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Abstract: Orthogonal time frequency space (OTFS) is a novel two-dimensional (2D) modulation
technique that provides reliable communications over time- and frequency-selective channels. In
underwater acoustic (UWA) channel, the multi-path delay and Doppler shift are several magnitudes
larger than wireless radio communication, which will cause severe time- and frequency-selective
fading. The receiver has to recover the distorted OTFS signal with inter-symbol interference (ISI) and
inter-carrier interference (ICI). The conventional UWA OTFS receivers perform channel estimation
explicitly and equalization to detect transmitted symbols, which requires prior knowledge of the
system. This paper proposes a deep learning-based signal detection method for UWA OTFS commu-
nication, in which the deep neural network can recover the received symbols after sufficient training.
In particular, it cascades a convolutional neural network (CNN) with skip connections (SC) and a
bidirectional long short-term memory (BiLSTM) network to perform signal recovery. The proposed
method extracts feature information from received OTFS signal sequences and trains the neural
network for signal detection. The numerical results demonstrate that the SC-CNN-BiLSTM-based
OTFS detection method performs with a lower bit error rate (BER) than the 2D-CNN, FC-DNN, and
conventional signal detection methods.

Keywords: OTFS; underwater acoustic communication; deep neural networks; signal detection;
delay-Doppler domain

1. Introduction

The underwater acoustic (UWA) channel is one of the most challenging communication
media [1,2]. The low propagation speed of UWA waves will cause the multi-path and
Doppler effects to be several magnitudes larger than wireless radio communication. Even
when the transceivers do not move, the seawater movement and sea surface fluctuations
will still cause Doppler shift. The severe multi-path and Doppler effects will cause time-
and frequency-selective fading. Since the available carrier frequencies for medium-range
UWA communication are only in the kHz range, a slight movement of the transceiver will
cause a large Doppler shift. Orthogonal frequency division multiplexing (OFDM) is widely
applied in UWA communication due to its high spectrum efficiency and robustness against
the multi-path effect [3–8], whereas for classical OFDM communication, severe Doppler
shift in the UWA channel will lead to inter-carrier interference (ICI), and the performance
of OFDM will degrade significantly.

Orthogonal time frequency space (OTFS) modulation is a promising two-dimensional
(2D) modulation technique proposed in recent years for high-mobility communication
scenarios [9,10]. The basic principle of OTFS is to modulate information symbols in the
2D delay-Doppler (DD) domain rather than the time frequency (TF) domain. In light
of the DD domain, OTFS modulation can transform the channel into an approximately
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non-fading channel through a series of 2D transformations. In UWA OTFS communication,
the fast time-variant UWA channel will still bring ICI and inter-symbol interference (ISI).
To improve the communication performance of OTFS, channel equalization and signal
detection can mitigate the interference. Signal detection algorithms generally include linear
and nonlinear detection algorithms. Linear signal detection methods, such as the zero-
forcing (ZF) algorithm [11] and linear minimum mean squared error (LMMSE) [12], have
high complexity in practical implementation. Bayesian-based nonlinear algorithms assume
the interference terms are approximately Gaussian distributed noise, such as message
passing (MP) [13] and the Markov chain Monte Carlo algorithm. However, in actual UWA
communication systems, the interference term may not obey the Gaussian distribution.
Although the nonlinear algorithms can approximate the optimal performance with a large
number of iterations, the complexity is much higher than that of the LMMSE algorithm. In
UWA OTFS communication, signal detection has been studied by linear equalizers [14–16]
under different UWA channels.

Machine learning can be used in wireless communication for signal detection. In [17],
supervised machine learning techniques were applied to decode the tag symbols. The
input features that form the training data were explored and extracted from the received
signal for machine learning-based detectors. In [18], support vector machine (SVM)-based
data detection is proposed for optical OFDM in visible light communication. In this
paper, the SVM detector contained multiple binary classifiers with different classification
strategies. The experiment results presented that the SVM detection offered improved BER
performance compared with the traditional direct decision method. In [19], the SVM in
machine learning was used to jointly optimize the processing chain of signal detection,
feature extraction and signal classification, and the simulation results show that the SVM
had good performance. However, when the sample size is large, machine learning has
difficulty dealing with the problems, and deep learning (DL)-based methods can solve such
problems well. For example, the convolutional neural network (CNN) and its derivative
algorithms can automatically learn the deep features of input digital information for
subsequent classification [20]. The recurrent neural network (RNN) is also widely used due
to its advantages in processing time series data [20].

In recent years, the DL-based method has shown its potential in communication
systems [21]. Ye et al. replaced the channel equalization and demodulation blocks of the
receiver with a five-layer fully connected deep neural network (FC-DNN) in the OFDM
system [22]. The experiment results show that the DNN-based receiver was more reliable
than the conventional methods. In the UWA OFDM communication system, an FC-DNN is
used to realize the whole signal processing at the receiver [23,24], and simulation results
show that the FC-DNN offered better bit error rate (BER) performance than conventional
algorithms. In [25], the long short-term memory (LSTM) neural network architecture
was employed as the receiving module of the cyclic shift keying spread spectrum UWA
communication system. The neural network is fed the communication signals passing
through known channel impulse responses in the offline stage and then used to demodulate
the received signal in the online stage. For UWA communication, the receiver in [26] jointly
employed a CNN for channel equalization and an FC-DNN for demodulation. Compared
with a single DNN-based OFDM receiver, this joint network model can better extract
channel information for data recovery. In [27], DenseNet was proposed to replace the entire
information recovery process of block-based MIMO receivers. DeseNet takes multiple
modules as one system for joint optimization, and its BER outperforms block-by-block
receivers. A signal detection scheme based on LSTM was proposed in [28]. The authors
utilized an RNN with the BiLSTM architecture for signal detection in [29]. The simulation
results show that the trained model can trace the characteristics of wireless time-varying
channels and achieve accurate and robust signal recovery performance.

For using DL in OTFS systems, Naikoti et al. conducted a preliminary exploration of
FC-DNN-based signal detection [30]. Li et al. proposed a receiver with CNN-based signal
detection for OTFS [31]. Y. K. Enku et al. proposed a 2D-CNN-based OTFS signal detection
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scheme [32] and utilized data augmentation to improve the overall performance. In [33],
an FC-DNN was used to replace the signal detection in the UWA OTFS system. It can be
seen that the DL-based methods outperformed the conventional methods under complex
channels. Whereas the DNN and CNN can only extract local features, this paper proposes
an OTFS signal detection scheme based on the joint CNN and RNN to utilize both local
and sequential features.

The main contributions of this paper are summarized as follows:

• We propose an UWA OTFS signal detection method based on the deep neural network.
The UWA channel has severe transmission loss, time-varying multi-path propagation
and the severe Doppler effect, which are extremely challenging for signal detection.
Conventional signal detection methods not only have high computational complexity
but also require prior knowledge of the noise. DL-based signal detection has the
advantage of recovering signals with complex nonlinear interference and noise by
training and learning, and it does not have to assume any prior knowledge. In this
paper, we propose a DL-based signal detection method for UWA OTFS in the complex,
nonlinear UWA channel to improve system performance. To the best of our knowledge,
this is the first DL-based signal detector proposed for UWA OTFS communication.

