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Abstract: The prediction of ship location has become an increasingly popular research hotspot in
the field of maritime transportation engineering, which benefits maritime safety supervision and
security. Existing methods of ship location prediction based on motion characteristics have a large
uncertainty and cannot guarantee trajectory prediction accuracy of the target ship. An improved
method of location prediction using k-nearest neighbor (KNN) is proposed in this paper. An expanded
circle area of the latest point of the target ship is first generated to find the reference points with
similar movement characteristics in the constraints of distance and time intervals. Then, the top
k-nearest neighbors are determined based on the degree of similarity. Relationships between the
reference point of each neighbor and the latest points of the target ship are calculated. The predicted
location of the target ship can then be determined by a weighted calculation of the locations of all
neighbors at the predicted time and their relationships with the target ship. Experiments of ship
location prediction in 10 min, 20 min, and 30 min were conducted. The correlation coefficient of
the location prediction error for the three experiments was 0.992, 0.99, and 0.9875, respectively. The
results show that ship location prediction with reference to multiple nearest neighbors with similar
movements can provide better accuracy.

Keywords: short-term location prediction; k-nearest neighbor points; similarity measurement

1. Introduction

Maritime transportation has been the dominant mode of international trade, account-
ing for over 90% of international cargo shipping. Increasing maritime transportation leads
to high ship traffic density, especially in busy waters including ports, international bottle-
necks (e.g., Suez Canal, Panama Canal, and Malacca Strait), and inland waterways [1]. High
traffic density not only results in complex multi-ship encounter situations that make deci-
sion making challenging work for seafarers but also increases the difficulty of supervising
ship dynamics and navigation safety.

The automatic identification system (AIS) is one of the most widely used techniques for
vessel dynamic supervision, which can broadcast and receive a ship’s dynamic information
(e.g., position, speed over ground, course over ground, heading) and static information
(e.g., ship type, ship name, maritime mobile service identity) among nearby ships [2]. There
are still some problems with applying AIS data for real-time monitoring of ship dynamics.
First, the frequency of AIS data updates depends on the navigation status of the ship and
varies from several seconds to a few minutes. Second, there may be many missed ship
trajectory points due to limited communication bandwidth, high data loss rate, and sensor
errors [3]. Both issues may lead to incomplete and inaccurate ship movement, which causes
great difficulties for real-time maritime surveillance. It is essential to explore new methods
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to estimate missed ship locations and predict future ship locations in a short time. It will
especially benefit risk awareness and collision avoidance decision making if the prediction
of future ship locations in a short time can be available with satisfactory precision.

Much research has been performed on the short-term prediction of ship trajectory. The
main idea of ship trajectory prediction is to extrapolate and predict subsequent locations of
a vessel based on its previous movement trajectory. Many methods, including ship motion
models, statistical models, machine learning algorithms, dynamic models, and clustering
algorithms, have been used and improved for movement pattern learning and future
location prediction. Most of the developed methods prefer mathematical modeling of ship
motion and apply probabilistic models for trajectory prediction. The relative equations
between ship motion and maritime environments, however, are difficult to obtain accurately,
although wind, current, and other factors of maritime environments have a greater impact
on ship motion. In addition, ship trajectories recorded by the automatic identification
system are nonlinear. It is difficult to generate accurate ship kinematic equations, which
increases the difficulty of accurate modeling of ship motion and trajectory prediction. When
the nonlinearity of ship motion and the complexity of the maritime environment increase,
the prediction performance collapses to an unacceptable level [4]. Another popular method
is applying artificial intelligence (AI) technology to ship trajectory prediction. This either
applies the Kalman filter algorithm [5] to derive ship location by merging various motion
data or outputs a predicted trajectory point sequence from RNN or LSTM networks [6].
However, it is time-consuming to train such AI models to learn ship movement patterns.
The generalization ability and prediction ability of the trained AI models are also weak
and limited [7], which may lead to unsatisfactory results if conditions change. The error of
trajectory prediction for such models will become larger as the prediction time increases [8].
In short, the efficiency and the accuracy of short-term ship trajectory prediction using these
two methods need to be further improved.

