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Abstract: This paper discusses a disruptive approach to wave energy conversion, based on a hybrid
solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To
demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which
were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism
(TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the
experiments. The physical models were subjected to eight irregular sea-states from a reference study
on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with
peaks of up to 40 ◦/m. Three peaks were observed for the surge motions, associated with slow drifting
at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying
PTO mass-damping values. By comparison, such response was generally maintained for all HS
sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum
power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average
open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst
exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations.
Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can
power supporting equipment with negligible influence on platform hydrodynamics.

Keywords: wave energy conversion; E-Motions; triboelectric nanogenerators; hybridization; physical
modelling; hydrodynamic response; power ratios

1. Introduction

Albeit being at the forefront of the global energy transition, renewable energy sources
(RES) such as wind, solar and hydro face several challenges. These include spatial lim-
itations [1], since they are mostly deployed on land. For instance, about 1.6 ha of land
area are required per MW of installed photo-voltaic capacity [2]. Consequently, not only
are they limited by the available local resource (e.g., rivers/waterways for hydroelectric
power), but they must contend with other uses and address potential environmental im-
pacts [3,4]. RES are also expected to support ambitious objectives regarding hydrogen
generation: for instance, increase the share of hydrogen in Europe’s energy mix from the
current 2% to 13–14%, by 2050 [5,6]. Hence, alternative RES approaches will have to be
considered, with the ocean being a promising option since it covers most of the Earth’s
surface. Though wind and, to some extent, solar energy can make the transition towards
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nearshore/offshore deployment sites, several practical adaptations are required (e.g., sub-
merged cables to transport electricity to shore) that can lead to an increase of the total
energy cost. Resource intermittency is another issue (e.g., daylight/nighttime cycles for
solar). Alternatively, Ocean Energy Sources (OES) can be considered, a statement supported
by the greater resource density, overall availability (spatial and temporal), predictability
and unexplored abundance of the inherent resources [7,8]. Even so, pertinent obstacles are
currently hindering the commercial deployment of OES technologies.

Looking at the particular case of wave energy, the available theoretical resource is
estimated at an order of magnitude capable of matching the present global electricity
consumption [9,10]. Additionally, many niche markets/applications can provide demon-
stration opportunities for wave energy converter (WEC) concepts, namely desalination
plants [11,12], remote community supply [13], oil and gas industry [14], floating plat-
forms/systems [15,16], coastal defence [17,18], internet of underwater things [19] and even
the aforementioned hydrogen production [20,21]. Despite these prospects and the vast
number of existing concepts, there is an absence of a standardized solution capable of
reaching a commercial stage, which impairs the relatively low level of maturity of WEC
technologies [22,23]. Conceptual simplicity, cost mitigation, adaptability and resilience
to the ocean environment are some of the identified milestones to be surpassed, which
requires disruptive approaches [24].

An innovative hybrid solution is proposed and analysed in this paper: the com-
bination of the E-Motions concept with triboelectric nanogenerators (TENGs), Figure 1.
While E-Motions is a WEC based on the roll oscillations of multipurpose offshore floating
platforms [25,26], TENGs are a versatile technology capable of harnessing energy from
mechanical motions, even if they are characterized by relatively low frequency and/or low
amplitude, as is the case of those induced by ocean waves in some floating platforms [27,28].
This disruptive combination enables dual wave energy conversion, sharing of the same
floating platform, protection of sensitive equipment from the ocean environment and
adaptability to a wide range of nearshore/offshore applications. The feasibility of this
approach was studied via an experimental study with geometrically scaled physical mod-
els, which were subjected to irregular wave action based on reference case studies [29].
This study followed on the example of other wave energy technologies [30–33], as well as
preceding experimental studies on the individual technologies that compose the hybrid
solution [25,34]. This yielded data on the hydrodynamic response of the physical models
and the power output from the E-Motions’ PTO and TENGs. Moreover, the experimen-
tal campaign provided crucial data for future studies, namely by supporting numerical
modelling stages.
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Aside from the specific experimental results inherent to each individual technology
of this hybrid solution, from hydrodynamic analysis to power output, this paper seeks to
address the following knowledge gaps:

• WEC development: several categories of WECs exist [8], including rotating mass con-
cepts (RMC). Despite not being one of the most representative types, RMCs commonly
provide numerous advantages, ranging from protection of sensitive equipment within
the hull to versatility of application. Examples of such RMC technologies include
gyroscopic [35,36], drive-train [37] or pendulum-based [38,39] systems, which can
operate either in single-mode [40] (pitch or roll) or multi-mode [41]. However, a
sliding system such as that applied in E-Motions’ PTO is uncommon, at best. Fur-
thermore, the time-varying inclined plane problem it presents, in conjugation with
platform hydrodynamics, has little to no equivalent in the literature, especially when
considering that stacking multiple PTO rows is a possibility. Lastly, devices such as
E-Motions—Salter’s Duck, TALOS and SEAREV [39,42,43], for instance—transform
the problem/risk of large roll/pitch oscillations into a means of producing renewable
electricity. If installed onto floating vessels, they may also act as an inertial counter
balance to such motions, as considered in [44] with regard to roll dampening in fishing
vessels. Even so, it is prudent to consider that dampened oscillations may imply a
reduction of the converter wave energy, which implies a cost–benefit assessment prior
to installation onto floating vessels.

• Triboelectric nanogenerators for wave energy conversion: much research can be found,
in the literature, with regard to TENG development and application, being ocean
energy one of the most promising opportunities for this type of energy conversion
technology [45,46]. Case studies range from powering marine buoys [28] to sensors [47]
or LEDs [42], but there are important limitations. For instance, and safe from some
exceptions found in the literature [48], most experiments were conducted in water
tanks [49] or under dry conditions [50]. These were often under controlled forced
motions and/or fixed wave heights and wave periods, unlike those found at sea.
In this paper, the proposed TENG solution is studied under irregular wave action
within a sizeable wave basin, thus providing a more realistic demonstration of this
emerging technology.