• The SC-CNN-BiLSTM network is designed for OTFS signal detection in the complex
UWA channel, which takes the advantages of both CNNs and RNNs for feature extrac-
tion and sequential data processing. Different from our previous work [33], a totally
new neural network structure is proposed for performance improvement. The CNN
in the proposed network can extract data features and learn the potential relation-
ship between its input and output. Furthermore, the skip connection (SC) in a CNN
can provide the flexibility of data feature fusion for performance improvement. The
cascaded BiLSTM in the network can memorize and extract the effective information
from sequential transmitted symbols from the past to the future, which can mitigate
the ICI and ISI. For UWA OTFS communication, SC-CNN-BiLSTM signal detection
outperforms other previous proposed DL-based and conventional linear and nonlinear
signal detection methods.

The remainder of this paper is organized as follows. Section 2 presents the UWA
OTFS system model. Section 3 proposes the SC-CNN-BiLSTM scheme for signal detection.
Section 4 evaluates the performance of SC-CNN-BiLSTM-based signal detection with
the simulation and experimental data and compares its performance with other signal
detection methods. Section 5 provides a discussion about the results. Section 6 concludes
our research.

2. UWA-OTFS System Model

Compared with wireless radio communication, the Doppler shift in UWA communica-
tion is more severe, which is mainly determined by the transmission characteristics of the
UWA channel [33]. Table 1 shows the characteristics comparison between wireless radio
and the UWA channel. The propagation speed of UWA waves is five orders of magnitude
slower than that of radio waves. Due to the severe distance- and frequency-dependent
attenuation, the available frequency for long-range communication is only in roughly the
KHz range. Due to these factors, even a slight movement can cause obvious Doppler shifts
in the UWA channel.

Table 1. Comparision of radio and UWA communications.

Parameters Wireless Radio Communication UWA Communication

Propagation speed c 3× 108 m/s 1500 m/s
Typical carrier frequency fc Several GHz Several kHz

Subcarrier spacing ∆ f Several KHz Several Hz
CFO fD with vt = 1 m/s Several Hz Several Hz

Normalized CFO θ with vt = 1 m/s ≈1×10−3 ≈1
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In Table 1, the carrier frequency offset can be calculated as fD = (vt fc)/c, where vt is
the speed of movement between the transceivers. The normalized CFO can be calculated
as θ = fD/∆ f , which can represent the impact of the CFO referenced to subcarrier spacing.
For example, as shown in Table 1, for a relative moving speed of 1 m/s, the normalized
CFO is about 10−3 for radio communication and 1 for UWA communication. Doppler shifts
on subcarriers have more severe impact on UWA communication performance than radio
systems. In the UWA OTFS system, the Doppler effect will cause severe ISI and ICI. This
paper will enhance the performance of the OTFS system with the power of deep learning.

Figure 1 shows the block diagram of the UWA OTFS system. At the transmitter, the
modulation module can map the one-dimensional constellation symbols x = [x1, ..., xNM]
into 2D transmission symbols x[k, l], k = 0, ..., N − 1, l = 0, ..., M− 1 with the specified
modulation mode (e.g., BPSK or QPSK). The 2D symbols are distributed over N ×M OTFS
delay-Doppler data grids. Then, the symbols in the DD domain are converted to the TF
domain by an inverse symplectic finite Fourier transform (ISFFT) as

X[n, m] =
1√
MN

N−1

∑
k=0

M−1

∑
l=0

x[k, l]ej2π( nk
N −

ml
M ). (1)

2D
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Figure 1. Block diagram of the UWA OTFS system.

The TF domain signal is further transformed into time domain signal x(t) by Heisen-
berg transform as

x(t) =
N−1

∑
n=0

M−1

∑
m=0

X[n, m]gtx(t− nT)ej2πm∆ f (t−∆ f ), (2)

where ∆ f is the subcarrier spacing, T = 1/∆ f is the symbol duration and gtx is the transmit
pulse-shaping filter.

The channel impulse response (CIR) h(τ, υ) in the DD domain can be expressed as

h(τ, υ) =
p

∑
i=1

hiδ(τ − τi)δ(υ− υi), (3)

where hi is the channel coefficient of path i and υi and τi are the frequency bias and time
delay of path i, respectively. We assume that the CIRs are perfectly known at the receiver.

The transmitted signal will go through the UWA channel, which is represented by the
CIR and additive noise. The received signal can be expressed as

r(t) =
p

∑
i=1

hiej2πυi(t−τi)x(t− τi) + w(t), (4)

where w(t) is the additive Gaussian white noise.
At the receiver, the received time domain signal r(t) is converted into a TF domain

signal through a Wigner transform as

Y(n, m) =

[∫
g∗rx(t− τ)y(t)e−j2π f (t−τ)dt

]
, (5)
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where τ = nT, υ = m∆ f .
Then, the TF domain signal is converted into a DD domain signal by a symplectic

finite Fourier transform (SFFT) as

y[k, l] =
1√
MN

N−1

∑
n=0

M−1

∑
m=0

Y[n, m]e−j2π( nk
N −

ml
M ). (6)

After parallel-to-serial conversion, y[k, l] is converted to y at a size of N ×M.
Finally, signal detection and demodulation will be performed to recover the transmit-

ted signal as x̂.
The multi-path effect and Doppler shift in UWA communication are more severe than

that of radio communication. In UWA communication, assume that the maximum delay of
the time-varying UWA channel is τmax and the maximum Doppler shift is υmax. In OTFS
modulation, from the view of the DD domain, the OTFS parameter design is related to
the channel conditions. In the Doppler axis, 1/T determines the maximum supportable
Doppler shift as υmax < 1/T. In the delay axis, 1/∆ f determines the maximum supportable
multi-path delay as τmax < 1/∆ f . In time-varying UWA channels, the maximum multi-
path delay τmax is large, so the corresponding designed value of ∆ f should be small, and T
is as large as T = 1/∆ f .

To support a certain data rate of NM subcarriers per frame, the OTFS system is
designed with a total bandwidth B = M∆ f and frame duration Tf = NT. ∆ f is small, so
the setting of M should be large for high data rate communication. T is large, and the frame
duration Tf should not be too large for demodulation latency, so N cannot be too large. For
effective OTFS communication in the UWA channel, a small value of N and large value of
M should be selected to achieve efficient communication.

Based on the above analysis of UWA OTFS, a large M and small ∆ f result in a high
resolution for the frequency, which is sensitive to intercarrier interference. Additionally,
when T is large and the value of N is small, the resolution of the corresponding Doppler
shift decreases, which will affect the accuracy of signal detection. For the challenging UWA
OTFS communication, this paper designs a DL-based signal detector for data recovery in
the UWA channel with severe interferences.

3. SC-CNN-BiLSTM-Based Signal Detection for UWA-OTFS

Figure 2 shows the proposed deep learning-based OTFS system, where the transmitter
is the same as the typical OTFS system and the detection module is replaced by SC-CNN-
BiLSTM. We assume that the CIR is known in the detection module.