This study intends to estimate the short-term trajectory locations of a ship by utilizing
the navigation experiences of nearby ships with similar movements. A similarity evaluation
model based on the normalization of spatial distance, speed distance, and course distance
was designed to detect and discover valuable nearby ships. The top k-nearest neighbors
are determined as the reference objects. Before location prediction, location relationships
between the target ship and each reference object should be calculated at the time of the last
location update of the target ship. These location relationships combined with the locations
of all reference objects at the prediction time can be used to generate K possible prediction
locations of the target ship. The final prediction location is then determined by a weighted
calculation of all possible locations. The contribution of this research provides a way to
improve the accuracy and efficiency of short-term ship trajectory prediction. The basic idea
of this study is the same as AI technology. The difference is the use of the movements of
valuable reference objects instead of the time-consuming pattern learning of a single ship.
A more balanced result can thus be obtained.

The remainder of this paper is organized as follows: Section 2 provides the related
work in location and trajectory prediction. Section 3 describes the proposed models. The
results and evaluation are presented in Section 4. Lastly, the conclusions are summarized
in Section 5.

2. Related Work

The studies of trajectory prediction are normally conducted by point-based or trajectory-
based methods [1].

The kinematic model, which has been used by researchers in recent years, is the earliest
method to predict vessel trajectory. However, this method relies on the historic motion
pattern data without anomaly information and is not suitable for actual situations of ship
movements. Perera et al. [3] propose an extended Kalman filter method to predict ship
trajectory by adding estimated noise in the kinematic model. The Kalman filter method
proposes to solve the problem of missing points of ship trajectory through a polynomial.
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However, it assumes that the target has a single motion mode that lacks the complexity of
building a motion model, which results in low precision of prediction when the target ship
deviates from the pre-established motion model. Millefiori et al. [9] perform prediction
for long-series data based on the Ornstein–Uhlenbeck (OU) process. Its major advantage
over the more traditional NCV model is that the variance in the predicted position grows
linearly with the prediction horizon. Rong et al. [2] treats the position of the ships as a
Gaussian distribution and predicts the trajectory of a ship through GP modeling. This
method works well for cases where the ship’s motion state is relatively stable. Alizadeh
et al. [8] propose a point-based motion model to predict the future locations of target vessels
in Euclidean space. The moving data for marine location prediction are extracted from
streaming AIS messages. Sun et al. [10] present a ship motion system method based on
the stored AIS data. The spatial area is divided into grids and the motion information is
incorporated into the grid to predict the ship’s trajectory. Zhang et al. [11] propose a general
AIS-data-driven model for vessel destination prediction. The similarity between the vessel’s
traveling and historical trajectories is measured and utilized to predict the destination in the
model. The highest similarity with the traveling trajectory is the ship’s destination. Murray
et al. [12] propose a single-point neighborhood search ship navigation trajectory prediction
algorithm to predict the next trajectory point by searching the previous trajectory of the
ship. Üney et al. [13] propose a data-driven trajectory prediction algorithm, which observes
the existing ship navigation historical trajectories and calculates the category probability
and corresponding prediction distribution of the observation flow at a given position and
speed. However, the ship dynamics are usually subject to different excitations imposed by
the environment in different regions. This may lead to a nonstationary state and make the
prediction less satisfactory in practice.

When using the statistical method to predict the ship trajectory, first establish the
motion model of the target ship, and then use the mathematical–statistical method to fit the
track of the target ship. Chen et al. [14] propose a least squares support vector machine
model based on variable space chaotic particle swarm optimization, which is used to predict
the spatial position and trajectory data. Cheng et al. [5] propose a trajectory prediction
algorithm based on the Kalman filter and support vector machine algorithm. Support
vector machine is a classical supervised learning method, which can linearly classify data
by solving the maximum margin hyperplane of data samples and has certain advantages
in improving the accuracy of the prediction model. Qiao et al. [4] propose a trajectory
prediction algorithm based on the hidden Markov model (HMM), which improves the
prediction efficiency by introducing the trajectory partition algorithm based on density.
However, the Markov model is not suitable for long-term trajectory prediction. Tong
et al. [15] use the improved Markov chain model and grey prediction model to predict
the ship trajectory of an inland river bend. The grey prediction method is used to fit
the original sequence and divide the original values by the prediction values to obtain
the absolute ratio which is corrected to obtain the predictive value of the next period
based on the Markov chain. The traditional Markov model is improved by smoothing
the process to remove the influence of old data in the sequence. However, this method
has a strong dependence on the historical data of the target and requires high data quality.
When the reliability of the historical data decreases, the predicted value differs greatly
from the actual value. Mazzarella et al. [16] use historical ship trajectory data and propose
a Bayesian trajectory prediction algorithm based on a particle filter. This algorithm is
assisted by traffic route knowledge to improve the quality of ship position prediction. Rong
et al. [17] propose a probability trajectory prediction model which describes the future
position along the ship trajectory through continuous probability distribution to solve the
uncertainty of ship trajectory prediction. The prediction algorithm has been optimized
using the Gaussian process to obtain the probabilities of certainty in ship trajectory, and the
quality of the prediction increased. Guo et al. [18] proposed a new ocean ship trajectory
prediction algorithm. The algorithm uses a k-order multivariate Markov chain and multiple
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navigation-related parameters to construct the state transition matrix. Simulation and
experiments show that the method has high precision and small error.

