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Abstract: Cyanobacteria occupy an extraordinarily diverse array of ecological niches in coral reefs
because they play multifaceted roles, including primary carbon and nitrogen fixation, calcification,
nutrient cycling, and oxygen production, as well as coral reef degradation through skeletal biocorro-
sion and polymicrobial diseases. In this study, cyanobacterial diversity in sediment, water, and coral
tissues were explored in relation to coral health status (slightly, moderately, and severely damaged)
of coral reefs at Weizhou Island, South China Sea. Microscopy of taxa morphological characteristics
was combined with 16S rRNA gene metabarcoding. Fifteen and forty-three cyanobacterial genera
were identified based on universal prokaryotic 16S rRNA gene primers and cyanobacteria-specific
16S rRNA gene primers metabarcoding, respectively, indicating a more sophisticated efficiency of the
latter. In addition, three out of seven cyanobacterial strains that were isolated and identified based on
morphology and phylogeny could not be detected using either molecular method. Therefore, culture-
based combined cyanobacteria-specific 16S rRNA gene metabarcoding are highly recommended
in future routine surveys. There was a clear distinction in cyanobacterial assemblage composition
among locations with different coral health statuses, with degraded reefs exhibiting approximately a
1.25-fold increase in species compared to healthy habitats. In addition, the spreading of potentially
toxic cyanobacteria, such as Nostoc and Lyngbya, in the degraded reef implies putative links to reef
degradation. This study provides novel insights into the taxonomical diversity of cyanobacteria in
tropical coral reefs. Metabarcoding is recommended as an effective tool for revealing cyanobacterial
diversity patterns and thereby providing critical information for the effective management of coral
reef ecosystems.

Keywords: coral–algal phase shift; harmful cyanobacterial; coral reefs; eutrophication; DNA metabar-
coding; morphology

1. Introduction

Tropical coral reefs provide essential habitat and resources for numerous marine or-
ganisms, as well as support human livelihoods, fisheries, and tourism [1]. However, corals
are vulnerable to climatic change and human activity impacts, such as nutrient overload-
ing from agricultural, urban, and domestic sources [2,3]. Many studies have reported a
reduction in coral cover associated with a rapid increase in the expansion of benthic algae,
referred to as a coral–algal phase shift [4,5]. In particular, benthic cyanobacteria are often
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early colonizers of dead coral [6,7]. It became evident that some cyanobacteria exhibit addi-
tional tactics rather than space occupation to minimize coral recruitment and consequently
coral community recovery [6,8]. Thus, understanding the diversity of cyanobacteria may
be important in managing coral reef ecosystems.

Cyanobacteria are important components of coral reef ecosystems where they con-
tribute to reef-building through the formation of microbial mats and carbonate micro-
bialites [9]. They are important principal producers that can fix carbon (oxyphototrophy)
as well as nitrogen (diazotrophy), and contribute to supporting the nutrient circulation
and energy exchanges of coral reefs [10–12]. Moreover, cyanobacteria also contribute to
reef degradation by participating in skeletal biocorrosion or by causing polymicrobial
diseases, such as black band disease [13]. Mortality from coral reef diseases is potentially
accelerated by the expansion of cyanobacterial biomass on reefs, which therefore represents
a significant threat to the survival of important reef-building coral species, alongside the
general threats faced from sedimentation, local pollution, physical degradation, and global
stressors [13–15]. In addition, some cyanobacteria are responsible for shellfish, fish, and
mammal poisoning events, and can be bioaccumulated through the food chain, with ad-
verse effects on coral reef ecosystems and public health [16–18]. Some marine strains of
cyanobacteria also show medicinal properties, and have pronounced anti-inflammatory
activity, or show preferential apoptogenic activity against neuroblastoma, proliferative, or
cancer cells [19–21]. Cyanobacteria have high ecological value and potential potent toxin
implications, and are important in drug development and production of biological cell
compounds. Therefore, significant attention has been paid to the role of cyanobacterial
communities in the coral reef ecosystem [6,11,13].

Traditionally, isolation and culturing are important processes for the identification of
cyanobacterial taxa based on morphological and molecular characterization [22,23]. The
criteria for taxonomic classification of cyanobacteria have radically changed in the last few
decades after the application of data obtained from electron microscope studies and after
the application of phylogenetic analyses, mainly derived from molecular sequencing [24].
However, it is challenging to obtain axenic cultures of species that are ecologically spe-
cialized, such as endosymbionts and epiphytes [25,26]. In addition, picocyanobacteria, or
those with less distinguishable morphological features, show limited resolution under light
microscopy [27]. High-throughput sequencing has provided another reliable and powerful
tool for determining the diversity of cyanobacteria [27,28]. The majority of DNA metabar-
coding studies on marine prokaryotes, including cyanobacterial communities, are based on
the V4 domains in the 16S rRNA gene [29,30]. However, universal prokaryotic 16S rRNA
gene primers based metabarcoding analysis usually shows low diversity cyanobacteria or
just the Synechococcus domain, rather than the complete cyanobacterial community [31,32].
Cyanobacteria-specific 16S rRNA gene primers based metabarcoding have been widely
applied to freshwater cyanobacteria with successful results [33,34]. However, the use of
these cyanobacteria-specific 16S rRNA primers remains limited in marine ecosystems.