SC-CNN-BiLSTM training is performed using a set of training sets known at the
transmitter and receiver. The training data are pseudo-randomly generated by the trans-
mitter and sent to the receiver through the DD channel. The received signal vector y and
the transmitted signal vector x can be used for training the neural network. After being
trained, the real and imaginary parts of y in the validation set are used as input to the
SC-CNN-BiLSTM to recover the unknown transmitted data.
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Figure 2. Deep learning-aided UWA OTFS communication.

3.1. Architecture of the Proposed SC-CNN-BiLSTM Detector

For UWA OTFS with severe Doppler effect, a DL-based channel detection method is
designed by cascading the skip connection CNN and BiLSTM. The architecture of SC-CNN-
BiLSTM for UWA OTFS is shown in Figure 2. It includes the following layers:

• SC-CNN layer : The SC-CNN layer extracts local signal features and learns the hidden
relationship between the input and output.

• BiLSTM layer: The BiLSTM layer can extract features of time series data from both
the forward and backward directions and keep correlated and ignore uncorrelated
information by the gates structure. It can mitigate interference for UWA OTFS.

• FC layer: A fully connected layer with a sigmoid activation function is used to output
soft bits for signal detection.

SC-CNN layer:
The CNN is a type of feedforward neural network structure with convolution calcu-

lations. With the advantage of convolution operation, the CNN can extract and express
the internal complex correlation of signals, which plays the role of the mapping function.
Meanwhile, its weight-sharing structure significantly reduces the number of weights and
network complexity. In the SC-CNN layer of the proposed SC-CNN-BiLSTM network,
the CNN consists of three convolutional neural network layers and three deconvolutional
neural network (DeCNN) layers. The multiple convolutional layers are used to extract the
signal features and internal correlations. The hidden layers in the neural network do not
output the exact value. The output of the previous layer is the input of the next hidden
layer. Accordingly, the output of the CNN can be expressed as

x̃ = f6( f5(... f1(y))), (7)

where y is the input data, x̃ is the output of the CNN, and the function fn(·) represents the
operation in each convolutional layer.

In the neural network structure, SC can create short paths from previous layers to later
layers. Not only can they reuse information for training, but they also can ease the gradient
disappearance problem in network backpropagation. In the proposed SC-CNN layer, we
add symmetrical skip connections to transfer learned feature mapping from the previous
layer to the current layer. Each DeCNN not only takes the output from the previous layer
as input but is also skip connected to the previous CNN layers. This mechanism enhances
feature reusability. With the output in the same dimensionality from the earlier layers, the
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SC-CNN can learn more effective information through the interactions of layers. As shown
in Figure 2, in SC-CNN-BiLSTM, the first DeCNN layer takes the output of the previous
CNN layer as its input. Starting from the second DeCNN layer, the fused feature vector of
the SC-CNN can be expressed as

DeCNNl = g(DeCNNl−1 + CNNn+1−l), (8)

where the function g(·) represents the feature fusion of different network layers, n is the
number of layers for the CNN or DeCNN and the total number of layers is 2n, while l
represents the lth CNN or DeCNN layer. The input of DeCNNl is the fusion of output of
DeCNNn−1 and CNNn+1−l .

BiLSTM layer:
As shown in Figure 3, in an SC-CNN-BiLSTM cascaded neural network, the BiLSTM

layer includes two LSTM networks in different directions: LSTM-F and LSTM-B. The input
sequences are passed into LSTM-F in the forward direction and LSTM-B in the backward
direction. These two LSTM cells are cascaded and passed to more Bi-LSTM layers. In
the forward layer, the calculation is performed from the start time to the time t, and the
output of the forward hidden layer at each time is obtained and saved. The backward
layer is calculated in reverse along the time axis, and the output of the backward hidden
layer at each time is also obtained and saved. Finally, at each moment, the final output can
be achieved by combining the corresponding output results of the forward layer and the
backward layer, which can be expressed as

hF
t = f (w1 x̃t + w2ht−1) (9)

hB
t = f (w3 x̃t + w4ht+1) (10)

xBi
t = ot

(
w5hF

t + w6hB
t

)
∗ tanh(Ct) (11)

where hF
t and hB

t represent the output of the forward calculation and backward calculation
at time t, respectively, xBi

t represents the final output of the BiLSTM, x̃t represents the input
of the current LSTM, ht−1 represents the output of the last LSTM, ht+1 indicates the output
of LSTM in opposite directions, w1, w2, w3, w4, w5, w6 are the corresponding weights of the
variables, Ct is the cell state in LSTM and ot is the forgetting factor. BiLSTM can learn more
comprehensive intrinsic correlation of the input series signal by learning from the past to
the future and from the future to the past. Therefore, it can improve the performance of
signal detection in UWA OTFS.

...

...

LSTM-F

LSTM-B

LSTM

LSTM

Inputs

Outputs

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

1x 2x 3x 4x

1

Bix 2

Bix 3

Bix
4

Bix

Figure 3. BiLSTM structure.

BiLSTM consists of mutiple LSTM cells. Figure 4 shows the basic structure of the
LSTM cell. With collaboration of the input gates, forget gates and output gates, LSTM can
memorize important information and solve the problem of long-term dependence on data
in the learning process.
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Figure 4. LSTM structure.

First, the forget gate of LSTM decides which information to forget to have ft for the
cell state update. Then, the input gate updates the important information it in the learning
process and determines the useful information retained in cell state C̄t. The cell state is
calculated as

Ct = ft ∗ Ct−1 + it ∗ C̄t (12)

Finally, the output gate calculates the forgetting factor ot according to ht−1 and x̃t, and
it obtains the final output ht according to ot and the cell state Ct:

ot = σ(wo · (ht−1, x̃t) + bo) (13)

ht = ot ∗ tanh(Ct) (14)

where wo is the weight of ot, bo is the bias of ot and tanh(·) is the hyperbolic tangent
activation function.

The BiLSTM layer in SC-CNN-BiLSTM has a strong ability to capture the correlations of
times series data. It can not only remember correlated and ignore uncorrelated information
by the gates structure, but it also can extract features from both the forward and backward
directions. Therefore, for the signal detection of sequential data with interference, BiLSTM
can enhance the neural network to better memorize and extract the effective information
with sequentially transmitted symbols from the past to the future, which can mitigate the
ICI and ISI in UWA communication.

FC layer:
For the output of the SC-CNN-BiLSTM network, there is one FC-DNN layer with

32 neurons and a logistic sigmoid activation function. The 32 neurons correspond to 32 bits
to be estimated from 32 consecutive subcarriers. The logistic sigmoid function mapped the
output values between [0,1] as soft bits, and then the soft bits will be processed to obtain
the target sent bits, which can be expressed as

x̂′ = Sigmoid
(

xBi
)

(15)

where xBi represents the output of BiLSTM.
Finally, the transmitted bits are obtained according to the decision formula as

x̂ =

{
1, x̂′ − 0.5 > 0
0, x̂′ − 0.5 < 0

(16)

3.2. Training of the Proposed SC-CNN-BiLSTM Neural Network

In the training stage, the number of training examples is chosen through trials. We
start with a small number of examples and increase the number of examples until the
SC-CNN-BiLSTM training tends to be stable. SC-CNN-BiLSTM learned the mapping
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relationship between the received vector and the corresponding transmitted vector. After
training, the SC-CNN-BiLSTM can be used for signal detection. In the testing stage, the
transmitter generates random information bits, modulates the bits by OTFS and transmits
the OTFS signal over the UWA channel to the receiver. The receiver utilizes the trained
SC-CNN-BiLSTM to detect symbols in the DD domain for data recovery.

