summarizes the
paper.

2. Converter and Its Controller
2.1. Converter

The boost/buck circuit adopts four‑phase interleaved parallel bidirectional converter.
Formula (1) is the state averagemodel. As shown in Figure 1. d1, d2, d3 and d4 are the duty
ratios of Q2, Q4, Q6 and Q8, respectively. d′i = 1 − di. v1 is the voltage at the low voltage
side of the converter, vo is the voltage at the high voltage side of the converter, L is the
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inductance,M is the mutual inductance, r is the resistance, and C is the output capacitance
of the converter. 

v1 − d′1vo = 2L diL1
dt − r · iL1 + M diL2

dt + M diL4
dt

v1 − d′2vo = M diL1
dt − r · iL2 + 2L iL2

dt + M diL3
dt

v1 − d′3vo = M diL2
dt − r · iL3 + 2L diL3

dt + M diL4
dt

v1 − d′4vo = M diL1
dt − r · iL4 + M diL3

dt + 2L iL4
dt

C dvo
dt = d′1iL1 + d′2iL2 + d′3iL3 + d′4iL4 − vo

RL

. (1)
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Figure 1. Four-phase interleaved parallel bidirectional converter. 

2.2. Controller 
The switching frequency 𝑓𝑠 of the IGBT is 5 kHz. The cut-off frequency of the cur-

rent open loop is set to 1000 Hz. The open-loop cut-off frequency of the voltage loop is set 
to 100 Hz. The carrier of the drive circuit is staggered by 1/4 period in sequence. The con-
troller design is shown in Figure 2. 𝑣௢∗ is the given value of the converter output voltage. 
The detailed derivation process is shown in Appendix A. 

 
Figure 2. Controller Diagram. 

  

Figure 1. Four‑phase interleaved parallel bidirectional converter.

2.2. Controller
The switching frequency f s of the IGBT is 5 kHz. The cut‑off frequency of the current

open loop is set to 1000 Hz. The open‑loop cut‑off frequency of the voltage loop is set
to 100 Hz. The carrier of the drive circuit is staggered by 1/4 period in sequence. The
controller design is shown in Figure 2. v∗o is the given value of the converter output voltage.
The detailed derivation process is shown in Appendix A.
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3. Power Distribution Control Strategy
3.1. Traditional Droop Control

The main forms of traditional DC droop control are I‑V droop control and P‑V droop
control [22], which are expressed as:

v∗o = Vre f − Rvio (2)

u∗
o = Ure f − kpPo (3)

where Vre f is the reference value of the DC bus voltage; v∗o is the reference value of the
output voltage of the converter; Rv is the droop coefficient of the converter; io is the output
current of the converter;Ure f is the reference value of theDCbus voltage; u∗

o is the reference
value of the output voltage of the converter; Po is the output power of the converter; and
kp is the droop coefficient in the P‑V droop control.
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It can be seen from Formulas (2) and (3) that a voltage drop occurs in droop control,
which is an inherent defect. To ensure system stability, the drop coefficient is required to
satisfy the following constraints:

0 < Rv <
∆Vomax

iomax
(4)

0 < kP ≤ ∆Uomax
Pmax

(5)

where ∆Vomax is the maximum allowable deviation of the bus voltage, and iomax is the
maximum allowable output current of the converter. ∆Uomax is the maximum allowable
deviation of the bus voltage, and Pmax is the maximum allowable output power of the
converter.

Also, the output current or output power cannot be scaled accurately due to inconsis‑
tent line impedances. As shown in Figure 3, Rdg, R1, R2 . . . Rn are the line impedance of
generator and batteries, respectively.
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Selecting a smaller droop curve coefficient can reduce the voltage deviation but will
reduce the accuracy of shared current. Selecting a larger droop curve coefficient can im‑
prove the accuracy of the shared current but will increase the voltage deviation. Therefore,
the traditional current droop control has an inherent contradiction in the pursuit of small
voltage deviation and large current sharing. This is the disadvantage of current droop
control.