The first survey of marine cyanobacteria in the South China Sea dates back to the
1960s. Prof. Maosen Hua of the Institute of Oceanography, Chinese Academy of Sciences,
conducted a relatively extensive study of cyanobacteria in the Xisha Islands, and his work
has been published in the book Checklist of Marine Biota of China Seas (2008) [35]. Huang
and Ding [36] investigated the diversity of cyanobacterial species along the coast of China,
and listed the 96 species of cyanobacteria in the South China Sea. Coral reefs are proven to
be rich in cyanobacterial diversity [37]. However, knowledge of cyanobacterial distribution
and ecology in the coral reefs of the South China Sea is still very limited. The aim of the
present study was to characterize taxonomic compositions of cyanobacterial populations
using morphological and next-generation molecular tools, and to investigate the changes
in cyanobacterial diversity and species assemblage composition in response to coral reef
health status.
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2. Materials and Methods
2.1. Study Area

The Beibu Gulf (17–22◦ N, 105–110◦ E; Figure 1A) covers a total area of 130,000 km2

with an average water depth of 38 m and a 1629 km coastline [38], located in the north-
western part of the South China Sea (Figure 1). The climate is southwest monsoon in the
Indian Ocean, which brings high temperatures and strong rainfall to the region. As a result,
it occupies a significant geographical location that is rich in fishery resources. The Weizhou
Island is the largest and youngest volcanic island in the north of Beibu Gulf, which probably
originates from a mantle plume that rose 50–32 million years ago. The Weizhou Island’s
north–south length is 6.5 km, the east–west length is 6 km, and the coastline is 15.6 km,
with coral reefs having been established around the island. The volcanic Weizhou Island is
a natural source of nutrients such as N and P, and trace metals such as iron and manganese
with surface runoff, which fuels the entire marine ecosystem nearby [39].

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 3 of 20 
 

 

populations using morphological and next-generation molecular tools, and to investigate 

the changes in cyanobacterial diversity and species assemblage composition in response 

to coral reef health status. 

2. Materials and Methods 

2.1. Study Area 

The Beibu Gulf (17–22° N, 105–110° E; Figure 1A) covers a total area of 130,000 km2 

with an average water depth of 38 m and a 1629 km coastline [38], located in the north-

western part of the South China Sea (Figure 1). The climate is southwest monsoon in the 

Indian Ocean, which brings high temperatures and strong rainfall to the region. As a re-

sult, it occupies a significant geographical location that is rich in fishery resources. The 

Weizhou Island is the largest and youngest volcanic island in the north of Beibu Gulf, 

which probably originates from a mantle plume that rose 50–32 million years ago. The 

Weizhou Island’s north–south length is 6.5 km, the east–west length is 6 km, and the coast-

line is 15.6 km, with coral reefs having been established around the island. The volcanic 

Weizhou Island is a natural source of nutrients such as N and P, and trace metals such as 

iron and manganese with surface runoff, which fuels the entire marine ecosystem nearby 

[39]. 

 
Figure 1. Map of sampling locations. (A) Location of Weizhou Island in the Beibu Gulf, South China
Sea. (B) Map of Weizhou Island, showing the sampling locations (sites BG, LQ and SLK).

Due to climatic and anthropogenic disturbances, with the continuous development of
tourism resources, coral reef biodiversity in Weizhou Island has been rapidly decreasing,
and the ecological functions of the coral reef ecosystem are severely degenerating [40].
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According to topography, circulation, nutrient concentration, and anthropogenic influences,
Weizhou Island can be divided into three zones: the north sector (site BG in Figure 1B),
less disturbed by human activity; the northwest sector (site LQ in Figure 1B), overloaded
with impacts from cruise ships, refineries, sewage treatment plants, etc.; and the southwest
sector (site SLK in Figure 1B), which is slightly affected by tourism development. The north,
northwest, and southwest sectors exhibited 80%, 7%, and 53% coral cover with 54.5%, 3.3%,
and 42.7% living corals, respectively [41].

2.2. Seawater, Coral Tissue, and Reef Sediment Sampling

Three coral reef sites around Weizhou Island; BG, LQ, and SLK; with different health
statuses representing the slightly damaged, severely damaged, and moderately damaged
coral reefs, respectively (Figure 2, [41]), were chosen for the assessment of cyanobacterial
community composition. All sites were classified as sandy reefs with some patches of
Pavona corals, especially site BG [41]. Seawater, coral tissue, and upper centimeters of sandy
sediments were collected by Dr. Amro Abd Elgawad in June 2020 and by scuba divers in
April 2021. One liter of seawater immediately above coral reefs was collected and filtered
through 0.22 µm polycarbonate membrane (Millipore, Bedford, MA, USA). Small random
coral fragments (~1 cm3) chiseled from the bottom part of coral colonies were sampled, and
the upper centimeter reef sediment with or without benthic cyanobacterial mats (BCMs)
was also collected. Triplicate of each substrate type was collected in June 2020, and a single
sample of each substrate type was collected in April 2021. All filter membranes, coral
colonies, and sediment samples were preserved in 1 mL DNA lysis buffer (10 mM Tris-HCl,
pH 8.0; 100 mM EDTA, pH 8.0; 0.5% w/v SDS). Samples were snap-frozen in liquid nitrogen
and brought back to the laboratory. In the laboratory, all samples were stored at −80 ◦C
until DNA extraction.
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2.3. Environmental DNA Extraction and Metabarcoding Sequencing