In terms of trajectory prediction approaches based on machine learning and neural
networks, Lv et al. [19] use a convolutional neural network to propose a t-conv method to
construct a grid space to predict trajectory. Inspired by the chess board, Nguyen et al. [20]
propose a system based on a neural network to predict the trajectory of a ship. This method
predicts the motion of the next period by analyzing the current motion trend of the ship
and realizes the prediction of the destination and arrival time. Simsir et al. [21] utilize ship
location and speed data to train an artificial neural network (ANN), based on which the
early warning of ship navigational risk is investigated for narrow waters based on the
forwarding prediction on the ship trajectories. Xu et al. [22] also propose an ANN-based
method for ship trajectory prediction. This method uses the difference of latitude and
longitude, speed, and heading to predict the ship’s position, and the result avoids going
beyond the bounds of the activation function. Zhou et al. [23] use a back propagation (BP)
neural network to predict the trajectory. This method takes the trajectory data of the target
ship of the past three times as the input of the BP network and predicts the eigenvalues of
the ship navigation behavior. Gan et al. [24] use a k-means clustering algorithm to group
the ship’s historical trajectory and use the grouping results to establish an artificial neural
network model to predict the ship’s trajectory. This model can better fit the predicted
trajectory of target vessels. Praczyk et al. [25] propose an evolutionary neural network
as the prediction index of ship position. A neural evolution method is used to test the
integral and modular recurrent neural networks. Nevertheless, these methods did not
consider the trajectory characteristics from a spatial perspective. Tang et al. [7] propose a
long short-term memory (LSTM) model for probabilistic ship position prediction. An LSTM
model was trained on AIS to suggest the positional density at a desired point in the future
by predicting the mean, variance, and covariance of a bivariate Gaussian distribution. One
drawback of such an approach is that it can only predict the future position for a single
time step and not a complete trajectory. Quan et al. [6] propose a ship trajectory prediction
model based on long short-term memory and compare the BP neural network and LSTM
in terms of prediction performance. The recurrent neural network (RNN) has a better
performance than the BP neural network in the prediction of time series data. Gao et al. [26]
present a multi-step prediction method combining current trajectory data and historical
data, which is executed by cubic spline interpolation on the start point, support point, and
destination point generated by a trained LSTM model. Among the basic navigation states
of straight, turning, acceleration, and deceleration, the prediction accuracy of this method is
higher than that of the traditional method. However, this method requires certain historical
trajectories to achieve accurate predictions.

Based on the above studies, ship trajectory prediction methods mainly include the
kinematic model, statistical theory, machine learning, and neural network method. The
advantages and disadvantages of these algorithms are shown in Table 1. These methods,
except the LSTM model, are applicable for short-term prediction. However, the problem
with the mentioned methods is the lack of environmental information for the local area.
Environmental information greatly impacts how vessels move as larger vessels will have to
follow the fairways to avoid groundings.
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Table 1. The advantages and disadvantages of the algorithms.