The performance of a neural network depends greatly on the training process. First, the
loss function should be reasonably designed to provide an accurate measure of the distance
between the outputs and true labels. The training process aims to minimize the difference
between the original transmitted data sequence x(b) and the signal detection output x̂(b)
through the deep learning model. In this study, we define the loss function L(loss) as

L(loss) =
1

NB

NB

∑
i=1

[x̂i(b)− xi(b)]
2, (17)

where NB is the batch size and xi(b) represents the bits in the ith batch.
In addition, the hyperparameters related to the network structure and training will

affect the capabilities of neural networks. The learning rate affects the convergence rate
and results of the DL network. The adaptive learning rate strategy is employed, which can
avoid being trapped in the local optimum. In our training, the initial learning rate was set
to 0.001, and the decay factor was set to 0.1.

For training optimizer selection, we compared the performance of three typical op-
timizers: the stochastic gradient descent (SGD) optimizer, adaptive momentum (Adam)
optimizer and root mean square propagation (RMSprop) optimizer. The test was conducted
with an OTFS dataset that went through an experimental channel. As shown in Figure 5,
with the SGD optimizer, the loss of the proposed neural network did not converge well
during training process. The convergence results of the Adam optimizer were better than
those of the SGD optimizer with much lower loss, and the convergence of the RMSprop
optimizer was the best. Therefore, our proposed SC-CNN-BiLSTM employed the RMSprop
optimizer for training.

0 50 100 150 200 250 300

Epoch

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

L
o
s
s

SGD

Adam

RMSprop

Figure 5. Training loss of several optimizers.

4. Numerical Results
4.1. System Set-Up

Both the simulation channel and experimental channel were used to evaluate the
performance of the proposed signal detection scheme. The OTFS frame size was set to
(N, M) = (8, 64), which means each frame had 8 symbols and 64 subcarriers in the TF
domain. The carrier frequency was set to 6 kHz. The maximum multi-path delay in the sea
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experiment was about 100 ms, so the subcarrier spacing was set to ∆ f = 1/τmax = 10 Hz.
The sound speed was set to c = 1500 m/s. Binary phase shift keying (BPSK) was utilized
for symbol constellation mapping.

The proposed model was implemented on the DL framework of TensorFlow and Keras
for training and testing. The parameters of the neural network are listed in Table 2. In the
proposed SC-CNN-BiLSTM, there are 2MN input neurons, where (M, N) is the frame size
of the OTFS. For the output of the SC-CNN-BiLSTM-based OTFS detector, every 32 bits of
transmitted data were grouped and predicted according to the separately trained model and
then serially converted to the final output. In the proposed SC-CNN-BiLSTM, the former three
convolutional layers used 4, 8 and 16 filters and the rectified linear unit (ReLU) activation
function, the convolutional kernels were 4, 2 and 2, and the stride sizes were 4, 2 and 2,
respectively. The latter three deconvolution layers had 8, 4 and 2 filters, the convolutional
kernels were 2, 2 and 4, and the stride sizes were 2, 2 and 4, respectively. BiLSTM includes
three BiLSTM layers with 30, 20, and 16 hidden units, and layer normalization (LN) was
added between each BiLSTM layer to accelerate convergence and prevent overfitting. The
BiLSTM layers used a hyperbolic tangent (tanh) activation function. For the output, there
was one FC-DNN layer with 32 neurons and a logistic sigmoid activation function. The
logistic sigmoid function mapped the output values of [0,1] as soft bits, which would be then
processed to obtain the target sent bits. The output layer used the regression sigmoid function
to find the predicted values of the transmitted symbols [33].

We generated 60,000 OTFS frame samples under time-varying delay-Doppler channels.
The data samples were divided into the training set, validation set and test set at a ratio
of 4:1:1.

Table 2. Parameter settings of the proposed neural network.

Layer Type Input Layer Activation

Input reshape - -
Conv1 Convolutional layer (4,4,4) Input ReLU
Conv2 Convolutional layer (8,2,2) Conv1 ReLU
Conv3 Convolutional layer (16,2,2) Conv2 ReLU

DeConv1 Deconvolutional layer (8,2,2) Conv3 ReLU
DeConv2 Deconvolutional layer (4,2,2) DeConv1 + Conv2 ReLU
DeConv3 Deconvolutional layer (2,4,4) DeConv2 + Conv1 ReLU

CNNoutput - DeConv3 + Input -
BiLSTM1 30 BiLSTM1 tanh
BiLSTM2 20 BiLSTM2 tanh
BiLSTM3 16 BiLSTM3 tanh

FC 32 FC Sigmoid

The BER performance of the following signal detection methods will be compared:

• Proposed SC-CNN-BiLSTM: The proposed SC-CNN-BiLSTM signal detection method
for UWA OTFS;

• 2D-CNN: The DL OTFS signal detection based on the 2D-CNN proposed for wireless
radio communication [32];

• FC-DNN: The FC-DNN-based signal detection method for UWA OTFS [33];
• MP: Message-passing nonlinear signal detection method for OTFS [13];
• LMMSE: Classical linear minimum mean square error (LMMSE) [12] signal detection

method for OTFS;
• ZF: Classical zero-forcing (ZF) [11] linear signal detection method for OTFS.

We will evaluate the performance of SC-CNN-BiLSTM in both the simulation and
experimental channels with the above system settings and also consider the non-ideal
factor of signal processing in practical underwater acoustic communication.



J. Mar. Sci. Eng. 2022, 10, 1920 11 of 20

4.2. Simulation Results

We considered a statistic channel simulation model in a mobile communication sce-
nario, where the channel gains followed an independent Rayleigh distribution. The sim-
ulation’s parameter settings are shown in Table 3. The maximum multi-path delay was
set to τmax = 100 ms. There was a total number of eight random multi-paths within the
maximum delay range, in which the channel gain followed an independent Rayleigh dis-
tribution. The moving speed was set to υm = 3.8 knots (1 knot is 1 nautical mile per hour,
which is equal to 1.852 kilometers per hour), and the corresponding maximum Doppler
spread was fD = (vm fc)/c = 7.8. The Doppler coefficient of each path was generated in
[− fD max, fD max] with equal probability.

Table 3. Parameters of statistic simulation channel.