The DNA isolation and PCR preparation stages were carried out in a laminar flow
hood, cleaned with bleach and sterilized under ultraviolet radiation for at least 30 min
before use. Genomic DNA was extracted using a CTAB protocol combined with Zymo DNA
Clean & Concentrator kit (Zymo, Irvine, USA) as described by [42]. For samples of June
2020, the primers 341F (5′-CCTACGGGNGGCWGCAG-3′)/806R (5′-GGACTACHVGGGT
ATCTAAT-3′) [43,44] targeting the V3–V4 domain of universal prokaryotic 16S rRNA gene
were used. The high throughput sequencing results showed a low proportion and diversity
of cyanobacteria (See the result Section 3.1 and Figure 3A). Thus, for samples of April
2021, the cyanobacteria-specific primers CYA359F (5′-GGGGAATYTTCCGCAATGGG-
3′)/CYA781R (5′-ACTACWGGGGTATCTAATCCC-3′) [33,45] targeting partial V4 domain
of 16S rRNA gene were used. PCR reactions were carried out using 1× ExTag buffer, 50 µM
deoxynucleotide mixture, 0.2 µM of each primer, 1.25 U of ExTaq DNA Polymerase (Takara,
Tokyo, Japan), and 10 ng of template genomic DNA in 50 µL total volume reactions. The
PCR program on the thermal cycler follows the protocols described in Caporaso et al. [43]
and Monchamp et al. [33] for universal prokaryotic and cyanobacteria-specific primers,
respectively. PCR was replicated three times in independent runs and the products of the
same sample were pooled. The pooled amplicons were purified using the AxyPrep DNA
gel extraction kit (Axygen, Union, CA, USA) following the manufacturer’s instructions.
The purified amplicons were quantified using the ABI Step One Plus real-time PCR system
(Life Technologies, Foster City, CA, USA), assessed and sequenced on an Illumina HiSeq
2500 platform (Illumina, San Diego, CA, USA) using a paired-end (2 × 250 bp) HiSeq 2500
Reagent Kit following manufacturer’s instructions.

2.4. Sequence Data Processing

Paired-end Illumina 16S rRNA gene sequences were processed using R. The sequences
were quality filtered, merged, dereplicated, and chimeras were removed using the DADA2
workflow [46] to determine amplicon sequence variants (ASVs). Quality filtered reads were
assigned to ASVs at a 100% sequence similarity threshold. Representative sequences from
each of the ASVs were annotated by the SILVA Release128, http://www.arb-silva.de, [47]
and Greengene [48] rRNA database using BLASTn. For the universal prokaryotes primers,
the representative sequence of each of the ASVs was taxonomy assigned with a confidence
threshold of 97% sequence similarity and 98% coverage with the two databases [29,49].
For the cyanobacteria-specific primers, the representative sequence of each of the ASVs
was taxonomy assigned with a confidence threshold of 85% sequence similarity and 98%
coverage with the two databases [33,50]. Each of the ASVs was annotated again for verifi-
cation through blast in the NCBI database; the most recent verified sequences supported by
the literature will be updated. Data for the original paired-end reads have been deposited
at GenBank under the project PRJNA891132 with the accession number SAMN31310599–
SAMN31310634.

2.5. Clone Strains and Microscopy

Seawater, coral tissue, and upper centimeter of sandy sediments were collected by
scuba divers as described before. Each sample was transferred into a 5 L polycarbonate
bottle with filtered seawater and stirred vigorously to detach the epibenthic cyanobacteria.
The suspension materials were subsequently sieved through 120 µm and 10 µm filters.
The 10–120 µm fractions were rinsed with sterile f/2-Si medium [51]. The samples were
incubated at 25 ◦C, 90 µmol photons·m−2·s−1 from cool-white tubes, and under a light:
dark cycle of 12 h: 12 h (hereafter, called “standard culture conditions”) for two weeks.
Single cells/filamentous were isolated from this material with a micropipette under an
inverted microscope Eclipse TS100 (Nikon, Tokyo, Japan) into a 96-well tissue culture
plate containing 330 µL f/2-Si medium, and examined every week with the inverted
microscope. The clonal cultures were transferred to 50 mL polystyrene tissue culture
flasks and maintained under the standard culture conditions. The light and chloroplast

http://www.arb-silva.de
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auto-fluorescence microscopy, as well as scanning electron microscopy, were carried out
following the standard protocols described in Pei et al. [52].
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Figure 3. Results of the cyanobacterial community diversity analyses from sequencing reads.
(A) Stacked bar chart displaying the results of the relative abundances of genera based on uni-
versal 16S rRNA gene primers for each site. (B) Stacked bar chart displaying the results of the
relative abundances of genera based on cyanobacteria-specific 16S rRNA gene primers for each site.
Classification of cyanobacterial genera into different orders from each site. Percentages indicate the
dominant order(s) of cyanobacteria. BG, LQ, and SLK; with different health statuses representing the
slightly damaged, severely damaged and moderately damaged coral reefs, respectively.

Genomic DNA of clone strains was extracted using the CTAB protocol as described
before. Partial 16S rRNA gene sequence was amplified using the 27F (5′-AGA GTT TGA
TCC TGG CTC AG-3′)/1492R (5′-TAC GAC TTA ACC CCA ATC GC-3′) primers [53] or
CYA106F (5′-CGG ACG GGT GAG TAA CGC GTG A-3′)/CYA781R (5′-GAC TAC TGG
GGT ATC TAA TCC CAT T-3′) following the protocols described in Nübel et al. [45]. Newly
16S rRNA gene sequences aligned with related sequences from GenBank using MAFFT
v7.110 [54]. Maximum likelihood (ML) analyses were calculated with RaxML v7.2.6 [55] on
the T-REX web online server [56] with the best-fitting model selected by jModelTest 2 [57].