Algorithm Advantages Disadvantages

Kinematic model suitable for stable and ideal status of
ship motion

depends on the historic motion pattern data without anomaly
information; lack of complexity in building a motion model;
unsuitable for actual situations of ship movements

Statistical method suitable for a small number of trajectory data depends on historical data; requires high data quality

Machine learning higher prediction accuracy than the
traditional methods

requires certain historical trajectory; time-consuming for the
training process

KNN the trajectory that differs least from the
predicted trajectory can be found

prediction error increases when samples of trajectory have
noisy data

3. Methodology

The method of short-term ship trajectory location prediction is illustrated in this section,
as shown in Figure 1. We check and preprocess raw AIS data derived from constructed
datasets. The method of the grid search is aimed at clearing some invalid points that the
ship trajectory contains including stop action and hover behavior. After this step, valid AIS
data are distinguished to constitute the ship trajectory. (2) The expanded circle area was
created according to the prediction time and max speed of the ship. In combination with
the two previous steps, relative ship points might be found in the above range. (3) All ship
points are calculated to get their similarity value through similarity measurement. To get top
k points similar to the target one, we derive the results according to similar values sorted in
descending order. (4) The algorithm for future location prediction makes use of retrieving
points from the trajectory that is preprocessed. By applying this k-nearest neighbor model
to ships of similar property in the expanded circle area, we take an appropriate predicted
point from traffic trajectory within the area. (5) The most accurate predicted point obtained
is estimated to achieve final precision through the evaluation model.
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3.1. Expanded Area

To accurately predict the future trajectory location of a ship, a distribution of all
possible locations should be predetermined. In this study, the concept of expanded area
was defined as the maximum distribution range of the predicted trajectory location. The
expanded area is a circular area around the last trajectory point of the target ship before
location prediction. The size of the expanded area depends on the maximum speed of
the target ship before location prediction and the specified predicted time interval. The
centroid of the circular area is the last updated AIS point of the target ship before prediction,
and its radius can be calculated by the product of the maximum speed over ground in the
previous trajectory and the predicted time interval, as shown in Figure 2.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 

3.1. Expanded Area 
To accurately predict the future trajectory location of a ship, a distribution of all 

possible locations should be predetermined. In this study, the concept of expanded area 
was defined as the maximum distribution range of the predicted trajectory location. The 
expanded area is a circular area around the last trajectory point of the target ship before 
location prediction. The size of the expanded area depends on the maximum speed of the 
target ship before location prediction and the specified predicted time interval. The 
centroid of the circular area is the last updated AIS point of the target ship before 
prediction, and its radius can be calculated by the product of the maximum speed over 
ground in the previous trajectory and the predicted time interval, as shown in Figure 2. 

The generated expanded area is mainly used to detect nearby trajectory points 
produced by other ships. Its range will be expanded by increasing the predicted time 
interval if there are no trajectory points detected. The time intervals usually range from 
10 min to 30 min and the maximum speed of the ship is no more than 30 knots. 

 
Figure 2. Expanded area. 

Figure 3 shows an example of searching nearby AIS points with the expanded area. 
The blue point represents the start point of the target ship before prediction. All trajectory 
points adjacent to the start points are extracted and shown as dark yellow dots. The 
Euclidean distance between these points and the start point is normally less than the 
radius of the expanded area. 

 

Figure 2. Expanded area.

The generated expanded area is mainly used to detect nearby trajectory points pro-
duced by other ships. Its range will be expanded by increasing the predicted time interval
if there are no trajectory points detected. The time intervals usually range from 10 min to
30 min and the maximum speed of the ship is no more than 30 knots.

Figure 3 shows an example of searching nearby AIS points with the expanded area.
The blue point represents the start point of the target ship before prediction. All trajectory
points adjacent to the start points are extracted and shown as dark yellow dots. The
Euclidean distance between these points and the start point is normally less than the radius
of the expanded area.
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3.2. Similarity Model

The distances between the points of the top trajectory to the corresponding points
of the next trajectory are measured in terms of the trajectory similarity index [27]. The
measurement of these points depends on the data and parameters of movement and
static information such as coordinates, draught, ship type, heading, and environmental
conditions. The most similar ship to the target ship based on the key status is chosen
to predict the next location. The selected state for the similarity measurement shows
the real process of navigation between the last place and the next place [28]. We obtain
the information extraction from the AIS data. Spatial parameters, such as latitude and
longitude, are identified as the main objects of the similarity model according to the first
law of geography, which states that everything is related to everything else, but near things
are more related than distant things, and the third law of geography, which explains that
the more similar the geographic configurations of two points, the more similar the values
of the target variable at these two points [29].

In the similarity model, we take into consideration three distance factors which are
spatial distance, speed distance, and course distance.

Spatial distance is based on the Euclidean distance between the trajectory points of
the target ship and the coordinates of the other vessels in the dataset. Euclidean distance is
described according to the following equation:

Ds =

√
(xt − xd)

2 + (yt − yd)
2 (1)

In the equation, xt and yt denote the coordinates of the target ship in the UTM
projection system. xd and yd stand for the coordinates of trajectory points of other ships in
the dataset. The spatial distance is given by Ds.