• Hybridization: aimed at equipment sharing, cost reduction and multi-mode energy
conversion, several researchers have proposed a combination between marine energy
systems, such as co-location between offshore wind and wave energy [51]. Few
have proposed hybridization within the wave energy sector. Exceptions include
the HWEC [33] and even the Salter’s Duck with integrated TENGs [42]. As such,
the disruptive proposition of E-Motions with integrated TENGs provides pertinent
experimental information, including a power output comparison. Therefore, the
study found along this paper is capable of contributing towards greater scientific
knowledge whilst fostering the opportunities inherent to hybridization within the
wave energy sector.

This paper has the following structure: Section 2 describes, in detail, the two combined
wave energy technologies—E-Motions and TENGs—and the procedures required for their
hybridization, within the scope of the experimental study; Section 3 provides an overview
on the combined technologies, as well as remarks regarding the hybridization procedures
and potentialities; Section 4 focuses on outlining the experimental setup, equipment,
characteristics of the physical models, reproduction of the E-Motions’ PTO and the TENGs,
selected wave conditions and limitations inherent to the physical modelling stage; Section 5
presents and discusses the main outcomes of the experimental study, with a thorough
analysis of the hydrodynamic response of the physical models, a comparison between
PTO and platform motions and the power output of E-Motions and the TENGs; lastly,
Section 6 summarizes the key results of this study and proposes future developments for
the combined E-Motions/TENGs as a versatile and adaptable WEC.
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2. Conceptualization of the Hybrid Wave Energy Technology
2.1. E-Motions

Devised from the direct observation of ship behaviour at sea and demonstrated exper-
imentally in [25], E-Motions is a WEC concept of simple design. Nonetheless, it exhibits
a high potential of adaptability to numerous marine applications and integration into
various types of floating structures. Furthermore, the layout of the PTO inside an encasing
superstructure, either at deck level or within the hull of the platform (Figure 2), ensures
protection of the electromechanical components from the surrounding sea environment,
namely from corrosion and direct wave impact. When subjected to wave (or wind) action,
Figure 2a, the floating platform will tend to roll, creating a height differential between
the superstructure’s end-stops. Due to gravity, the PTO will slide towards the lower end,
gaining velocity over time, Figure 2b. With the passing waves and because of the restoring
moment that is produced, Figure 2c, E-Motions will enter into a roll oscillation cycle with
an amplitude and periodicity dependent upon the characteristics of the wave field and of
the device itself. Consequently, the PTO will continue to slide along the superstructure,
being this the main means of energy conversion.

The energy conversion process is highly non-linear, since it is dependent upon the
wave–structure and structure–structure (or platform/superstructure–PTO) interactions.
Initially, the wave–structure interactions can be mathematically described following well-
known deductions found in the literature [22,52–55]. For a free-floating structure, the
equation of motion can be derived through the application of Newton’s 2nd law, which can
be developed either in a frequency domain or time domain (Cummins’ equation [56]). For
the former, the time component is omitted and the complex amplitudes corresponding to
each force/moment, as well as to the body motions, are considered. This yields:

Fe,i =
6

∑
j=1

ζ j[−ω2(mij + Aij
)
+ iωBij + Cij], f or i = 1, 2 . . . 6 (1)

where ω is the (wave) frequency, Fe is the wave excitation force/moment, m the mass
matrix, ζi the ith DoF of the floating structure, C the complex hydrostatic stiffness matrix, A
the complex added mass (moment of inertia) matrix and B the complex damping matrix,
which can be linearized [53,57,58], a priori. Notice that i differs from the corresponding
subscript, as it refers to the imaginary unit.

The mass in Equation (1) can be obtained through direct measurement, while C requires
the estimation of the mass moment of inertia or radius of gyration. Formulae for generic
shapes are available, including for the three E-Motions variants considered in this study. To
account for the superstructure and ballasts, Steiner’s theorem was applied. The formulae
also enabled the estimation of the metacentric height (e.g., Scribanti’s formula), which is
pivotal for stability assessment and estimation of the natural roll period. Other components,
namely the hydrodynamic coefficients and the wave excitation, can be computed with
numerical software, as was the case with E-Motions [26]. Even so, for this device, one must
account for the contribution of the mooring system and of the mobile PTO, with the latter
introducing an additional degree of freedom (DoF). This creates important non-linearities
that require a time domain approach. As such, by considering the contribution of both the
mooring system, Fm,4, and the PTO, FPTO, the equation of motion for roll, ζ4, becomes:

Fe,4(t) + FPTO,4(t) + Fh,4(t) + Fm,4(t) + Fr,4(t) = m44
..

ζ4(t) (2)

The mobile PTO generates a net roll moment, FPTO,4, which can be decomposed into
two parts. One results from the projected gravity force, FPTO

g , perpendicularly (and with
an arm equal) to the PTO sliding DoF, ζ7. The other is formed by the net PTO force in the
direction of ζ7, FPTO,7, with a constant arm OP (distance between the centre of rotation
O, at waterline level, and the PTO, perpendicularly to ζ7), Figure 3. Other acting forces
on the PTO include the inertial response, FPTO

a , whose absolute value is equal to FPTO,7;
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friction, FPTO
µ , and damping, FPTO

B . The PTO’s sliding can be perceived as an inclined
plane problem with a time-varying tilt.
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The net PTO force can be written as:

FPTO,7 = mPTO
..

ζ7(t) = FPTO
g sin(ζ4)− (FPTO

µ + FPTO
B ) (3)

From which one obtains:

mPTO
..

ζ7(t) = mPTOg[sin(ζ4)− µ cos(ζ4)]− BPTO,7
.
ζ7 (4)

where mPTO, µ, BPTO and g are the PTO mass, PTO friction and damping coefficients and
acceleration of gravity, respectively.