3. Results
3.1. Diversity of Cyanobacteria Based on Universal Prokaryotic 16S rRNA Gene Primers

The sequencing depth of all samples based on universal prokaryotic 16S rRNA gene
primers is summarized in Table S1. A total of 3,519,202 reads were derived from all
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samples, and 1,087,132 unique sequences were obtained after filtering/denoising and
chimera removal (Table S1). A total of 60,800 unique amplicon sequence variants (ASVs)
were obtained with sizes ranging from 244 to 476 bp (mean = 455± 17 bp) in length. Finally,
23,147 ASVs (38.07%) passed the filtering threshold annotation for procaryotic organism.
Among them, 392 ASVs (1.69%) belonging to cyanobacteria were retained for downstream
analysis. The average relative abundances of cyanobacteria in the sediments, coral tissue,
and seawater compartments were 4.63%, 5.31%, and 10.70%, respectively (Table S1). Fifteen
different cyanobacterial genera were identified (Table 1, Figure 3A). The dominant genera
across all sites/samples were Synechococcus, Trichormus, and Phormidium with 96.1, 2.6,
and 0.2% of the total cyanobacterial reads, respectively. The 15 genera were classified into
six orders; Chroococcales, Nostocales, Oscillatoriales, Pleurocapsales, Spirulinales, and
Synechococcales (Table 1). Regarding sites, in relation to different coral health statues and
coral coverage, the dominant genera in the sediment were Synechococcus (55.3, 32.9, and
54.6% at sites BG, LQ, and SLK, respectively), Trichormus (39.1, 35.6, and 35.3% at sites BG,
LQ, and SLK, respectively), and Phormidium (0, 6.9, and 8.5% at sites BG, LQ, and SLK,
respectively). The dominant genera in coral tissue samples were Synechococcus (97.2, 85.5,
and 81.3% at sites BG, LQ, and SLK, respectively), Trichormus (2.3, 35.6, and 8.1% at sites
BG, LQ, and SLK, respectively), and Phormidium (0.2, 1.1, and 1.1% at sites BG, LQ, and
SLK, respectively). The dominant genera in the water samples were Synechococcus (99.5,
99.9, and 99.7% at sites BG, LQ, and SLK, respectively), Trichormus (0.3, 0.03, and 0.08% at
sites BG, LQ, and SLK, respectively), and Prochlorococcus (0, 0.01, and 0.1% at sites BG, LQ,
and SLK, respectively).

Table 1. List of cyanobacterial genera based on universal and cyanobacteria-specific 16S rRNA gene
primer metabarcording, as well as morphotypes observed in the present study, including potential
toxic and nitrogen-fixing species.

Order Family
Universal

Prokaryotic
Primers

Cyanobacteria-
specific
Primers

Cultured
Strains Potential Toxin [58]

Nitrogen
Fixation

Cyanobacteria

Chroococcales

Aphanothecaceae Aphanothece

Chroococcaceae Chroococcus

Cyanobacteriaceae Cyanobacterium Cyanobacterium

Geminocystaceae Geminocystis

Microcystaceae

Gloeocapsa

Microcystis Microcystin/
Anatoxin-a

Chroococcidiopsidales Chroococcidiopsidaceae
Chroococcidiopsis

Gloeocapsopsis

Gloeobacterales Gloeobacteraceae Gloeobacter

Nostocales

Hapalosiphonaceae Mastigocoleus

Nostocaceae

Anabaena

Microcystin/
Cylindrospermopsins/
Saxitoxins/Anatoxin-

a/BMAA

Nostoc Nostoc BMAA/Microcystins Nostoc

Trichormus Microcystins

Rivulariaceae Rivularia Microcystins

Scytonemataceae

Chakia

Scytonema Lyngbyatoxin/
Saxitoxins

Symphyonemataceae Loriellopsis

Tolypothrichaceae Tolypothrix Microcystins
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Table 1. Cont.

Order Family
Universal

Prokaryotic
Primers

Cyanobacteria-
specific
Primers

Cultured
Strains Potential Toxin [58]