Speed distance is the absolute difference between the speed from the trajectory points
of the target ship and speed from the trajectory points of other vessels in the dataset. The
speed distance is defined according to the following equation:

Dv = |Sogt − Sogd| (2)

In the equation, Sogt denotes the speed of the trajectory point of the target ship before
predicting the next location. Sogd is the speed of the historical trajectory of other vessels.
The speed distance is given by Dv.

Course distance is computed by using the absolute difference between the course from
the trajectory points of the target ship and the course from the trajectory points of other
vessels in the dataset. Cog is the property of AIS data, which depicts the real direction that
ships have navigated. The course distance is defined according to the following equation:

Dc = |Cogt − Cogd| (3)

In the equation, Cogt denotes the course of the previous trajectory point of the target
ship when predicting the next location. Cogd is the course of the historical trajectory of other
vessels. The course distance is given by Dc. Distance factors (Ds, Dv, Dc) are normalized to
the value ranging from 0 to 1 according to the following equation:

Dn =
D− Dmin

Dmax− Dmin
(4)

In the equation, the result of distance after normalization is given by Dn. Dmax is the
maximum value of distance and Dmin is the minimum value of distance in the similarity
measurement. As a consequence, the formula of the similarity measurement is combined
with different distance measurements, which is defined according to the following equation:

Dsimilar = Ws × Dns + Wv × Dnv + Wc × Dnc (5)
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In the equation, Dns, Dnv, and Dnc denote the results of spatial distances, speed, and
course based on normalization procedure. Ws, Wv, and Wc stand for the weight of similarity
variables. The accumulation of weights remains at the value of 1.

Dsimilar represents the result integrated with the attributes of spatial distance, speed,
and course variables from AIS datasets. The lower the value of Dsimilar, the higher the
similarity between the target ship and the particular ship trajectory. An example of the
most similar point retrieved is shown in Figure 4.
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3.3. k-Nearest Neighbor Points Model

K-nearest neighbor (KNN) is an algorithm based on spatial or statistical classification
and is a generalization of the nearest neighbor method. The input of the k-nearest neighbor
method is the feature vector of the sample, which corresponds to the points in the feature
space. The output is the category of test samples, and multiple categories can be selected.
During classification decision making, the newly arrived sample points to be tested are
predicted by a weight mechanism according to the category of K sample points of the
k-nearest neighbor method. Therefore, the k-nearest neighbor method does not have an
explicit learning process. It uses the dataset to divide the feature vector space and serve
as its classification model. The results are classified by the similarity of sample vectors
according to the following equation:

s(xi ,xj)
=

√
n

∑
k=1

(
xik − xjk

)2
(6)

In the equation, the similarity between vector xi and vector xj is given by S(xi ,xj)
,

which is described by Euclidean distance. k denotes the selected sample. n is the number
of samples.
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In the first part of obtaining the top k most similar trajectory points, we calculate
the coordinates of similar points relative to the ship trajectory point as a category. By
identifying the number of similar points, the distance from them to the start point and their
specific value towards similarity are considered through the KNN algorithm.

In the second part of obtaining the most accurate predicted point, we count the relative
position from these predicted points to the actual trajectory. By using the operation of
weighting and averaging the distance factors, these predicted points are computed to
acquire the final point that is nearest to the location of the target ship.

The top k (k = 10) similar trajectory points were extracted by the k-nearest neighbor
points model, as shown in Figure 5a. The most accurate predicted point was extracted by
spatial neighbor relations in the surroundings, as shown in Figure 5b.
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3.4. Future Predicted Location Model

Ships navigate in a predetermined route which is based on their running status and
destination. By analyzing the behavior of several ships similar to the target ship, the
prediction of the target ship is determined by the use of semantic features such as similar
ship trajectory.

The future predicted location model works as follows: (i) The ship most similar to the
target ship is listed in the results of the similarity method. (ii) We calculate the distance
between the point of the target ship and the point of the extracted ship according to
Equation (1). (iii) We predict the next coordinate of the target ship by considering the
trajectory of the extracted ship after computing the future path of the extracted ship within
a time interval. It is also supposed that the distance between two points is constant.