By including the deducted PTO contribution, Equation (4) can be re-written as

Fe,4(t) + FPTO,7(t)OP + FPTO
g cos[ζ4(t)]ζ7(t) =

..
ζ4(t)[I44 + IPTO,44(t)]

+
t∫
−∞

g44(t− τ)
.

ζ4(τ)dτ + ζ4(t)[C44 + Cm,44 + CPTO,44(t)]
(5)

where I44 and IPTO,44 are the mass moment of inertia values of the floating platform, which
includes the added mass moment of inertia term at infinite frequency, and PTO components,
respectively; C44, Cm,44 and CPTO,44 are the hydrostatic restoring coefficients of the platform,
mooring system and PTO, respectively; and g44 is the “memory” function, related to the
damping term. Some higher-order terms, such as those related to the mooring system, are
omitted here, by simplification.

In order to obtain the average power output PPTO, one must integrate the product of
FPTO

B , which can be isolated in Equation (3), by the PTO velocity,
.
ζ7, over the time interval

T, as presented below:

PPTO =
1
T

T∫
0

FPTO
B

.
ζ7dt (6)

2.2. Triboelectric Nanogenerators

Based on the combination of triboelectrification and electrostatic induction effects,
triboelectric nanogenerators (TENGs) convert randomly distributed and ubiquitous me-
chanical energy into electricity [59–62]. With the advantages of lightweight, easy encapsu-
lation, low cost and high efficiency, particularly from low frequency oscillations, TENGs
are presented as a suitable technology for ocean wave energy harvesting [63–65]. Basically,
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a TENG is composed of two triboelectric materials with different polarities, an air gap
between them and two metal electrodes. When two triboelectric surfaces with opposite
triboelectric charges have contact and separate from one another, a potential differential
is created, driving electrons to flow between the two metal electrodes. Design configu-
ration of TENGs, based on freely moving rolling spheres, allows them to harvest energy
from arbitrary and multidirectional motions of floating bodies. This occurs even under
low-frequency and irregular waves, since the spheres promote the contact and separation
of triboelectric pairs [28]. In this work, a lateral TENG based on rolling-spheres (Figure 4)
was developed to take full advantage of all the degrees of freedom of the floating platform
motion, as well as to provide a correlation between its hydrodynamic response and tri-
boelectric energy generation. The lateral-based TENG is composed of two tribo-devices
fixed on lateral ends of narrow and flat PLA troughs. Under the action of ocean waves,
the spheres move along the trough and collide with the tribo-devices fixed on the lateral
ends, thus promoting the contact and separation between the tribo-pairs. The developed
TENG was encapsulated within the hull, protecting it from direct contact with the harsh
conditions of the ocean environment. The TENG’s encapsulation allows this device to
work normally in humid and salt environments, making the application of this technology
reliable and robust.
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Figure 4. (a) Structural design of the fabricated unidirectional lateral TENG and (b) the schematic
illustration of the closing of the triboelectric nanogenerator placed at each side of the linear trough.

3. Experimental Campaign Setup and Methodologies

The experimental study of the E-Motions was carried out at a 1:20 geometric scale,
based on the Froude similarity criterion. Three different hull designs for the physical
models were considered, with the E-Motions’ PTO being reproduced as a damped encasing
based on Lenz’s Law. The lateral-based TENG was assembled within the half-cylinder
physical model to study the dependency of the electrical outputs under different wave
conditions. A thorough description of the equipment layout, model construction, mooring
connections and wave conditions selection is presented in the following sub-sections.

3.1. Equipment and Facility

The experimental study was carried out within the wave basin of the Hydraulics
Laboratory of the Hydraulics, Water Resources and Environment Division (SHRHA), at the
Faculty of Engineering of the University of Porto (FEUP). The wave basin includes a wave
tank that spans 28 m in length, 12 m in width and 1.2 m in depth. A multi-element piston-
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type wavemaker (HR Wallingford, UK) was used to generate the selected wave conditions,
while a dissipative beach, on the opposite end of the basin, ensured the minimization
of reflected wave energy back to the physical modelling area, Figure 5b. In terms of
equipment, two separate sets of infra-red markers were strategically integrated onto the top
of each model’s superstructure and PTO. This enabled real-time tracking of the motions,
velocities and accelerations of each component of the physical models through the Qualisys
system [66]. Average residuals obtained during the tests were kept below 0.5 mm, with
the system being recalibrated daily and upon reaching this threshold. The free surface
elevation was measured via two groups of resistive-type wave gauges (±0.4 mm accuracy):
one for reflection and another for transmission analysis. This can be seen in Figure 5a,
which also depicts the initial reference position of the physical model, the disposition of
the wave gauges and the layout of the mooring system.
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Figure 5. Close-up view of a Qualisys camera (a) and experimental setup, top view schematic (b).
The minimum wavelength distance of the first trio of probes was adjusted, for each test, in accordance
with the varying wave period.

3.2. Physical Models and Mooring System

The physical models considered in this 1:20 geometric scale study were designed based
on the outcomes of a preceding numerical study [26]. It is worth noting that a water depth
of 0.8 m was considered in the experiments, also in accordance with the numerical study.
In total, three E-Motions models with different hull designs/variants were constructed: a
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half-cylinder, a half-sphere and a trapezoidal prism. The respective hulls and decks were
fabricated in methacrylate from cast moulds, with the exception of the HS’s deck, which
was made from a PVC layer. Ballasts were introduced into each physical model to calibrate
the physical properties, particularly the metacentric height and the natural roll period, Tn,4.
The superstructure was constructed as a metal porch with an inverted U-shape aluminium
encasing on top and two vertical metal rods serving as end-stops and connections to the
platform component. Two PVC layers were added on the flanks to further enclose the
superstructure and partially isolate the PTO from the surrounding environment, as would
be expected in reality. The characteristics of each physical model are summarized in Table 1.

Table 1. Physical models: shape, dimensions and physical properties.