Nitrogen
Fixation

Cyanobacteria

Oscillatoriales

Coleofasciculaceae

Anagnostidinema

Coleofasciculus

Geitlerinema Microcystin/
Saxitoxins/BBD

Cyanothecaceae Cyanothece

Microcoleaceae

Annamia Microcystins

Arthrospira Arthrospira Microcystins/
Anatoxin-a

Kamptonema

Planktothricoides

Oscillatoriaceae

Aerosakkonema

Lyngbya Lyngbya

Cylindrospermopsins/
Saxitoxins/

Lyngbyatoxins/
Barbamides/BMAA

Lyngbya

Oscillatoria Oscillatoria

Microcystins/
Cylindrospermopsins/

Anatoxin-a/
Lyngbyatoxins/BMAA

Phormidium Phormidium Microcystins/
Anatoxin-a

Sirenicapillariaceae Limnoraphis

Pleurocapsales

Dermocarpellaceae Stanieria

Hyellaceae Pleurocapsa Pleurocapsa

Xenococcaceae Xenococcus

Spirulinales Spirulinaceae Spirulina Spirulina Spirulina Microcystins

Synechococcales

Acaryochloridaceae Acaryochloris Acaryochloris

Coelosphaeriaceae Snowella

Leptolyngbyaceae

Leptolyngbya Leptolyngbya Microcystin/
BMAA/BBD

Neosynechococcus

Phormidesmis Phormidesmis

Merismopediaceae
Synechocystis Microcystin/

BMAA/LPS

Merismopedia Microcystin

Prochlorococcaceae

Prochlorococcus Prochlorococcus

Halomicronema Halomicronema

Nodosilinea

Limnothrix Microcystin/Saxitoxins

Pseudanabaena Pseudanabaena Pseudanabaena Microcystin/
Anatoxin-a

Synechococcaceae Synechococcus Synechococcus icrocystin/BMAA

3.2. Diversity of Cyanobacteria Based on Cyanobacteria-Specific 16S rRNA Gene Primers

Cyanobacterial genera based on cyanobacteria-specific 16S rRNA gene primer metabar-
cording are listed in Table S2. Samples gave a total of 625,759 reads, with 363,026 unique
sequences (Table S1). Out of these unique sequences, a total of 1276 ASVs had the sizes of
235 to 407 bp (mean = 391 ± 12 bp). In addition, 1206 ASVs (94.51%) passed the filtering
threshold annotation for procaryotes of which 156 ASVs (12.94%) belonging to cyanobac-
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teria were subjected to downstream analysis. The cyanobacterial relative abundances in
the upper centimeter of sandy sediments, coral tissue, and seawater were 26.27, 11.78, and
35.64%, respectively. A total of 43 cyanobacterial genera were detected (Table 1, Figure 3B).
Spirulina, Synechococcus, Leptolyngbya, Stanieria, and Geitlerinema were the dominant genera
across all sites/samples with 58.1, 30.8, 3.4, 3.2, and 1.4%, respectively. The 43 genera
belong to eight orders; Chroococcales, Chroococcidiopsidales, Gloeobacterales, Nostocales,
Oscillatoriales, Pleurocapsales, Spirulinales, and Synechococcales (Table 1, Figure 3B). Site-
wise, Stanieria (0.2, 0.2, and 80.9% at sites BG, LQ, and SLK, respectively), Leptolyngbya (44.4,
48.7, and 0.7% at sites BG, LQ, and SLK, respectively) and Spirulina (22.6, 23.1, and 0.4%
at sites BG, LQ, and SLK, respectively) was the dominant genera in the sediment. While
in coral tissue samples, the dominant genera were Spirulina (27.6, 60.4, and 29.2% at sites
BG, LQ, and SLK, respectively), Pseudanabaena (24.7, 0, and 19.7% at sites BG, LQ, and SLK,
respectively) and Leptolyngbya (11.0, 15.1, and 11% at sites BG, LQ, and SLK, respectively).
Regarding the water samples, Spirulina (0, 50.3, and 81.6% at sites BG, LQ, and SLK, re-
spectively), Synechococcus (44.4, 47.9, and 18.4% at sites BG, LQ, and SLK, respectively)
and Geitlerinema (48.8, 1.4, and 0% at sites BG, LQ, and SLK, respectively) were the most
dominant genera.

3.3. Diversity of Cyanobacterial Phenotypes

Based on morphology and phylogeny, seven species were cultured and identified as
Anabaena sp., Chroococcus sp., Merismopedia sp., Phormidesmis sp., Pleurocapsa sp., Pseudan-
abaena sp., and Spirulina sp. (Table 2, Figures 4 and 5).
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Figure 4. Light microscopy (LM), fluorescence, and scanning electron microscopy (SEM) images
of cultured cyanobacteria strains. (A) Anabaena sp. strain TIOX110 showing heterocyst (H) and
akinetes (A). (B) Anabaena sp. showing the chlorophyll autofluorescence. (C) Chroococcus sp. TIOX101.
(D) Chroococcus sp. showing the chlorophyll autofluorescence and SEM of the cell. (E) Merismopedia
sp. TIOX109. (F) Merismopedia sp. showing the chlorophyll autofluorescence.
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Figure 5. Light microscopy (LM), fluorescence, and scanning electron microscopy (SEM) images
of cultured cyanobacterial strains. (A) Phormidesmis sp. TIOX96. (B) Phormidesmis sp. showing
the chlorophyll autofluorescence and SEM of cell. (C) Pleurocapsa sp. TIOX102. (D) Pleurocapsa
sp. showing the chlorophyll autofluorescence. (E) Pseudanabaena sp. TIOX98. (F) Pseudanabaena sp.
showing the chlorophyll autofluorescence. (G) Spirulina sp. TIOX113. (H) Spirulina sp. showing the
chlorophyll autofluorescence and SEM of a cell.

Anabaena sp. strain TIOX110 (Figure 4A,B), dark-green-colored to brownish vegetative
cells, grew as slight sinuous filaments. Cells showed beaded appearance from square to
spherical of diameter ranging from 3.78 to 5.24 µm. The last cell in the filament showed
a characteristic pointed end with 8 to 50 cells on average in one filament. Heterocysts
were oval to elongate barrel in shape, and 1.0–1.92-fold compared to the vegetative cells.
Intercalary heterocysts were mostly observed, and some terminal heterocysts were also
associated with broken filaments. Akinetes were observed with a length of 2.37–5.36-fold
compared to vegetative cells, and slightly more in breadth. The akinetes were generally
distant away from the heterocyst. ML phylogeny based on 16S rRNA sequences of Anabaena
is illustrated in Figure S1.
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Table 2. Cyanobacterial strains cultured in the present study, including the collection date, coordi-
nates, sampling site, and GenBank accession numbers.