Paraments Value

Channel gains hi Rayleigh distribution
Maximum multi-path delay τmax 100 ms

Number of multi-paths 8
Moving speed υm 3.8 knots

Maximum Doppler spread fD 7.8 Hz

Figure 6 shows the BER comparison of multiple signal detection methods for UWA OTFS.
At the BER of 5× 10−3, the proposed SC-CNN-BiLSTM could achieve about 5.5 dB, 3 dB and
1.5 dB of improvement compared with the MP, FC-DNN and 2D-CNN, respectively.

Figure 6. BER performance comparison for simulation channel.

All deep learning-based signal detection methods (SC-CNN-BiLSTM, 2D-CNN and
FC-DNN) perform better than conventional linear ZF, LMMSE and nonlinear MP, as DL-
based OTFS signal detection methods can use nonlinear operations in neural networks to
better fit data in the DD domain compared with the linear-based method. Compared with
nonlinear MP, DL-based OTFS detection can fit the input-output relationship through iterative
optimization of the parameters and avoid falling into a local optimum for better performance.

The two CNN-based signal detection methods, SC-CNN-BiLSTM and 2D-CNN, per-
formed better compared with FC-DNN-based signal detection. As the neurons in a CNN
are connected to each other, the weights of neurons on the same feature mapping layer are
shared. Therefore, the CNN can learn in parallel to avoid overfitting and achieve faster
convergence. This is the major advantage of CNNs compared with other neural networks.
Moreover, the CNN uses the ReLU activation function to prevent gradient disappearing.
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SC-CNN-BiLSTM outperformed the 2D-CNN. A single CNN can only extract local
features and cannot process time series data efficiently when used. As in SC-CNN-BiLSTM,
we added symmetric skip connections to the six-layer CNN. The SC-CNN can provide more
efficient information through interactions of convolutional and deconvolutional layers.
After the SC-CNN extracts the important features of input vector y, BiLSTM can further
focus on effective information in the data sequences to mitigate ICI and ISI.

4.3. Experimental Results

We further evaluated the performance of SC-CNN-BiLSTM-based OTFS signal detec-
tion under multiple channels from a sea experimental dataset [34]. For evaluation of the
proposed scheme, we used UWA experimental channels from the WATERMARK dataset.
WATERMARK is a benchmark dataset driven by at-sea measurements of the time-varying
impulse response. In this paper, we employed the raw CIR measured at Norway-Oslofjord
(NOF) and Kauai 1 (KAU1). The parameter settings of the experiments are shown in Table 4.

Table 4. Parameters of channel dataset.

Paraments NOF KAU1

Environment Fjord Shelf
Range 750 m 1080 m

Water depth 10 m 100 m
Transmitter deployment Bottom Towed

Receiver deployment Bottom Suspended
Doppler coverage 7.8 Hz 7.8 Hz

The CIRs of the NOF channel in the time domain and DD domain are shown in
Figures 7 and 8. As shown in Figure 7, the CIR of NOF in the time domain had an obvious
time-varying multi-path. Figure 8 presents the corresponding CIRs in the DD domain,
where the Doppler shift for each path can be observed.

Figure 7. CIR in time domain under NOF experiment.
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Figure 8. CIR in DD domain under NOF experiment.

As shown in Figure 9, the BER performance of the proposed SC-CNN-BiLSTM-based
signal detection method was compared with other methods. Similar to the results in the
simulation channel, the proposed SC-CNN-BiLSTM-based signal detection showed the
best performance under the NOF UWA experimental channel. The proposed method had
5 dB, 2.5 dB and 2 dB gains at a BER of 1 × 10−3 compared with MP-, FC-DNN- and
2D-CNN-based signal detection methods.

Compared with the 2D-CNN, SC-CNN-BiLSTM enhanced the performance by employ-
ing skip connections for data reuse and BiLSTM in an RNN for time series data processing.
Specifically, in SC-CNN-BiLSTM, skip connections with the CNN can provide more efficient
information through the interactions of the convolutional and deconvolutional layers. After
the SC-CNN extracts the features of the input vector, LSTM can further focus on effective
information in the data sequences to mitigate ICI and ISI. A single CNN can only extract
local features and cannot process time series data as efficiently as an RNN.

Compared with DNN-based signal detection, our proposed method utilized a CNN
and BiLSTM cascaded network for better data fitting than a single neural network. There
are non-convex optimization and gradient disappearance problems in the FC-DNN, which
limit its robustness.

Compared with nonlinear MP detection, SC-CNN-BiLSTM can converge to the opti-
mum, whereas MP may get trapped in local optimum and have high complexity during
iteration. Compared with linear-based methods, such as LMMSE and ZF, the SC-CNN-
BiLSTM signal detection method can use nonlinear operations in the neural network to
better fit data in the DD domain.

The CIR of the KAU1 channel in the time and DD domains are shown in Figures 10 and 11,
respectively. In both the time and DD domains, the CIR structure was more complex than
that for NOF. The channel variations were also more obvious than those for NOF. In the
DD domain, it can be seen that the maximum Doppler shift of KAU1 was larger than
that for NOF, which was about 4 Hz. Note that in these two sea experiments, although
the transmitter and receiver were deployed in fixed locations, the Doppler shift was still
evident. The Doppler shift in practical UWA channels is severe and complex, and it is
caused by the multiple unique characteristics of the UWA environment. For example, the
movement of seawater can cause the transceiver to move.
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Figure 9. BER performance comparison for NOF experiment.

Figure 10. CIR in time domain under KAU1 experiment.

Figure 11. CIR in DD domain under KAU1 experiment.
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In Figure 12, the BER performance of multiple signal detection methods is similar
to that of the NOF channel. In the KAU1 experimental channel, SC-CNN-BiLSTM-based
signal detection could achieve 4.5 dB, 2.5 dB and 1.5 dB SNR gains at a BER of 1.5× 10−3

compared with the MP, FC-DNN and 2D-CNN methods, respectively. Owing to the specific
design of the neural network, our proposed method outperformed both DL-based signal
detection and conventional linear or nonlinear signal detection methods.

When comparing the BER performance of SC-CNN-BiLSTM in NOF (Figure 9) and
KAU1 (Figure 12), the BER performance at NOF was better than that at KAU1. The multi-
path structure and Doppler shift of KAU1 were more severe than those at NOF, which
would degrade the BER performance. In the two experimental channels, SC-CNN-BiLSTM-
based OTFS detection outperformed all the other signal detection methods.

0 2 4 6 8 10

SNR (dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

KAU1

ZF

LMMSE

MP

FC-DNN

2D-CNN

SC-CNN-BiLSTM

Figure 12. BER performance comparison for KAU1 experiment.

4.4. Robustness Analysis with UWA Non-Ideal Channel Estimation

In the actual UWA communication system, many uncertainties will make the estimated
CSI non-ideal. It can be seen from the literature [35] that when the system obtains the CSI
with errors, the performance of the system will degrade. In this subsection, the impact
of non-ideal channel estimation on the proposed model will be analyzed. Assume that
the channel estimation errors follow a Gaussian distribution with a zero mean and a
certain variance.

The KAU1 experimental channel dataset was used to evaluate the multiple signal
detection methods with channel estimation error. In the simulation, the variance of the
channel estimation error was set to 0.1.