Model
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Trapezoidal Prism (TP)

Weight 42.004 kg (unloaded) + 14.502 kg
(2 × 3 ballasts, 2.416 kg each)

8.066 kg (unloaded) + 4.834 kg
(2 ballasts, 2.416 kg each)

36.784 kg (unloaded) + 4.834 kg
(2 ballasts, 2.416 kg each)

Ballasts position
Underneath deck, two aligned

groups at 0.350 m from the centre
of the superstructure

Underneath deck, at 0.320 m
from the centre of
the superstructure

Bottom of the hull, aligned
perpendicularly to
the superstructure

Dimensions 1.000 m length, 0.500 m
radius/height, 10 mm thickness

Outer radius of 0.345 m,
5 mm thickness

0.980 m length, 0.495—0.850 m
lower-upper width, 0.500 m

height, 10 mm thickness
Metacentric height 0.146 m 0.103 m 0.114 m
Natural roll period 2.04 s (unmoored) 1.91 s (unmoored) 2.15 s (unmoored)

Regarding the mooring system, which was selected based on the preceding numerical
study [26] and the guidelines of DNVGL-OS-E301 [67,68], two galvanized studless steel
chains were setup between the bow and stern of the physical models, at waterline level,
and two corresponding submerged anchor points, at a distance of about 2.00 m. Each chain
extends 2.16 m in length, with a nominal diameter of 6 mm and a weight of 0.729 kg/m.

3.3. PTO and TENG Reproduction

In order to reproduce E-Motions’ PTO, an approach based on electromagnetic induc-
tion and Lenz’s law was selected. The system, itself, is composed of a hollow aluminium
box (2 mm thin and 0.080 m long, weighing nearly 0.147 kg) and a set of evenly spaced
neodymium magnets (six, each of them weighing 0.130 kg) placed inside the superstruc-
ture’s rail. A lightweight-wheeled cart was connected to the aluminium box and introduced
into the superstructure’s inverted U-shape encasing, so as to enable the sliding motion of
the mobile PTO (total weight of 0.229 kg). For this component of the physical model, the
cart’s wheels are the only source of physical friction, as the aluminium box and the magnets
only interact through electromagnetic induction.

Given the challenges and limitations inherent to PTO reproduction in experimental
studies, as outlined in [69], the proposed solution was of simple design and application,
without the need for complex electronic equipment. Moreover, this approach permitted
a pseudo closed loop damping system. Recalling that the PTO slides towards the lower
end of the superstructure, due to gravitational pull (the platform is assumed to be inclined
due to wave-induced roll), the aluminium box will pass through the magnets, each of them
producing a magnetic field, Figure 6. This, in turn, will induce eddy currents on the surface
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of the hollow box, which act as small solenoids generating their own magnetic field. By
Lenz’s Law, these fields will oppose those produced by the magnets, creating a pseudo
damping system for the reproduced PTO. The “electromagnetic damping” will tend to
nullify the acceleration of the sliding PTO (

..
ζ7 → 0), although one must also account for the

variation of the induced field due to the alternating magnets. Since the gravitational and
net forces acting on the PTO can be obtained through the Qualisys system (platform roll
angle and PTO acceleration, respectively), as well as the PTO’s velocity, one can estimate
the instantaneous, maximum and average power output by applying Equations (4) and (6).
Here, it is considered that the friction force is secondary/negligible, by comparison, since
the PTO would begin to slide at a tilt angle below 4◦.
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Figure 6. Schematic of the reproduced PTO’s conceptualization and operation.

The unidirectional lateral TENG (Figure 7) is composed of two tribo-devices fixed at
opposite ends of a polylactic acid (PLA) trough of 4.0 × 21.5 cm2. The tribo-devices consist
of Nylon 6,6 and PTFE films with electrodes made of conductive thin silver films, which
were fabricated using screen printing. Each generator has PLA supporting substrates with
2.65 × 3.75 cm2, onto which PTFE/silver and Nylon 6,6/silver films were attached with
the same dimensions. To promote the contact separation of the two triboelectric materials
of each tribo-device, two stainless steel spheres with a diameter of 12 mm and a weight of
7.2 g were used.
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Under the excitation of ocean waves, the spheres roll and, when hitting the lateral
ends of the trough, make the Nylon 6,6 and PTFE films come into contact with one another,
becoming charged by contact electrification. With the tribo-generator fully closed, the
electrostatic equilibrium is attained, there are no induced charges on the electrodes and the
current is zero (Figure 7-I). When the PLA supporting substrates begin to open, a potential
differential is induced due to the separation of the two tribo-surfaces, resulting from the
wave oscillation. Consequently, a current will flow between the two electrodes (Figure 7-II)
and continue until the two tribo-materials are at a maximum distance (Figure 7-III). After-
wards, the spheres continue to roll and promote the approximation of the triboelectric pairs,
which results in a current flow in the external circuit in the other direction (Figure 7-IV).

3.4. Test Plan and Selection Methods

For this experimental study, a total of eight reference sea-states were selected, assuming
operational conditions under irregular long-crested wave action. The selection of the wave
conditions followed on the bin methodology proposed by Pecher and Kofoed in [22], which
was applied to the case studies of Aguçadoura and São Pedro de Moel. The respective
resource matrices were obtained from the numerical studies conducted by Silva et al. [29],
which include data on the available wave energy distribution and the number of hours
of registered occurrences for each Hs − Tp combination (significant wave height and peak
wave period, respectively). From this data, it was possible to compute the wave power per
metre of wave crest in deep water, Pw, and the probability of occurrence, ProbSSi, of a given
sea state, SSi, as:

Pw ≈
ρg2

64π
H2

s Te, with Te =
Tp

1.12
considering a JONSWAP spectrum (7)

ProbSSi =
TSSi

∑ TSSi
(8)

where ρ is the water density, Te the wave energy period and TSS the number of hours of
occurrence inherent to a given sea-state.