3.2. Distributed Hierarchical Control Scheme Based on Consensus Algorithm
To avoid voltage deviation, load current cannot be accurately shared in addition to

other problems. Secondary control is adopted.

δνI =

(
kisc
s

+ kpsc

)
·
(
io − ioi

)
(6)

δvo =

(
kisv

s
+ kpsv

)
· (v∗ − vo) (7)

where δvI and δvo are the compensation term of the shared current and the voltage recov‑
ery, respectively. io and vo are the average output current and the average output voltage
of all energy storage units, which are obtained by consensus algorithm. kisc and kpsc are
integral and proportional terms of the shared current controller, and kisv and kpsv are inte‑
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gral and proportional terms of the voltage recovery controller. The sum of δvI and δvo is
sent to the main controller.

At the top level of the controller, a consensus algorithm is used to realize information
sharing and averaging among distributed agents. This helps to find the average value io
of the total generation current and the average value vo of the output voltage [13].

A new secondary control strategy can combine the voltage drop compensation regu‑
lation and the shared current regulation into one. Adjacent devices only need to exchange
one unit of information, and only one PI regulator is needed.

ξi = γivoi (8)

γi = 1 − k
ioi

iomax
(9)

where voi is the output voltage of the i‑th converter. ioi is the output current of the i‑th
converter. iomax is the maximum output current of all converters. k is the gain (0 < k < 1).

The PI regulator output δv is

δν =

(
ki
s
+ kp

)
·
(

Vre f −
ξavg

γi

)
(10)

ξavg =
Σn

i = 1ξi

n
(11)

where ki and kp are integral and proportional terms of the PI controller.

Vre f −
ξavg

γi
=

Vre f

n

(
1 − voi

Vre f
+ ∑n

j = 1,j ̸=i 1 −
voj

Vre f

γj

γi

)
(12)

Under the regulation of PI controller:

γ1 = γ2 = . . . = γn (13)

Vre f = v (14)

As shown in Figure 4, for unit i, the average value SOCavg is obtained by communicat‑
ing with adjacent devices through consensus algorithm. Through the tracking differentia‑
tor, SOCi tracks SOCavg, the output speed is the change of battery output power ∆P, and
the maximum power ramp rate allowed by the battery is the adjustment coefficient of the
tracking differentiator [23].

γi = 1 − k
ioi + ∆ii

iomax
(15)

where ∆ii = ∆P/voi.
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3.3. Stability Analysis
Based on [24], the model shown in Figure 5 is established for stability analysis. In the

model, I regulator is used as the secondary controller.
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In Figure 5, G(s) is the voltage loop transfer function, which can be approximately
equal to 1. Reference [24] for converter output voltage stability analysis and derivation
process. This paper analyzes the current stability. According to Figure 5, the following
formula is derived:

vo1 =

[
Vre f − Rv1io1 +

1
s
(Vre f −

ξavg

γ1
)

]
G(s) (16)

In addition,
vo1 = (io1 + io2)RL + io1RLine1 (17)

vo2 = (io1 + io2)RL + io2RLine2 (18)

where RLine1 and RLine2 are output impedances of converter 1 and 2, respectively.
Substitute Formulas (17) and (18) into Formula (16).

io1 =
∆io1

k
iomax

{
io1

[
( s

G(s)+1/2)(RL+RLine1)+Rv1s
]
−Vre f (s+1)

}
+Vre f (s+1)−io2[(

s
G(s)+1/2)RLγ1+(RL+RLine2)γ2/2]

s
{
[ 1

G(s) (RL+RLine1)+Rv1](1− k
iomax io1)+Vre f

k
iomax

}
+ 1

2 (RL+RLine1)(1− k
iomax io1)+

RLγ2
2 +Vre f

k
iomax

(19)
Linearize the variables of Formula (19) with small signal model.