As shown in Figure 13, with the channel estimation error, the BER performances
of conventional signal detection methods obviously became worse. In the experimental
channel, the BER of ZF and LMMSE almost increased to the error floor, and the BER of MP
increased by up to two orders of magnitude.

The BER performances of DL-based signal detection methods degraded less sharply
than those for the conventional methods. As shown in Figure 13, compared with the two
DL-based signal detection methods, SC-CNN-BiLSTM-based signal detection could recover
data more accurately with the channel estimation error. In the KAU1 experimental channel,
at a BER of 2× 103, the FC-DNN, 2D-CNN and SC-CNN-BiLSTM methods with channel
estimation error had 3 dB, 2 dB and 1.5 dB SNR losses compared with the corresponding
signal detection method with ideal channel estimation. The robust performance of SC-
CNN-BiLSTM signal detection can be attributed to the proposed cascaded network, where
the SC-CNN provides information fusion from the interaction of the current layer and the
previous layer for more effective signal feature extraction, and BiLSTM can continuously
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store and extract valid information with symbols that are sequentially transmitted from the
past to the future.

Figure 13. BER performance comparison under non-ideal channel estimation for KAU1 experiment.

4.5. Computational Complexity Analysis

As shown in Table 5, the computational complexity of the proposed SC-CNN-BiLSTM
signal detection and other methods are compared.

Table 5. Computational complexity comparison.

ZF LMMSE MP 2D-CNN SC-CNN-LSTM

O((MN)3) O((MN)3) O(niter MNnchΘ) O(MN) O((MN)2)

The complexity of SC-CNN-BiLSTM can be calculated as the summation of the CNN
and LSTM. According to [36], the computational complexity of the CNN can be defined as
O(∑Nl

l=1 Nincl · w
2 · N fl

(NM)), where Nl is the number of CNN layers used to construct the
model, l is the index of a convolutional layer, N fl

is the number of filters (also known as the
width) in the lth layer, Nincl is the number of input channels of the lth layer, w2 is the kernel
size and NM is the OTFS frame size for the network input. As all the other parameters are
constant during the training and testing phase, the overall complexity is a linear function of
NM expressed as O(NM). Meanwhile, the computational complexity of the BiLSTM can be
defined as O(∑d

l=1 n2dc), where dc is the dimension of each cell, nin is the size of the input
and nin = NM in our system. The complexity of BiLSTM can be expressed as O((NM)2).
Thus, the SC-CNN-BiLSTM complexity is a linear function expressed as O((NM)2).

The complexity of the 2D-CNN is O(NM) [32]. The complexity of the MP-based
method is O(niter MNnchΘ), where niter is the number of iterations, nch is the number of
non-zero channel taps and Θ is the modulation bit size. Thus, the complexity of MP depends
on the sparsity level of the channels. The complexity of LMMSE and ZF is O((MN)3).

From Table 5, we can see that the complexity of SC-CNN-BiLSTM was lower than
those of the MP, LMMSE and ZF methods but higher than that of the 2D-CNN. Let us
take the consideration of complexity and BER performance together. Both the complexity
and BER performance of SC-CNN-BiLSTM outperformed FC-DNN, MP, LMMSE and
ZP signal detection. Although the proposed method has higher complexity than the 2D-
CNN, it can achieve better BER performance. The complexity of SC-CNN-BiLSTM is a
linear function expressed as O((NM)2), and the complexity of the 2D-CNN is O(NM).
Therefore, the proposed SC-CNN-BiLSTM signal detection method has higher complexity
than the 2D-CNN. For BER performance, in Figure 6, at a BER of 5× 10−3 , the proposed
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SC-CNN-BiLSTM could achieve about 1.5 dB improvement compared with the 2D-CNN
under a statistic simulation channel model. In Figure 9, at a BER of 1× 10−3, the proposed
method could achieve about 2 dB of improvement compared with the 2D-CNN under the
NOF channel. In Figure 12, at a BER of 1.5× 10−3, the proposed method could achieve
about 1.5 dB of improvement under the KAU1 channel. The proposed method of SC-
CNN-BiLSTM had higher complexity than the 2D-CNN, but it could achieve better BER
performance in various channel conditions.

5. Discussion
5.1. Findings and Implications

In this paper, OTFS was investigated for UWA communication with severe Doppler
and multi-path effects. Specifically, a DL-based UWA OTFS receiver was designed, con-
sidering the characteristics of the UWA OTFS channel in the DD domain. The proposed
SC-CNN-BiLSTM-based OTFS signal detection method aims to extract effective signal
features with the existing ICI and ISI for reliable communication. The results, findings and
implications of this paper are discussed below.

This paper analyzed the OTFS system parameter design for UWA communication.
The Doppler shift in UWA communication was much more severe than that of radio
communication, as can be seen from Table 1. Even a slight movement of the transceiver
would cause an obvious Doppler shift. For effective UWA OTFS communication, this
paper discussed the system parameters that are applicable to the UWA channel for the
expected performance. The discussed details are in Section 2. The small value of ∆ f made
the interference severe, and the small value of N affected the detection accuracy.

This paper proposed a UWA OTFS signal detection method based on the deep neural
network. The conventional signal methods usually assume a linear system and a known
distribution of noise whose performance will downgrade in the complex actual channel. In the
research area of OTFS signal detection, the authors of [11,12] employed the conventional linear
signal detection methods ZF and LMMSE. In [13], the Bayesian-based nonlinear algorithm
MP was advocated for, and the interference term was assumed to be approximately Gaussian
distributed noise. However, in realistic UWA communication, the interference term may not
follow the Gaussian distribution. Although nonlinear algorithms can approximate optimal
performance through a large number of iterations, their complexity is still much higher than
that of LMMSE algorithms. For reliable receiver design, this paper proposed a data-driven, DL-
based UWA OTFS receiver. It neither has a linear assumption nor requires prior knowledge
of the UWA channel. The semi-experimental results with an experimental sea channel in
Figures 9 and 12 showed that our proposed method outperformed the typical LMMSE and
MP methods. The results indicate the power of deep learning in non-linear variation wireless
communication channels without prior knowledge.

This paper proposed an SC-CNN-BiLSTM-based OTFS signal detection method which
takes advantage of both the CNN and RNN for feature extraction and sequential data
processing. In the research field of DL-based OTFS signal detection, in [32], the 2D-CNN
was used instead of the signal detection, but a single CNN can only extract local features
and cannot process time series data efficiently. The authors of [33] conducted a preliminary
exploration of FC-DNN-based signal detection for UWA OTFS. However, the FC-DNN has
non-convex optimization and gradient vanishing problems, which limits its robustness. In
this paper, a DL-based signal detection neural network is proposed for UWA OTFS commu-
nication, named SC-CNN-BiLSTM, which cascades the CNN with BiLSTM for UWA OTFS
signal detection. Specifically, the proposed SC-CNN-BiLSTM-based OTFS signal detection
method employs the CNN to extract signal features and learn the hidden relationship
between its input and output. In addition, the SC structure provides information fusion
from the interaction of the current layer and previous layers. Furthermore, BiLSTM in the
network can continuously memorize and extract effective information with sequentially
transmitted symbols from the past to the future. The cascaded neural network structure
can extract signal features and effective information to recover distorted received symbols.
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As shown in Figures 6, 9 and 12, the proposed method had better BER performance than
the FC-DNN- and 2D-CNN-based signal detection methods for UWA OTFS. As shown in
Figure 13, the proposed method is most robust when the system has channel estimation
errors. The results show that the proposed SC-CNN-BiLSTM signal detection method had
better performance in multiple communication channels with different scales of multi-path
and Doppler effects. The results indicate that the integration of the CNN and RNN can
better extract the signal features of time series data. This thought could be employed in
various UWA communication scenarios under complex and varying UWA channels.