Species Strains Collection
Date

Latitude
(N)

Longtitude
(E) Site Source GenBank

No. (16S)

Anabaena sp. TIOX110 2020.06 109.1003 21.0644 LQ Sediment OP942405

Chroococcus sp. TIOX101 2020.06 109.1250 21.0831 BG Sediment OP942406

Merismopedia sp. TIOX109 2020.06 109.1003 21.0644 LQ Water -

Phormidesmis sp. TIOX96 2020.06 109.1250 21.0831 BG Water OP942407

Phormidesmis sp. TIOX95 2020.06 109.1250 21.0831 BG Water -

Phormidesmis sp. TIOX89 2020.08 109.1250 21.0831 BG Water -

Pleurocapsa sp. TIOX102 2020.06 109.0835 21.0400 SLK Sediment OP942408

Pseudanabaena sp. TIOX98 2021.04 109.1003 21.0644 LQ Water OP942409

Spirulina sp. TIOX113 2021.04 109.1003 21.0644 LQ Water OP942410

Chroococcus sp. strain TIOX101 (Figure 4C,D) formed macroscopic dark-green mats
on the bottom of the culture medium flasks: 2–4 celled colonies, 15.71–27.35 µm in width,
surrounded with mucilage. Individual cells of the colonies were hemispherical in shape,
7.28–12.80 µm in width, with homogeneous content, olive-green when young, granulated
with many polyhydroxybutyrate granules and yellowish when old. Cell division occurs
in two planes by binary fission, and neither nanocytes nor baeocytes were observed. ML
phylogeny based on 16S rRNA sequences of Chroococcus is illustrated in Figure S2.

Merismopedia sp. strain TIOX109 (Figure 4E,F) was blue-green, with elliptical or
hemispherical vegetative cells 10.19–22.70 µm wide and 5.82–12.80 µm long. Cell content
was homogeneous, with many polyhydroxybutyrate granules. Four cells were regularly
arranged, gathered in a flat layer with colorless fragile mucilaginous envelopes outside the
cells. Cell division occurred in perpendicular planes by binary fission. This Merismopedia
strain was lost, and retrieving a 16S rRNA sequence was failed.

Phormidesmis sp. strain TIOX96 (Figure 5A,B) was yellowish-brown, with long and
straight filaments up to 2.33–3.78 µm in width. Trichomes were cylindrical, usually dis-
tinctly constricted at the cross-walls, sometimes slightly longer or shorter rather than wide,
without diversified terminal cells. Thick, lamellated, or colored sheaths were observed. At
the end of cultivation, the cultured strain formed gelatinous mats on the substrate. The mL
phylogeny based on 16S rRNA sequences of Phormidesmis is illustrated in Figure S3.

Pleurocapsa sp. strain TIOX102 (Figure 5C,D) formed macroscopic blackish mats on
the bottom of the culture medium flasks. Pseudofilaments were moderately long, and
uniseriate. Sheaths were thin, colorless, and tightly attached to the cell walls. Cells were of
various shapes and sizes, with 15.71–27.61 µm width and granular cytoplasm, and various
planes of cell division. ML phylogeny based on 16S rRNA sequences of Pleurocapsa is
illustrated in Figure S4.

Pseudanabaena sp. strain TIOX98 (Figure 5E,F) formed a thin layer on the bottom of
the culture medium flasks with dark blue-green motile filaments without oscillation or
rotation. Trichomes were straight, short, and distinctly constricted at cross-walls. Cells
were 1.46–2.04 µm in width and 1.46–2.91 µm in length. Cell content was differentiated
into chromatoplasm and centroplasm. Heterocytes and akinetes were absent, and apical
cells were round without polar calyptras or aerotopes. ML phylogeny based on 16S rRNA
sequences of Pseudanabaena is illustrated in Figure S5.

Spirulina sp. TIOX113 (Figure 5G,H) showed regularly helically coiled trichomes, with
no visible crosswalks in light or scanning microscopy and no visible sheaths. Coiling was
counter-clockwise, and motility was detected with rotation along the helix axis. The helix
shape was closed, with a trichome width of 2.91 to 3.78 µm and helix width of 2.91 to
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3.78 µm. The trichome coils were closed. ML phylogeny based on 16S rRNA sequences of
Spirulina is illustrated in Figure S6.

4. Discussion
4.1. Comparison of Different Primer Datasets

Traditional surveys of cyanobacteria that have relied mainly on culture combined light
microscopy morphology or the macroscopic appearance of benthic cyanobacterial mats
(BCMs) have shown a limited number of cyanobacterial species compositions [37,59]. This
highlights the significance of applying DNA metabarcoding tools, which have proven pow-
erful for improving the understanding of cyanobacteria biodiversity in coral reefs [31,49].
The hyper-variable V4 regions of the 16S rRNA have been widely used for assessing the
microbial prokaryote diversity of marine environmental samples with next-generation
sequencing technologies [29,30,60]. Cyanobacteria-specific primers have been previously
applied to investigate biodiversity patterns and risk-oriented monitoring of cyanotoxin
blooms [33,61]. In the present study, a total of 15 and 43 cyanobacterial genera were
revealed from three coral reef locations at Weizhou Island based on universal prokary-
otic 16S rRNA gene primers datasets and cyanobacteria-specific 16S rRNA gene primers
datasets, respectively (Figure 3). This indicates that the DNA metabarcoding approach
using cyanobacteria-specific 16S rRNA gene primers detected a significantly higher number
of cyanobacterial (including several harmful species) than universal prokaryotic 16S rRNA
gene primers. Although, we could not ignore the differences brought about by different
sampling times. However, universal 16S rRNA gene primers based metabarcoding result
in low diversity and abundance of cyanobacterial have been widely reported ([31,49], this
study), even for the samples collected from BCMs with no significant improvement [62]. It
is proposed that the cyanobacteria-specific 16S rRNA gene primers datasets had a higher
tendency toward cyanobacteria phylotype richness and community structure. Their appli-
cation is therefore recommended for future metabarcoding-based cyanobacteria diversity
surveys to achieve a more accurate determination of cyanobacteria diversity. It is also worth
noting that the genera Planktothricoides and Xenococcus were detected in universal prokary-
otic 16S rRNA gene primers datasets, but not in cyanobacteria-specific 16S rRNA gene
primers datasets (Table 1). This implies that cyanobacteria-specific 16S rRNA gene primers
also have limitations. In addition, four out of seven cyanobacteria genera (Pleurocapsa,
Spirulina, Phormidesmis, and Pseudanabaena) were cultured and identified by morphology
and molecular phylogeny means, and were consistently detected using both universal
and cyanobacteria-specific 16S rRNA gene primers (Table 1). However, the other three
cultured genera, Anabaena, Chroococcus, and Merismopedia, could not be detected using
either molecular method. This inconsistency between metabarcoding and microscopic tools
has been reported in previous studies [27,63]. The main reasons is the database for now are
far from complete, with many uncultured and unnamed sequences. In this study, many
picocyanobacterial and thin filamentous cyanobacteria (e.g., Synechococcus, Leptolyngbya,
and Phormidium) were detected by metabarcoding (Table 1). These genera are difficult
to identify by microscopy, as they lack conspicuous morphological features [64,65]. The
advantage of morphological results enabled the comparison between the past and current
cyanobacterial diversity, although the microscopic identifications did not always agree with
the molecular data for cyanobacteria. For these reasons, different combined techniques
are recommended for investigating cyanobacterial diversity in order to minimize the limi-
tations associated with individual techniques [32,63]. Overall, culture-based monitoring
remains essential in routine survey, while cyanobacteria-specific prokaryotic 16S rRNA
gene primers based on high-throughput sequencing enable estimates of a more realistic
and sensitive picture of both cyanobacterial phylotype richness and assemblage structure.