Initially, seven bins were constructed from separate groups of four adjacent Hs − Tp
blocks (0.5 m and 0.5 s of interval, each), thus encompassing 28 combinations for each case
study (total of 56). The next step involved the computation of the occurrence contribu-
tion, associated with each bin, by adding up the four ProbSS values from the composing
sea-states. A similar procedure was applied when computing the respective energy contri-
bution. This step was executed for both case studies, representing almost 60 and 70% of
the total available resource and number of hours of registered occurrences, respectively,
Figure 8. The considered methodology also enabled the estimation of the inherent Hs and
Te, representative of each bin. However, values of Hs above 5 m were neglected at this
stage, as these are considered to be storm conditions for the Portuguese coastline.

The following step in the application of the methodology implied the selection of
the most representative bins from each case study (in other words, 7 out of 14). As seen
in Table 2, Aguçadoura contributed with four bins, while São Pedro de Moel yielded the
remaining three.
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Table 2. Representative bins from the (a) Aguçadoura and (b) São Pedro de Moel case studies.

(a)

BINS Contr. (-) Hs (m) Te (s) Tp (s) ProbSS (%) Pw (kW/m)

1 5.40 2.31 9.30 10.41 15.22 24.31

2 5.60 2.35 10.23 11.46 12.89 27.73

3 9.80 3.20 10.32 11.55 11.21 51.90

4 11.20 3.32 11.21 12.55 10.30 60.61

5 9.80 4.16 11.32 12.67 8.08 95.99

6 7.20 3.83 12.17 13.63 4.56 87.37

7 11.40 4.75 12.27 13.74 4.76 135.88

(b)

BINS Contr. (-) Hs (m) Te (s) Tp (s) ProbSS (%) Pw (kW/m)

1 5.00 2.25 9.30 10.42 12.04 23.16

2 7.20 2.36 10.24 11.46 15.05 27.92

3 6.40 3.15 10.34 11.59 6.92 50.28

4 9.20 2.84 11.21 12.55 11.87 44.20

5 11.40 3.70 11.30 12.65 8.16 75.88

6 6.60 3.31 12.17 13.63 6.14 65.44

7 11.60 4.25 12.26 13.73 6.22 108.50

The final step involved the introduction of an additional bin that would encompass
the Tn,4 of the physical models (vicinity of 9 s, prototype value). Based on the distribution
found in the resource matrices, a reference peak wave period of 8.96 s was selected, with a
corresponding Te of 8.00 s and a Hs of 1.33 m. The final test plan is presented in Table 3.
Note that the reference values were scaled down in accordance with the Froude similarity
criterion, for the purpose of the physical modelling study (scale of 1:20).
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Table 3. Final bins considered in the experimental study with irregular waves, prototype values.

BINS Contr. (-) Hs (m) Te (s) Tp (s) ProbSS (%) Pw (kW/m)

2 5.40 2.31 9.30 10.41 15.22 24.31

3 7.20 2.36 10.24 11.46 15.05 27.92

4 9.80 3.20 10.32 11.55 11.21 51.90

5 11.20 3.32 11.21 12.55 10.30 60.61

6 11.40 3.70 11.30 12.65 8.16 75.88

7 7.20 3.83 12.17 13.63 4.56 87.37

8 11.60 4.25 12.26 13.73 6.22 108.50

1 1.20 1.33 8.00 8.96 7.21 6.94

The operational conditions were reproduced for a duration of 512 waves, as recom-
mended in literature [22,70]. A total of 72 tests were performed: 3 × 3 × 8. The tests
were conducted for each physical model—a control case, with the model characteristics
from Section 3.2, and two additional cases with adjustments (e.g., ballast configuration and
magnet layout) to each physical model, in accordance with their observed performance.

4. Results

Each physical model was tested for three distinct sub-variants. The “control” cases
(designated as V1) have already been described, but the additional sub-variants (designated
as V2 and V3) differed from one model to the other. The definition of the modifications was
based on the outcomes of the “control” cases, which were run first. In detail, the following
observations were made:

• Half-Cylinder V1: generally broad and consistent hydrodynamic roll response over
the considered test conditions, denoting large roll amplitudes (up to 40◦ or slightly
higher). Recurrent PTO slamming against the end stops of the superstructure, albeit
not constant.

• Half-Sphere V1: broad hydrodynamic roll response, but not as consistent or wide, in
terms of roll amplitudes, as that of the HC. Tendency to misalign with the incoming
waves, leading to a combination of roll and pitch oscillations (with regard to a body-
bound coordinate system). PTO “stalling” between one of the end-stops and the
middle of the superstructure: sliding along only half of the available rail amplitude.

• Trapezoidal Prism V1: similar occurrences to those reported for the HS. However,
the PTO would generally slide along a wider extension (3/4 of the available ampli-
tude) of the superstructure’s rail, with frequent impacts against one of the end-stops
being reported.

Consequently, specific modifications were carried out for each physical model. These
will be presented in Section 4.2.

4.1. Hydrodynamic Response: V1 Sub-Variants

To better understand the aforementioned modifications, the results of the hydrody-
namic response, particularly concerning the roll DoF, are summarized in this sub-section of
the paper. Despite the mooring setup and the orientation of the incoming waves, it was
important to analyse the physical model’s motions for all six DoFs. Since it was found
that the hydrodynamic response would show similar patterns for the three models, albeit
some noteworthy magnitude differences concerning surge and, mainly, roll, the key out-
comes for each DoF are presented in Figure 9 (associated with the HC model, V1 variant).
The frequency-domain spectra were obtained through the application of a Fast Fourier
Transformation of the time series for each DoF. It is clear that the predominant modes of
oscillations are surge and roll. The latter denotes a bell-shaped curve with a restricted
bandwidth of significant response mostly centred on a peak, which is corresponding to
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the natural roll frequency, ωn,4, of the physical model. However, another peak emerges
for high Hs and Te values, coincident with the incoming wave frequency. As for surge, up
to three peaks emerge: one at low frequencies, highlighting a slowly drifting motion of
the physical model and the influence of the mooring system; another coinciding with the
incoming wave frequency, similar to what was observed for roll; and a third one with a
frequency matching ωn,4. The second and third peak hint towards a coupling between the
surge and roll DoFs, given the correspondence in terms of peak frequencies.
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Since the observed patterns are similar for all three physical models and the E-Motions’
operating principle is based on roll, the focus will now shift towards analysing and compar-
ing the corresponding hydrodynamic response for the various test conditions and physical
models, including their sub-variants.