After retrieving the most similar ship trajectories from the dataset, the future coordi-
nates of the target ship refer to the trajectory points of a similar vessel. The schematic of the
prediction model is shown in Figure 6.
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In this figure, A0 is the point of the target ship, and B0 is the similar point of other
ships after the results of the KNN model. Point A0 links with point B0 and the distance
between two points is given by d. A1 is the future point of the target ship compared to B1
which is the next point of the extracted ship estimated by its navigation route in a time
slice. gB0A0 indicates the bearing angle which is based on points A0 and B0 according to
the following equation:

gB0A0 = tan−1
∣∣∣∣ xt0 − xd0
yt0 − yd0

∣∣∣∣ (7)

In the equation, angle gB0A0 is the angle with points A0 and B0. (xd0,yd0) is the
coordinate of point A0 and (xt0,yt0) is the coordinate of point B0 at time t0. G is the azimuth
angle depicting the direction of north, which is defined according to the following equation:

GB0A0 =


gB0A0

180− gB0A0
360− gB0A0
180 + gB0A0

(8)

In the equation, the angle GB0A0 is the angle that is directed to B0A0 at time t0. It
is assumed that G and d remain constant for the prediction duration when d and G are
completing computing until the next coordinate of the target ship has been predicted.
The predicted location of the target ship at time t1 is defined according to the following
equation:

xd1 = xt1 + d× sin GB0A0
yd1 = yt1 + d× cos GB0A0

(9)

In the equation, coordinate (xd1,yd1) stands for the coordinate of the future location of
the target ship. (xt1,yt1) represents the coordinate of the location of the extracted ship at
time t1. The value of GB1A1 is the same as the value of GB0A0. The spatial distance is given
by d.

Predicted points result from the number and coordinate of similar points. An example
of the results of predicted points obtained is shown in Figure 7.
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4. Analysis and Evaluation
4.1. Case Study

The AIS dataset was collected in the water of South Africa from March 2020 to April
2020, as shown in Figure 8. The spatial range of the dataset is from 2,800,000 m to 3,200,000
m in the horizontal direction and from −4,300,000 m to −3,800,000 m in the vertical
direction in the Web Mercator coordinate system.
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4.2. Data Preprocess

The dataset contains a total of 146,346 ship trajectories consisting of 29,197,704 sam-
pling points. The trajectories with zero speed indicating ship stay were first filtered from
the dataset since ships that remain stationary are not valuable reference objects. The follow-
ing step was loitering behavior detection of ship trajectories. Many vessels may perform
loitering movements when they conduct offshore operations, fishing, surveys, search and
rescue, and other activities. The shapes of loitering movements are usually similar to
ellipses, round-trip polylines, random coils, and sigmoid curves. Such trajectories cannot
be used for location prediction either and were removed from the dataset using the method
proposed by Huang et al. [30]. Then, the experiment procedure is as follows: (i) Take a
location point of the ship as a target randomly. (ii) Search the trajectory points of other
ships in the expanded range. (iii) Calculate the similarity index of ship trajectory points in
the range. (iv) Calculate the top k similar points. (v) Calculate the future location of the
target ship at 10 min, 20 min, and 30 min according to top k similar points. (vi) Complete
the above steps a number of times based on different ship trajectory samplings.

4.3. Result

Figure 9 shows a case of comparison between the actual points and the predicted
points of the target ship in two different movements. The black polyline represents the
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original trajectory of the target ship, and the red polyline is the predicted trajectory in
contrast. The arrow of the polyline points out the sail direction of a vessel. For both straight
and turning movements, three prediction points within 10 min, 20 min, and 30 min are
generated based on the start point. It can be observed that the predicted trajectory has a
similar movement to the actual trajectory in the zoomed-in images. Detailed coordinates
of each pair of the actual point and the predicted point are listed in Table 2. The position
deviation between each pair of points is small.
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Figure 9. Comparison of actual points and predicted points with a 10 min prediction time interval.
(a) Straight movement; (b) turning movement.

Table 2. Example values of time duration, ActualLongitude, ActualLatitude, PredictedLongitude,
and PredictedLatitude.