îo1
∆îo1

∣∣∣
îo2 = 0

=
k

iomax

{
io1

[
( s

G(s)+1/2)(RL+RLine1)+Rv1s
]
−Vre f (s+1)

}
s
{[

1
G(s) (RL+RLine1)+Rv1

]
(1− k

iomax io1)+Vre f
k

iomax

}
+ 1

2 (RL+RLine1)(1− k
iomax io1)+

RLγ2
2 +Vre f

k
iomax

(20)

The pole of the transfer function is in the stable region of the s plane, and the output
current is stable.

4. Consensus Algorithm
4.1. Dynamic Consensus Algorithm

The basic consensus algorithm using continuous‑time (CT) and discrete‑time (DT) in‑
tegrator agents can be described as [25,26].

.
xi(t) = ∑

j∈Ni

aij ·
(
xj(t)− xi(t)

)
(21)

xi(k + 1) = xi(k) + ε · ∑
j∈Ni

aij ·
(
xj(k)− xi(k)

)
(22)

where i = 1, 2, . . . , NT , NT is the total number of agent nodes. xi is the state of agent i. aij
indicates the connection status between node i and node j, aij = 0 if there is no link between
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them. Ni is the set of indexes of the agents that can be connected with agent i, and ε is the
constant edge weight that is used to adjust DCA’s dynamic characteristics.

In this paper, the discrete time (DT) form of the consensus algorithm (22) is employed
due to the discreteness of communication data transfer. Furthermore, an improved al‑
gorithm known as DCA [27] is used to guarantee the accurate consensus in dynamically
changing situations.

xi(k + 1) = xi(0) + ε · ∑
j∈Ni

δij(k + 1) (23)

δij(k + 1) = δij(k) + aij ·
(
xj(k)− xi(k)

)
(24)

where δij(k) stores the cumulative difference between the two agents. δij(0) = 0. Based
on Formulas (23) and (24), it is obvious that the ultimate consensus value depends on the
initial value xi(0) and that the algorithm will converge to the right average regardless of
changes in that value xi(0).

From the perspective of the system, the iterative algorithm’s vector form can be stated
as [25,26].

x(k + 1) = W · x(k) (25)

where x is the state vector x(k) =[x1(k), x2(k), . . . , xNT(k)]
T , andW is the weight matrix

of the communication network.
If a constant edge weight ε is considered,W can be described as

W = I − ε · L (26)

L =


∑

j∈N1

a1j · · · −a1NT

...
. . .

...
−a1NT · · · ∑

j∈NT

aNT j

 (27)

where L is the Laplacian matrix of the communication network [28,29], Ni is the set of
indexes of the agents that are connected with agent I, and NT is the total number of agents.

The final consensus equilibrium xeq is

xeq = lim
k→∞

x(k) = lim
k→∞

Wkx(0) =

(
1

NT
1 · 1T

)
x(0) (28)

where x(0) = [x1(0), x2(0), . . . , xNT (0)] is the vector of the initial values held by each agent,
1 denotes a vector where all the components equal one. The detailed proof of the algorithm
convergence can be found in [25]. In this paper, the initial value is the locally measured
state of charge, output current, and voltage.

4.2. Algorithm Convergence and Dynamic
In order to guarantee the stability and fast convergence of the communication algo‑

rithm, ε must be properly chosen. The fastest rate problem is known as the “the symmetric
fastest distributed linear averaging” (symmetric FDLA) problem, presuming that the com‑
munication link is bidirectional. With specific restrictions on the weight matrix W, this
issue is essentially the minimum of the spectral radius of the matrix W − (1/N T)·1 · 1T.
When the requirements listed below are satisfied [30], the fastest convergence rate is at‑
tained:

ε =
2

λ1(L) + λn−1(L)
(29)

where λj(·) is the symmetric matrix’s j‑th biggest eigenvalue. The eigenvalues of L are
[0, 1.382, 1.382, 3.618, 3.618]T according to the ring’s topology, which results in the best
ε = 2/5. Figure 6 shows a comparison of the convergence rates as an illustration. The con‑
sensus algorithm’s sample period in this instance is set to Tca =100 ms. Starting at x(0) = [1,
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2, 3, 4, 5], the system eventually converges to a mean of 3. In the results shown in Figure 6,
the constant edge weight ε has a significant impact on the dynamics of DCA. When ε = 2/5,
the spectral radius ρ(W − (1/N T)·1 · 1T