For the V1 sub-variants, the incoming wave spectra are summarized in Figure 10a,
where the incrementing peak and shift towards a lower frequency denote the evolution
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of the Hs-Te combinations. In order to better assess the hydrodynamic roll response, a
transfer function was computed for each sub-variant, following on the explanation found
in [54]. Since the spectral density associated with the incoming waves S f and roll Sζ

are, respectively, m2.s and deg2/s, respectively, to obtain the hydrodynamic roll transfer
function RAO4 (vertical axis in deg/m) one must apply the square root, as shown in [54]:

RAO4(ω) =

√
Sζ(ω)

S f (ω)
(9)
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Figure 10. Sea-state spectra (a) and roll transfer functions for the V1 variants of the HC, HS and TP
((b–d), in that order).

The roll transfer functions computed through the application of Equation (9), for
the three physical models and regarding their respective V1 sub-variants, are presented
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in Figure 10b–d. These curves are truncated at a frequency that varies from 0.08 Hz to
0.04 Hz, depending on the spectral density range of the wave spectrum. This is required to
avoid situations where a very small spectral response value is divided by a near-zero wave
spectral density value, resulting in an unrealistic transfer function value.

The wave spectrum associated with each reproduced sea state is also shown, for
comparison. It is perceivable that all V1 sub-variants exhibit a greater spectral roll response,
in magnitude and with regard to the characteristics of each sea-state. This is essentially
valid within the vicinity of their ωn,4, in accordance with preceding observations. Minor de-
viations on the peak’s position are observed with regard to the (unmoored) Tn,4, attributed
to the influence of the mooring system and the PTO. The HC V1 also shows a consistent
spectral curve for all test conditions, while the HS V1 and TP V1 denote a relatively lower
spectral response in comparison with the HC V1 (particularly for the TP variant), in terms
of the order of magnitude. Furthermore, regarding the HS V1 and TP V1, a decreasing
peak is observed when the Hs and Te increase (or the associated frequency decreases). As
such, the deviation away from the resonance range overlaps an expected roll response
increment attributed to a greater value of Hs. This also suggests a non-linear pattern for
the hydrodynamic roll response.

It is worth noting that the HC’s transfer function values, especially those inherent to
the curve peaks, reach up to 40 ◦/m, only matched in sea state 1 by HS V1. Supported
by observations from the tests, where the physical model’s laterals (at deck level) would
touch the water surface, it becomes pertinent to shift the focus towards the PTO component.
Incrementing the hydrodynamic roll response could imply a shift in the model’s stability
curve beyond the maximum righting arm [22,54], leading to potential capsizing. On the
HS, the transfer function’s peak diminishes with increasing Hs − Te, suggesting a potential
non-linear response, while on HC V1 the curves tended to overlap one another. Lastly, the
TP V1 yielded a transfer function curve with similar response bandwidth, but values of a
lower order of magnitude, in comparison to the HS and, mainly, HC counterparts for the
majority of the test conditions. The decrease in peak from sea state 1 to 8 is also noticeable,
analogous to what was observed in HS.

4.2. Hydrodynamic Response: All Sub-Variants

As an initial remark, since each physical model was subjected to specific adaptations
in order to define the V2 and V3 sub-variants, the following results reflect a compari-
son between different variants of the same physical model. The key modifications are
summarized in Table 4. The geometric properties of the HC remain essentially unaltered.

Table 4. Summary of the sub-variants for each E-Motions physical models.

V1 V2 V3
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• Total mass: 12.900 kg;
• Two ballasts: 2 × 2.417 kg;
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• Total mass: 46.452 kg;
• Repositioning of ballasts;
• PTO mass: 0.229 kg;
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• Tn,4 (unmoored): 3.26 s.

The analysis of the aforementioned adaptations involved a parametric comparison
based on two parameters: the significant hydrodynamic roll response, ζm0,4, defined
analogously to Hs from a wave spectrum, and the roll response bandwidth, ε4, as a function
of the 0th, 2nd and 4th order moments of the hydrodynamic roll response spectrum (m0,4,
m2,4 and m4,4, respectively) [22,54]:

mn =
∫ ∞

0
ωnS f (ω)dω, n = 0 for the zero− order moment, (10)

ζm0,4 = 4
√

m0,4 (11)

ε4 =

√
1−

m2
2,4

m0,4m4,4
(12)

The resulting parameters are summarized in Figures 11–13, from which it is
perceivable that:

• The HC sub-variants did not suffer significantly from the PTO changes but exhibited
a considerable reduction of ε4 from V1 to V2 and V3 (from broad, with ε4 > 0.5,
to narrow, with ε4 ≤ 0.5). This derives from a slightly lower hydrodynamic roll
response from V2 and V3, even away from the resonance range. Nevertheless, both
parameters are essentially conserved, in terms of order of magnitude, over the various
wave conditions, although a slight increase is perceivable for ζm0,4 with the increasing
Hs − Te.

• The HS sub-variants showed a slight improvement, in terms of order of magnitude, for
ζm0,4, with a similar trend to that of HC being obtained from sea state 1 to 8. The values
remain smaller than those of HC. Regarding ε4, aside from a noticeable increment
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for these two bins for HS V2 and V3 towards a broad bandwidth, the values are very
similar over the different sea states.