Duration ActualLongitude ActualLatitude PredictedLongitude PredictedLatitude

10 min 25.752386 −34.075121 25.751002 −34.074525
20 min 25.73014 −34.085871 25.73086 −34.088417
30 min 25.703685 −34.098655 25.703518 −34.097876

4.4. Evaluation

The output results were separated into many groups before further precision evalua-
tion. The size of each group varies from 10 to 50. Each result in the group is represented as a
vector consisting of a pair of the actual location coordinates (actualX, actualY) and predicted
location coordinates (predictedX, predictedY). To better evaluate the prediction precision,
all longitude and latitude coordinates of actual locations and predicted locations in the
WGS84 spherical coordinate system are converted to plane cartesian coordinates in the
UTM project coordinate system. Table 3 shows some examples of transformed coordinate
values of actual location and predicted location.

Table 3. Examples of transformed values of actualX, predictedX, actualY, and predictedY.

n ActualX PredictedX ActualY PredictedY

1 2,945,636 2,946,988 −4,070,922 −4,070,315
2 2,945,626 2,947,540 −4,007,540 −4,008,923
3 2,945,576 2,945,548 −4,066,246 −4,069,241
4 2,945,407 2,932,752 −4,075,356 −4,071,241
5 2,945,347 2,945,116 −4,033,137 −4,034,750

The linear regression model is then used to analyze the correlations between the actual
points and the predicted points. The least squares linear regression is applied to determine
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the essential parameters of the linear equation, y = mx + b, by minimizing the error of the
square of the difference between y and its estimation value.

E = (y−m× x− b)2 (10)

The scatter plot with R2 values is used to show the degree of approximation between
predicted coordinates and actual coordinates, as illustrated in Figure 10. In this case, we
compute the parameter R2 for the X and Y values. The value of R2 ranges from 0 to 1. The
value 1 means the predicted values are the same as the actual values. However, 0 means
that the actual values and predicted values are irrelevant.
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Figure 10. Scatter estimation plot between actual and predicted values (a,b) show the correlation
of X and Y within 10 min; (c,d) show the correlation of X and Y within 20 min; and (e,f) show the
correlation of X and Y within 30 min.

In each chart of Figure 10, the actual and predicted values are presented on the
horizontal and vertical axes. The line drawn on the diagonal indicates that Y values are
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equal to X values. Points observed closer to the plotted line represent higher accuracy of
the predicted results. The correlation in Y is better than that in X.

The similarity measurement [8] is compared with our proposed method in Table 4.
The values of R2 are calculated in each method. Table 4 shows the ultimate precision results
and indicates that as time duration increases, R2 decreases dramatically.

Table 4. The values of R2 to X, Y, or XY merged by evaluation in different durations.

Method Duration R2 (X) R2 (Y) R2 (XY)

KNN
10 min 0.990 0.994 0.992

20 min 0.988 0.992 0.990

30 min 0.986 0.989 0.9875

Similarity measurement
10 min 0.962 0.974 0.968

20 min 0.947 0.956 0.9515

30 min 0.909 0.923 0.916

It can be seen from the table that the KNN method has higher R2 values and better
prediction accuracy than the similarity measurement. The task of short-term trajectory
prediction of maritime vessels will be carried out better by using the KNN algorithm.
This also shows that the KNN algorithm has the advantage that the optimal result can be
obtained from the sample data. However, due to the factor of geographic location, the
trajectory point of the target ship near the port has relatively more adjacent sampling points
than the trajectory points of other water locations, which may lead to low-precision results
of prediction in locations other than the area of the port. Moreover, the mean error is not
suitable for this evaluation of the results because a marginal case of prediction result affects
the accuracy dramatically.

5. Conclusions

This study aimed to use a multi-algorithm combined model based on motion parame-
ters obtained from AIS data for predicting vessel locations. In this study, the innovation
was to use the KNN method to improve the methods and precision. The results of the
predictions are derived from the predicted points of ships within the time range of short-
term prediction. The expanded circle area is designed according to the max speed of the
ships and the duration of the prediction. The effect of the prediction result is the best at the
beginning, but prediction error rises as duration increases.

Although ship location recognition in a short time works with the model, it was
assumed that the factors of the target ship and the similar ships retrieved in the KNN
method were simple, so it is not applicable to long-term prediction. Moreover, the weight
of the parameters is not dynamic in the similarity model.

In future studies, we suggest executing measures based on trajectory classification
with long-distance and short-distance vessels to predict within the defined range and
evaluating the prediction errors with MAE and RMSE. The contributing factors of the
environment of the sea combined with the AIS data should also be taken into account in
the prediction of ship movement.
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