)
is the lowest and the fastest transient response

is achieved.
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The communication network’s structure has an effect on the system dynamics, as
seen in Figure 7. Four topologies were taken into account in this analysis: (1) line‑shaped;
(2) ring‑shaped; (3) star‑shaped; and (4) fully connected networks. When the value of ε is
set in accordance with Formula (21), the fastest rate of convergence is attained in all cases
(the optimumvalue for each case is shown in the figure). The results demonstrated that the
network dynamics are significantly influenced by the communication topology. Undoubt‑
edly, a full connected network offers the quickest convergence, but in most situations, it is
not viable due to the high cost of network communication.
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5. Simulation and Analysis
Refer to《IEEE Recommended Practice for 1 kV to 35 kVMedium‑Voltage DC Power

Systems on Ships》 and the actual case information for DC ships in the literature [31]. The
model was established in MATLAB/Simulink, and the proposed method was simulated
and verified with a simulation step size of 5 × 10−5 s. Additionally, the line impedance
values are as follows: R1 = 0.08 Ω, R2 = 0.07 Ω, R3 = 0.06 Ω, R4 = 0.04 Ω, and R5 = 0.02 Ω.
Droop coefficient Rv is set to 0.5. The rest of the simulation circuit parameters are shown
in Table 1.

Figure 8b shows the current distribution of the converters when the secondary strat‑
egy is not used. Before the 4th second, the minimum and maximum output current of the
converters differ by about 5A. At the 4th second, when the load is increased, the difference
between the minimum and maximum output current of the converter is about 8A. It can
be seen that with the increase of the load, the output current of the converters has a larger
and larger difference. The unequal output current of the converters will inevitably lead to
a different state of charge of the batteries. Figure 8a,c shows that when the output current
of the converter increases, the output voltage of the converter will decrease, which results
in more deviation of the DC bus voltage from the rated value.
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Table 1. Circuit and control parameters.

Device Parameters/Units Value Control Parameters/Units Value

Inductance L/mH 2.5 TD Adjustment coefficient h0 1 × 10−3

Mutual inductance M/mH −2 TD filter coefficient r0 1 × 10³

Output capacitance C2/µF 1000 Secondary control kp 0

Battery voltage v1/V 500 Secondary control ki 1

Battery capacity Sn/kwh 2 Communication latency Tca/ms 100

Maximum output current of converter iomax/A 100 Bus Voltage/V 1000 ± 10%
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Simulation analysis under the proposed strategy.
In this simulation, a generator is connected to the power grid through a rectifier con‑

verter andworks together with the battery pack. The dqmodel is adopted as a three‑phase
voltage source. As shown in Figure 9a, the initial states of charge of the five batteries are
different; they are 70%, 65%, 60%, 55% and 50%, respectively. At t = 5 s, the secondary con‑
trol starts. As shown in Figure 9b, the output currents of converters gradually converge.
As shown in Figure 9c, the output voltages of converters increase. As shown in Figure 9d,
the DC bus voltage gradually approaches the rated value. At t = 15 s, the battery exchanges
its own state of charge information with adjacent devices. As shown in Figure 9a, under
the adjustment of the proposed strategy, the states of charge of the batteries gradually
converge. At about 35 s, the output currents of converters do not change, because some
constraints are added in the tracking differentiator program, such as limiting its output
value. At t = 40 s, the generator increases the output power until the 60th second, as shown
in Figure 9b, and the battery pack gradually changes from discharging to charging. At
t = 70 s, as shown in Figure 9a, the size of the state of charge of the five batteries is almost
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the same, and the difference is about 0%. As shown in Figure 9b, at t = 75 s, the output
currents of the battery pack converge again. As shown in Figure 9d, the bus voltage drop
is less than 5V. When the generator output power is stable, the bus voltage remains stable
under the regulation of the proposed strategy.
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6. Conclusions
In this paper, a ship DC microgrid model is established which consists of three parts:

equipment, controller, and communication network. Under the conditions of having/not
having a secondary control strategy, we simulated the operation of the ship DCmicrogrid,
andmade a comparative analysis. The simulation results show that, under the adjustment
of the proposed strategy, the problem of an unbalanced state of charge of the energy stor‑
age module is solved. After solving this problem, the state of charge adjustment strategy
stops running, i.e., ∆ii = 0. In addition, under the regulation of the proposed secondary
control strategy, adjacent devices only need to exchange twomessages. After adjusting the
state of charge of the battery pack, adjacent devices only need to exchange one message,
reducing the communication pressure of the ship DC microgrid.
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Appendix A
Converter model derivation.

(1) Mathematical decoupling

Write the Formula system (1) in matrix form as follows:

v1


1
1
1
1

− vo


d′1
d′2
d′3
d′4

 =


r + 2Ls Ms 0 Ms

Ms r + 2Ls Ms 0
0 Ms r + 2Ls Ms

Ms 0 Ms r + 2Ls




iL1
iL2
iL3
iL4

 (A1)

VL is the voltage across the inductor, and IL is the current flowing through the inductor.
Their relationship is as shown in Formula (A2):

VL(s) = Z(s)IL(s) (A2)

Z(s) is the equivalent impedance.

Z(s) =


r + 2Ls Ms 0 Ms

Ms r + 2Ls Ms 0
0 Ms r + 2Ls Ms

Ms 0 Ms r + 2Ls

 (A3)

Decouple Z(s).
H(s) = P−1Z(s)P (A4)

P−1 =


− 1

2 0 1
2 0

0 − 1
2 0 1

2
− 1

4
1
4 − 1

4
1
4

1
4

1
4

1
4

1
4

 (A5)

P =


−1 0 −1 1
0 −1 1 1
1 0 −1 1
0 1 1 1

 (A6)

The decoupled H(s) is as follows:

H(s) =


r + 2Ls 0 0 0

0 r + 2Ls 0 0
0 0 r + 2(L − M)s 0
0 0 0 r + 2(L + M)s

 (A7)

At the same time, the matrix IL and d are transformed.

IL(s) = PIn(s) (A8)

d(s) = Pu(s) (A9)
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Substituting Formulas (A4), (A8), (A9) into Formula (A1), the result is as Formula (A10):

(v1 − vo)P−1


1
1
1
1

+ vo


u1
u2
u3
u4

 = HIn (A10)

Resolve the matrix form, as shown in the Formula group (A11).

u1vo = (r + 2Ls)in1
u2vo = (r + 2Ls)in2

u3vo = [r + 2(L − M)s]in3
v1 − (1 − u4)vo = [r + 2(L + M)s]in4

C dvo
dt = −2u1in1 − 2u2in2 − 4u3in3 + 4(1 − u4)in4 − vo

RL

(A11)

When i∗L1 = i∗L2 = i∗L3 = i∗L4, i∗n1 = i∗n2 = i∗n3 = 0 and i∗n4 = i∗L4, Formula (A12)
can be transformed into Formula (A13).

C
dv2

dt
= −2u1in1 − 2u2in2 − 4u3in3 + 4(1 − u4)in4 −

v2

RL
(A12)

C
4

dv
dt

= (1 − u4)in4 −
v2

4RL
(A13)

(2) The small signal model near the steady‑state is as follows:

Giu1 = Giu2 =
Vo

r + 2Ls
(A14)

Giu3 =
Vo

r + 2(L − M)s
(A15)

Giu4 =
Vo

(
Cs + 2

RL

)
2C(L + M)s2 +

(
Cr + 2(L+M)

RL

)
s + 4U4̂2

(A16)

Gv2in4 =
4u4̂2RL − 2(L + M)s − r

(Cs + 2
RL

)RLu4
(A17)

The current transfer function after decoupling is shown in Figure A1.
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