4.2. Cyanobacterial Diversity at Weizhou Island

Weizhou Island harbored a rich diversity of cyanobacteria revealed by next-generation
sequences and microscopy tools. In total, 48 genera were detected based on metabarcoding
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and culture-based surveys (Table 1). To the best of the authors’ knowledge, many of these
genera are reported here for the first time at Weizhou Island, including the harmful toxin
producer genera Nostoc, Microcystis, Geitlerinema, Lyngbya, Oscillatoria, and Leptolyngbya.

Weizhou Island is subject to both anthropogenic activities as well as climatic distur-
bances, such as petroleum processing, tourism development, shipping, ocean warming,
and heavy rainfall [40,66]. The present results showed a clear distinction in the composition
of cyanobacterial assemblages among different coral health status sites. Twenty-eight
genera were detected at site BG, containing mostly healthy coral reefs, and approximately
1.25 times more genera were detected (36 and 34 genera at sites LQ and SLK, respectively)
at severely damaged and moderately damaged coral reef habitats (Table 3). This result
supports the notion that the degradation of a reef area is likely to increase benthic algal
occupation including cyanobacteria, thus enabling cyanobacterial expansion over dead
corals and competition for space [6,7]. Over the past two decades, BCMs have become
the dominant component on many reefs worldwide [6,7], and will continue to increase
in abundance under the environmental disturbances associated with eutrophication, as
well as ocean warming [4,5]. Specially, many BCMs have been reported on coral reefs
located nearby urban areas in the Caribbean, Red Sea, and South China Sea [67,68]. High
nutrient inputs from municipal sewage could increase coral mortality, as well as stimulate
the development of phototrophic algae on reefs [66]. In the severely damaged habitats of
site LQ, BCMs covered large areas of dead coral reefs (Figure 2C,D), which may be strongly
related to the increased nutrient runoff from domestic water.

Table 3. Cyanobacterial genera detected at the three different sites of Weizhou Island.

Site BG Site LQ Site SLK

Annamia Annamia Annamia
Chroococcidiopsis Chroococcidiopsis Chroococcidiopsis
Coleofasciculus
Cyanobacterium Cyanobacterium Cyanobacterium

Geitlerinema Geitlerinema Geitlerinema
Gloeocapsopsis
Kamptonema
Leptolyngbya Leptolyngbya Leptolyngbya
Limnoraphis Limnoraphis
Loriellopsis Loriellopsis

Lyngbya Lyngbya
Nodosilinea Nodosilinea
Oscillatoria Oscillatoria Oscillatoria

Phormidesmis Phormidesmis Phormidesmis
Phormidium Phormidium Phormidium

Planktothricoides
Pleurocapsa Pleurocapsa Pleurocapsa

Pseudanabaena Pseudanabaena Pseudanabaena
Richelia Richelia Rivularia

Scytonema Scytonema
Spirulina Spirulina Spirulina
Stanieria Stanieria Stanieria

Synechococcus Synechococcus Synechococcus
Synechocystis Synechocystis Synechocystis
Tolypothrix Tolypothrix
Xenococcus Xenococcus Xenococcus

Acaryochloris Acaryochloris
Aerosakkonema Aerosakkonema

Anagnostidinema
Arthrospira Arthrospira

Chakia
Cyanothece Cyanothece
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Table 3. Cont.