• The TP sub-variants exhibited a similar (V2) to relatively weaker (V3) roll performance,
in terms of significant roll response. These remain, in fact, the lowest out of all three
E-Motions variants/physical models. In contrast, the response bandwidth went from
narrow to broad, which suggests a flatter hydrodynamic response curve. Furthermore,
bins 1, 2 and 8 exhibit the lowest ε4 values, in contrast to the observations from HS.
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4.3. Power Output

Starting with the E-Motions and its PTO, two sets of power ratios were computed: one
between the maximum and the average power output, and another between the average
power values per cubic metre of displaced volume, ∆. These are presented in Figure 14, for
all sub-variants of the three E-Motions variants. These values were obtained indirectly by
estimating the PTO force and power outputs, from Equations (4) and (6). From the results,
it is noticeable that:
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• For the HC, V1 and V2 exhibit the lowest power variability regarding the maximum
and average power outputs, while V3 yields values that exceed the recommenda-
tions from literature [22]. Although V1 has the lowest max-mean ratios, the high-
est power/displacement values can be found for the V2 curve, mainly from sea
state 4 onwards.

• For the HS, overall, the lowest max-mean ratios can be found for the V2 variant.
Regarding the power/displacement values, the V2 curves denote a reduction trend
(from an initial maximum) as Hs-Tp increases, with the opposite trend being, overall,
verified for the V1 and V3 variants.

• For the TP, V1 and V2 yield relatively consistent power/displacement values across
the considered range of wave conditions, while V3 denotes an increasing trend for
higher Hs-Tp values, closer to the resonance range. The max-mean ratios should be
interpreted with caution, as the order of magnitude of both the maximum and average
power is lower than that of the HC and HS variants.
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Following on the E-Motions’ power output results, the unidirectional lateral TENG
was implemented inside the HC (which resulted in the largest output power from com-
plementary tests under regular waves [71]) for the V1 variant. The open-circuit voltage
was acquired using a Bluetooth datalogger that transmitted data in real time to a nearby
personal computer. This implementation prevented extra cables from being connected to
the HC, which could affect its hydrodynamic response. The open-circuit voltage (VOC)
under the eight sea states (bins) considered in the experimental study, with irregular waves,
is presented in Figure 15a. An average open-circuit voltage (<VOC>) and power density of
~ 85 V and 182 mW/m2, respectively, was achieved for sea state 1, which corresponds to a
wave period closer to the platform’s Tn,4 (2.040 s in model values, or approximately 9.123 s
in prototype values). A significant decrease of VOC is observed when the wave period
deviates from the resonant period. However, an increase in the electrical outputs was
obtained with increasing wave height and wave period, as shown in Figure 15. This trend
may be related to the increase in the wave excitation and the inherent transported energy,
as a consequence of the relation from Equation (9). On the other hand, the surge DoF
increases with increasing height and period of waves, which can also lead to an increase
in the generated electrical outputs. Thus, the larger wave excitation and surge excursions
cause the spheres to increase their motion span, acquiring larger momentum and colliding
with a greater impact force on each tribo-device fixed on the lateral ends of the PLA trough.
Considering the final sea states of the experimental study, a maximum specific power of
~18 mW/kg was achieved in sea state 1.
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5. Discussion

As expected from the experimental setup and wave conditions, the hydrodynamic
response of the physical models was mostly in the surge and roll DoFs. On the former,
the order of magnitude generally increases with Hs − Te (and, consequently, wavelength),
suggesting that the models follow the incoming waves. However, this was not the case
for the roll DoF, as the physical model tends to oscillate at a frequency corresponding
to ωn,4. It is worth stating that the hydrodynamic responses of the HC, HS and TP V1
sub-variants were quite similar to those obtained in [26], albeit some differences were found
(mainly attributed to uncertainty in computing the hydrodynamic parameters). Resonance
was observed near the unmoored natural roll period, which supports a good agreement
between the estimated and obtained/measured values. Other parameters also yielded a
good agreement with the expected values (differences below 5%), as demonstrated in [71]
under dry conditions (inclining and free decay tests) and regular wave conditions.

The HC V1 shows a relatively consistent profile over the selected range of wave
conditions, which can be justified by the conservation of its submerged profile even for
very large roll amplitudes. The opposite is verified for TP V1, since the TP’s submerged
profile changes with the roll angle. This implies a time-varying and incrementing stiffness
for higher roll angles, as expected from similar hull shapes [22,54]. Unexpectedly, the shape
evolution of the HS’ transfer function curves, from sea-state 1 to 8, was similar to that of
the TP, despite the somewhat constant submerged profile for large roll amplitudes. Even
so, one must account for the mooring system: although the chain setup was similar for all
three physical models, the proportionally lower mass and stiffness of the HS would make
it more susceptible to the mooring system’s influence, namely in terms of the moored Tn,4
(relatively lower than that of the HC and TP). All physical models exhibit the expected
behaviour of a resonant-type floating body, which, regarding the roll DoF, is sufficiently
large to oscillate at a frequency corresponding to the natural (roll) frequency, instead of
moving with the incoming waves [22].

The modifications of the V2 and V3 sub-variants produced different outcomes on each
physical model:

• On the HC, a stepwise increment is observed for the significant response curves.
Despite the increase in PTO mass and damping from V1 to V3, there is little alteration
in the order of magnitude of ζm0,4. This adaptation also implies that the maximum
convertible energy increases. However, this can also lead to “stall” occurrences, as
described previously. This was observed rarely in V1 and V2, but for V3 the PTO
would often slide along a more limited extension of the superstructure (1/2 to 2/3).
The combination of these two factors explains the similar hydrodynamic roll response,
but higher/lower max-mean ratio/power per unit of displaced volume, respectively.
The PTO’s influence was also perceivable in the response bandwidth curves, which
yielded lower values from V1 to V3. Overall, the intermediate option (V2) yielded the
most beneficial results.