5.2. Limitations and Future Outlook

Although the proposed method outperformed the existing DL-based OTFS signal
detection scheme, there are still limitations to this type of method. The neural network is
used as a data-driven based method, which heavily relies on labeled data and empirical
parameters, and it is sensitive to data. The generalization ability should be further studied.
Furthermore, data-driven deep learning takes neural networks as a black box. The inter-
pretability of this type of model is not as clear as in traditional signal detection methods.

We can take a look at the future outlook of the DL-based receiver of OTFS. First,
for a data-driven DL receiver, the joint channel estimation and signal detection can be
considered for the whole system’s optimization, and then, for a model-driven DL receiver,
the expert knowledge can be integrated with deep learning. There are some previous studies
considering expert knowledge and deep learning for OFDM systems. For OTFS, researchers
have started trying to integrate DL into submodules or train some key parameters by
DL. The integration of DL and expert knowledge also seems attractive for future research.
Finally, a more powerful structure of deep neural networks could be designed according to
the system’s features and objectives.

6. Conclusions

In this paper, a DL-based signal detection neural network is proposed for UWA OTFS
communication, named SC-CNN-BiLSTM. In SC-CNN-BiLSTM, we cascade skip-connected
CNN with BiLSTM for UWA OTFS signal detection, which can extract signal features and
effective information to recover distorted received symbols. The numerical results show
that the proposed method had better BER performance than the ZF, LMMSE, MP, FC-DNN
and 2D-CNN signal detection methods in UWA OTFS. This was because the proposed
SC-CNN-BiLSTM-based OTFS signal detection method could use the CNN to extract the
signal features and learn the hidden relationship between its input and output. In addition,
the SC structure provided the information fusion from the interaction of the current layer
and previous layers. Furthermore, BiLSTM in the network can continuously memorize
and extract effective information with sequentially transmitted symbols from the past to
the future, which can mitigate the ICI and ISI. For UWA OTFS, the proposed SC-CNN-
BiLSTM signal detection method had better performance and low complexity in multiple
communication channels with different scales of multi-path and Doppler effects.
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Abbreviations
The following abbreviations are used in this manuscript:

UWA underwater acoustic
DL deep learning
OTFS orthogonal time frequency space
SC skip connections
OFDM orthogonal frequency division multiplexing
2D two-dimensional
TF time frequency
ISI intersymbol interference
BER bit error rate
ICI inter-carrier interference
ZF zero forcing
SNR signal-to-noise ratio
LMMSE linear minimum mean squared error
MP message passing
CNN convolutional neural network
LSTM long short-term memory
ISFFT inverse symplectic finite Fourier transform
CIR channel impulse response
SFFT symplectic finite Fourier transform
DeCNN deconvolutional neural network
SVM support vector machine
SGD stochastic gradient descent
Adam adaptive momentum
ReLU rectified linear unit

References
1. Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization.

IEEE Commun. Mag. 2009, 47, 84–89. [CrossRef]
2. Qarabaqi, Q.; Stojanovic, M. Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater

Acoustic Communication Channels. IEEE J. Ocean. Eng. 2013, 38, 701–717. [CrossRef]
3. Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L.; Willett, P. Multicarrier Communication over Underwater Acoustic Channels with

Nonuniform Doppler Shift. IEEE J. Ocean. Eng. 2008, 33, 198–209.
4. Tu, K.; Fertonani, D.; Duman, T.M.; Stojanovic, M.; Proakis, J.G.; Hursky, P. Mitigation of Intercarrier Interference for OFDM Over

Time-Varying Underwater Acoustic Channels. IEEE J. Ocean. Eng. 2011, 36, 156–171. [CrossRef]
5. Wang, C.; Yin, J.; Huang, D.; Zielinski, A. Experimental demonstration of differential OFDM under water acoustic communication

with acoustic vector sensor. Appl. Acoust. 2015, 91, 1–5. [CrossRef]
6. Fang, T.; Liu, S.; Ma, L.; Zhang, L.; Khan, I.U. Subcarrier modulation identification of underwater acoustic OFDM based on block

expectation maximization and likelihood. Appl. Acoust. 2021, 173, 107654. [CrossRef]
7. Jing, C.; Tang, X.; Zhang, X.; Xi, L.; Zhang, W. Time Domain Synchronous OFDM System for Optical Fiber Communications.

China Commun. 2019, 16, 155–164. [CrossRef]
8. Wang, X.; Wang, X.; Jiang, R.; Wang, W.; Chen, Q.; Wang, X. Channel Modelling and Estimation for Shallow Underwater Acoustic

OFDM Communication via Simulation Platform. Appl. Sci. 2019, 9, 447. [CrossRef]
9. Hadani, R.; A. Monk. OTFS: A new generation of modulation addressing the challenges of 5G. arXiv 2018, arXiv:1802.02623.
10. Ramachandran, M.; Surabhi, G.; Chockalingam, A. OTFS: A new modulation scheme for high-mobility use cases. J. Indian Inst.

Sci. 2020, 100, 315–336. [CrossRef]
11. Raviteja, P.; Viterbo, E.; Hong, Y. OTFS Performance on Static Multipath Channels. IEEE Wirel. Commun. Lett. 2019, 8, 745–748.

[CrossRef]
12. Tiwari, S.; Das, S.S.; Rangamgari, V. Low complexity LMMSE Receiver for OTFS. IEEE Commun. Lett. 2019, 23, 2205–2209.

[CrossRef]
13. Raviteja, P.; Phan, K.T.; Hong, Y.; Viterbo, E. Interference Cancellation and Iterative Detection for Orthogonal Time Frequency

Space Modulation. IEEE Trans. Wirel. Commun. 2018, 17, 6501–6515. [CrossRef]

http://doi.org/10.1109/MCOM.2009.4752682
http://dx.doi.org/10.1109/JOE.2013.2278787
http://dx.doi.org/10.1109/JOE.2011.2123530
http://dx.doi.org/10.1016/j.apacoust.2014.11.013
http://dx.doi.org/10.1016/j.apacoust.2020.107654
http://dx.doi.org/10.23919/JCC.2019.09.011
http://dx.doi.org/10.3390/app9030447
http://dx.doi.org/10.1007/s41745-020-00167-4
http://dx.doi.org/10.1109/LWC.2018.2890643
http://dx.doi.org/10.1109/LCOMM.2019.2945564
http://dx.doi.org/10.1109/TWC.2018.2860011


J. Mar. Sci. Eng. 2022, 10, 1920 20 of 20

14. Feng, X.; Esmaiel, H.; Wang, J.; Wang, J.; Qi, J.; Zhou, M.; Zeyad, A.H.; Sun, H.; Gu, Y. Underwater Acoustic Communications
Based on OTFS. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9
December 2020; pp. 439–444.