Site BG Site LQ Site SLK

Geminocystis
Gloeobacter
Gloeocapsa

Halomicronema Halomicronema
Kamptonema
Limnothrix

Microcystis
Lyngbya
Nostoc Nostoc

Prochlorococcus Prochlorococcus
Aphanothece

Mastigocoleus
Neosynechococcus

Snowella
Trichormus

4.3. Biological Nitrogen-Fixing Cyanobacteria

Coral reefs are one of the most highly productive ecosystems on earth, despite existing
in nutrient-poor waters [69]. Dissolved inorganic nitrogen is usually the limitation for pho-
totrophic organisms in coral reefs [70,71]. Biological nitrogen fixation by cyanobacteria is an
important source of nitrogen, and nitrogen-fixing cyanobacteria have been recommended
to play a key role in the nitrogen cycle of the coral reef ecosystem [72,73]. The present
study was unsuccessful at detecting nitrogen-fixing cyanobacteria from the healthiest coral
reef site BG, regardless of whether using high throughput-sequencing or culture-based
techniques. It may be concluded that nitrogen-fixing cyanobacteria may be rare in the
healthiest coral reefs at Weizhou Island. In contrast, two nitrogen-fixing cyanobacteria
taxa, Lyngbya and Nostoc, were identified based on high-throughput sequences at both
sites LQ and SLK, where the coral reefs were severely and moderately damaged (Table 3),
respectively. In addition, strains of Anabaena capable of fixing N2 were cultured from corals
tissue from the site LQ (Table 2, Figure 4A,B). It has been reported that excess nutrients can
favor the production of algae at the expense of reef-building corals [5,7]. The coral reefs at
sites LQ and SLK have been exposed to significant sewage discharge due to urbanization,
which is responsible for the continuous degradation of the coral communities in both
areas (Figure 2, [40]). Damaged coral reefs can be subsequently colonized by microalgae,
especially cyanobacteria [6,7]. Although it is usually hypothesized that nitrogen fixation
by cyanobacteria may be suppressed by high (in-) organic nutrients [74], there was no
apparent negative correlation between the diversity of nitrogen-fixing cyanobacteria and
potential high nutrients due to domestic sewage discharge in the present study. The reason
for these results warrants further in-depth investigation. Microbial mats dominated by
Anabaena, Calothrix, Lyngbya, Nostoc, and Oscillatoria show a high nitrogen fixation rate
in coral reefs in Sanya Bay, South China Sea [68]. Oscillatoria were detected at all three
sites; BG, LQ, and SLK in the present study (Table 3). Oscillatoria-dominated BCMs in the
Southern Caribbean exhibit nitrogen fixation [73,75]. Whether Oscillatoria contributes to
the nitrogen supply at the three sites of Weizhou Island was not confirmed by the present
study, mainly because it was the only potential nitrogen-fixing cyanobacteria detected at
site BG, with mostly healthy coral reefs.

4.4. Harmful Cyanobacterial Species

Due to climatic changes and eutrophication, bloom-forming and toxin-producing
cyanobacteria have rapidly increased in marine ecosystems worldwide, and have severely
impacted the functioning of the ecosystems, ultimately threatening reef organisms and even
humans [7,18]. Marine cyanobacteria have been reported to be responsible for toxic events
associated with shellfish, fish, and mammals [76–78]. Generally, the cyanotoxins include
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endotoxins, dermatoxins, hepatotoxins, and neurotoxins, among others. Leptolyngbya,
Lyngbya, Microcystis, Oscillatoria, and Synechococcus produce toxic secondary metabolites
known as cyanotoxins and were detected at Weizhou Island (Table 1). The heterocystous
cyanobacteria Nostoc have been reported to produce cyanotoxin β-Methylamino-L-alanine
(BMAA), which is capable of causing several neuronal human diseases such as amyotrophic
lateral sclerosis (ALS) [18,79]. Nostoc was detected in the present study using both universal
prokaryotic 16S rRNA gene primers and cyanobacteria-specific 16S rRNA gene primers,
implying the potential BMAA contamination risk at Weizhou Island. Mortality from
coral diseases that are likely propelled by increasing biomass of benthic cyanobacteria,
such as black band disease, may increasingly drive the trajectory and velocity of reef
degradation [13,14]. Some cyanobacteria, together with the sulfur-reducing bacteria, can
cause black band disease and lead to coral death due to anaerobic and increased hydrogen
sulfide conditions [80,81]. Three potential pathogenic cyanobacteria of black band disease,
Geitlerinema, Leptolyngbya, and Phormidium were detected at all three sites of Weizhou
Island (Table 2), suggesting both healthy and degraded corals are under risk of black band
disease. In conclusion, considering that many potential harmful cyanobacterial species
were detected in Weizhou Island coral reefs, it is important to estimate such cyanobacterial
species density, and quantitative cyanotoxin analysis is urgently required in routine harmful
algae monitoring and management programs in the South China Sea.

5. Conclusions

During this study, cyanobacterial diversity in sediment, water, and coral tissues were
explored in relation to slightly, moderately, and severely damaged coral reefs at Weizhou
Island, South China Sea. Fifteen and forty-three cyanobacterial genera were identified
based on universal prokaryotic 16S rRNA gene primers and cyanobacteria-specific 16S
rRNA gene primers metabarcoding, respectively, indicating a more sophisticated efficiency
of the latter. Seven Cyanobacterial species were cultured and identified as Anabaena sp.,
Chroococcus sp., Merismopedia sp., Phormidesmis sp., Pleurocapsa sp., Pseudanabaena sp., and
Spirulina sp. based on morphology and phylogeny. However, three out of the seven cul-
ture cyanobacterial strains could not be detected using molecular methods. Therefore,
culture-based combined cyanobacteria-specific 16S rRNA gene metabarcoding are highly
recommended in future routine survey. There was a clear distinction in cyanobacterial as-
semblage composition among locations with different coral health statuses, with degraded
reefs exhibiting approximately a 1.25-fold increase in species compared to healthy habitats.
In addition, the spreading of potentially toxic cyanobacteria, such as, Nostoc and Lyngbya,
in the degraded reef, implies putative links to reef degradation.
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