• For the HS, the new ballast setup leads not only to a change in the Tn,4 and metacentric
height, but in the hydrostatic stiffness and total weight of each sub-variant. An
inflection point is observed at about halfway in the test lineup, where the higher
power per unit of displaced volume from V2 is surpassed by V3 and, mainly, V1. After
this inflection point, the max-mean curves are also similar. The variable that follows a
similar pattern is the hydrostatic stiffness, which is maximum for V2 and minimum
for V1 (16.389 N/m.rad and 13.068 N/m.rad, respectively, and not contemplating
the contribution of the mooring system). This is also in agreement with the peaks
observed for the ε4 curves, albeit a slight improvement, in terms of significant roll
response, is observed for both V2 and V3.

• Lastly, regarding the TP, the modifications introduced into V2 did not seem to improve
the performance of this sub-variant compared to V1, with the exception of lower
max-mean ratios. The relatively high Tn,4 of V3 lead to a comparably lower average
power output for lower wave energy periods and a high max-mean ratio, consequently.
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In contrast, the performance improves considerably from sea state 4 onwards, with a
beneficial effect of a lower metacentric height and higher Tn,4 being observed.

The TENGs did not significantly affect the hydrodynamics of the E-Motions physical
model (HC) but yielded promising power output ratios. In detail, an open-circuit voltage
and power density peak was observed for sea state 1, where the peak wave period coincides
with Tn,4 of the physical model. The deviation from the resonance range has an immediate
effect, as the measured TENG outputs reduce significantly from sea state 1 to 3. Afterwards,
the increasing Tp and, consequently, deviation from roll resonance seems to be compensated
by the increasing Hs and surge excursions, since the wavelength increases with the wave
period (intermediate water depth). In fact, after sea state 3, this conjugation leads to a
systematic increase of the voltage and power output, which tends to stabilize for the last
sea states. The values for sea states 7 and 8 are only slightly below those of sea state 1,
suggesting that the available stroke for the spheres is probably the main restrictor of greater
voltage and power outputs. This is a pertinent observation that ought to be confirmed
in future studies, namely through the introduction of cameras with a direct line of sight
towards the TENG structures.

From this study, the hybridization approach demonstrated:

• Compartmentation—sliding PTO within the superstructure, at deck level, while
TENGs were protected within the hull;

• TENGs have a negligible effect on platform hydrodynamics;
• Energy redundancy and dual operation—E-Motions’ PTO (single-mode restricted by

end stops and “stalling”, but with higher power output range) and lateral TENGs
(lower power output range, but multi-mode and based on end-stop impacts);

• Power density—in model scale, the TENG’s output can reach, at minimum, 4.36%,
12.07% and 8.69% of HC’s, HS’ and TP’s power density values, respectively. This is
valid by assuming a reference area equal to the deck of each physical model, for the
PTO’s power density calculation.

• Potential output gains in future studies—stacking multiple PTO rows and/or ex-
panding the TENGs’ surface area, over several compartment levels, whilst including
horizontal sliding tracks (vertical contact-separation alongside lateral end-stops).

6. Conclusions

In summary, this paper presented the key outcomes of a joint study involving nine
variants, with three original hull shapes (HC, HS and TP) of the E-Motions device with
unidirectional TENG structures. Eight reference sea states from the Portuguese coastline
were reproduced for the considered variants, being the TENGs incorporated into HC
V1 sub-variant for the combined assessment. The hydrodynamic analysis was centred
on the hydrodynamic roll response and respective frequency bandwidth, albeit some
considerations on other DoFs, namely surge, were discussed. Open-voltage and power
output ratios were estimated/measured for the E-Motions and TENGs, with noteworthy
patterns emerging over the different sea-state bins.

Overall, all variants exhibited a generally increasing surge response from sea-states
1 to 8, following on the greater wave excitation and wavelength. Up to three peaks were
reported, although the one with the highest value was observed for very low frequencies,
corresponding to slow drifting. On the roll DoF, a bell-shaped pattern was obtained for all
variants, with the corresponding peaks’ position centred on the respective Tn,4. The order
of magnitude of the HC peak tended to be conserved for all sea states but decreased for
the HS and TP variants from sea state 1 to 8. This suggests a non-linear response to the
incoming waves, which should be taken into account in follow-up studies. The significant
roll response tended to follow a stepwise increment pattern with the increasing Hs-Te
across all E-Motions sub-variants, but different outcomes were observed about the response
bandwidth. ε4 was reduced from HC V1 to HC V3, as a consequence of the PTO’s greater
mass and damping. Apart from sea states 1 and 8, where V2 and V3 stood out, the HS
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variants exhibited similar outcomes, while TP exhibited a significant response bandwidth
increment with the ballast rearrangements of V2 and V3.

On the power output ratios, HC V2 stood out from the alternatives, yielding ratios
of up to 0.030 kW/m3 and max-mean ratios of 15 to 20. Depending on the sea states, V1
and V2 provided the highest power ratios (up to 0.026 kW/m3), but V2 demonstrated a
lower max-mean range of similar magnitude as that of HC V2. As for the TP sub-variants,
V3 showed an improved performance, but only after sea state 3, likely due to the shift of
Tn,4 towards higher values. In turn, the TENGs demonstrated an open-circuit voltage and
power density evolution highly influenced by both surge motions, roll oscillations and
increasing wave excitation/energy from sea state 1 to 8. Corresponding peaks of average
VOC and power density of ~ 85 V and 182 mW/m2 were obtained. In fact, by considering
model values, the power density can be comparable to that of E-Motions’ PTO, with bottom
thresholds of 4.36%, 12.07% and 8.69% of E-Motions’ PTO power density values (HC, HS
and TP sub-variants, correspondingly).

The outcomes of this study demonstrated the viability of a hybrid E-Motions/TENGs
solution towards wave energy conversion, which can benefit from equipment sharing,
redundancy, compartmentation, dual energy production and protection of sensitive equip-
ment from the surrounding marine environment. TENG output can be further bolstered
by increasing the deployed surface area inside the platform’s hull, as only a small portion
was employed in this study, while stacking numerous PTO rows can multiply the power
generated by E-Motions. Future developments will strive to optimize these components
so that the final device solution can be deployed, at sea, towards supplying energy to
numerous marine activities in a sustainable manner.
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