15. Bocus, M.J.; Doufexi, A.; Agrafiotis, D. Performance of OFDM–based massive MIMO OTFS systems for underwater acoustic
communication. IET Commun. 2020, 14, 588–593. [CrossRef]

16. Jing, L.; Zhang, N.; He, C.; Shang, J.; Liu, X.; Yin, H. OTFS underwater acoustic communications based on passive time reversal.
Appl. Acoust. 2022, 185, 108386. [CrossRef]

17. Hu, Y.; Wang, P.; Lin, Z.; Ding, M.; Liang, Y.-C. Machine Learning Based Signal Detection for Ambient Backscatter Communications.
In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6.

18. Yuan, Y.; Zhang, M.; Luo, P.; Ghassemlooy, Z.; Lang, L.; Wang, D.; Zhang, B.; Han, D. SVM-based detection in visible light
communications. Optik 2017, 151, 55–64. [CrossRef]

19. Tuma, M.; Rørbech, V.; Prior, M.K.; Igel, C. Integrated Optimization of Long-Range Underwater Signal Detection, Feature
Extraction, and Classification for Nuclear Treaty Monitoring. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 3649–3659. [CrossRef]

20. Jahanbakhshi, A.; Gilandeh, Y.K.; Momeny, M. A novel method based on machine vision system and deep learning to detect
fraud in turmeric powder. Comput. Biol. Med. 2021, 136, 104728. [CrossRef] [PubMed]

21. Jiao, J.; Sun, X.; Fang, L. An overview of wireless communication technology using deep learning. China Commun. 2021, 18, 1–36.
[CrossRef]

22. Ye, H.; Li, G.Y.; Juang, B.H. Power of Deep learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel.
Commun. Lett. 2018, 7, 114–11. [CrossRef]

23. Zhang, Y.; Li, J.; Zakharov, Y.; Li, X.; Li, J. Deep learning based underwater acoustic OFDM communications. Appl. Acoust. 2019,
154, 53–58. [CrossRef]

24. Zhang, J.; Cao, Y.; Han, G.; Fu, X. Deep neural network–based underwater OFDM receiver. IET Commun. 2019, 13, 1998–2002.
[CrossRef]

25. Liu, Y.; Zhou, F.; Qiao, G.; Zhao, Y.; Yang, G.; Liu, X.; Lu, Y. Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater
Acoustic Communication. J. Mar. Sci. Eng. 2021, 9, 1252. [CrossRef]

26. Zhang, Y.; Li, C.; Wang, H.; Wang, J.; Yang, F.; Meriaudeau, F. Deep learning aided OFDM receiver for underwater acoustic
communications. Appl. Acoust. 2022, 187, 108515. [CrossRef]

27. Wang, B.; Xu, K.; Zheng, S.; Zhou, H.; Liu, Y. A Deep Learning-Based Intelligent Receiver for Improving the Reliability of the
MIMO Wireless Communication System. IEEE Trans. Reliab. 2022, 71, 1104–1115. [CrossRef]

28. Li, J.; Xin, T.; He, B.; Li, W. IQ Symbols Processing Schemes With LSTMs in OFDM System. IEEE Access 2022, 10, 70737–70745.
[CrossRef]

29. Wang, S.; Yao, R.; Tsiftsis, T.A.; Miridakis, N.I.; Qi, N. Signal Detection in Uplink Time-Varying OFDM Systems Using RNN With
Bidirectional LSTM. IEEE Wirel. Commun. Lett. 2020, 9, 1947–1951. [CrossRef]

30. Naikoti, A.; Chockalingamam, A. A DNN-based OTFS Transceiver with Delay-Doppler Channel Training and IQI Compensation.
In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 628–634.

31. Li, Q.; Gong, Y.; Wang, J.; Meng, F.; Xu, Z. Exploring the Performance of Receiver Algorithm in OTFS Based on CNN. In Proceed-
ings of the 2022 IEEE International Conference on Communications(ICCC), Foshan, China, 11–13 August 2022; pp. 957–962.

32. Enku, Y.K.; Bai, B.; Wan, F. Two-Dimensional Convolutional Neural Network Based Signal Detection for OTFS System. IEEE
Wirel. Commun. Lett. 2021, 10, 2514–2518. [CrossRef]

33. Zhang, S.; Zhang, Y.; Chang, J.; Wang, B.; Bai, W. DNN-based Signal Detection for Underwater OTFS Systems. In Proceedings of
the 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Foshan, China, 11–13 August
2022; pp. 348–352.

34. Van Walree, P.A.; Socheleau, F.X.; Otnes, R.; Jenserud, T. The Watermark Benchmark for Underwater Acoustic Modulation
Schemes. IEEE J. Ocean. Eng. 2017, 42, 1007–1018. [CrossRef]

35. Vaze, C.S.; Varanasi, M.K. The degrees of freedom region and interference alignment for the MIMO interference channel with
delayed CSI. IEEE Trans. Inf. Theory 2012, 58, 4396–4417. [CrossRef]

36. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.

http://dx.doi.org/10.1049/iet-com.2019.0376
http://dx.doi.org/10.1016/j.apacoust.2021.108386
http://dx.doi.org/10.1016/j.ijleo.2017.08.089
http://dx.doi.org/10.1109/TGRS.2016.2522972
http://dx.doi.org/10.1016/j.compbiomed.2021.104728
http://www.ncbi.nlm.nih.gov/pubmed/34388461
http://dx.doi.org/10.23919/JCC.2021.12.001
http://dx.doi.org/10.1109/LWC.2017.2757490
http://dx.doi.org/10.1016/j.apacoust.2019.04.023
http://dx.doi.org/10.1049/iet-com.2019.0243
http://dx.doi.org/10.3390/jmse9111252
http://dx.doi.org/10.1016/j.apacoust.2021.108515
http://dx.doi.org/10.1109/TR.2022.3148114
http://dx.doi.org/10.1109/ACCESS.2022.3170410
http://dx.doi.org/10.1109/LWC.2020.3009170
http://dx.doi.org/10.1109/LWC.2021.3106039
http://dx.doi.org/10.1109/JOE.2017.2699078
http://dx.doi.org/10.1109/TIT.2012.2194270

	Introduction
	UWA-OTFS System Model
	SC-CNN-BiLSTM-Based Signal Detection for UWA-OTFS
	Architecture of the Proposed SC-CNN-BiLSTM Detector
	Training of the Proposed SC-CNN-BiLSTM Neural Network

	Numerical Results
	System Set-Up
	Simulation Results
	Experimental Results
	Robustness Analysis with UWA Non-Ideal Channel Estimation
	Computational Complexity Analysis

	Discussion
	Findings and Implications
	Limitations and Future Outlook

	Conclusions
	References

