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Abstract: In order to monitor traffic in congested waters, permanent video stations are now commonly
used on interior riverbank bases. It is frequently challenging to identify ships properly and effectively
in such images because of the intricate backdrop scenery and overlap between ships brought on by
the fixed camera location. This work proposes Ship R-CNN(SR-CNN), a Faster R-CNN-based ship
target identification algorithm with improved feature fusion and non-maximum suppression (NMS).
The SR-CNN approach can produce more accurate target prediction frames for prediction frames with
distance intersection over union (DIOU) larger than a specific threshold in the same class weighted
by confidence scores, which can enhance the model’s detection ability in ship-dense conditions. The
SR-CNN approach in NMS replaces the intersection over union (IOU) filtering criterion, which solely
takes into account the overlap of prediction frames, while DIOU, also takes into account the centroid
distance. The screening procedure in NMS, which is based on a greedy method, is then improved by
the SR-CNN technique by including a confidence decay function. In order to generate more precise
target prediction frames and enhance the model’s detection performance in ship-dense scenarios, the
proposed SR-CNN technique weights prediction frames in the same class with DIOU greater than
a predetermined threshold by the confidence score. Additionally, the SR-CNN methodology uses
two feature weighting methods based on the channel domain attention mechanism and regularized
weights to provide a more appropriate feature fusion for the issue of a difficult ship from background
differentiation in busy waters. By gathering images of ship monitoring, a ship dataset is created
to conduct comparative testing. The experimental results demonstrate that, when compared to the
three traditional two-stage target detection algorithms Faster R-CNN, Cascade R-CNN, and Libra
R-CNN, this paper’s algorithm Ship R-CNN can effectively identify ship targets in the complex
background of far-shore scenes where the distinction between the complex background and the ship
targets is low. The suggested approach can enhance detection and decrease misses for small ship
targets where it is challenging to distinguish between ship targets and complex background objects
in a far-shore setting.

Keywords: maritime management; ship monitoring; video image recognition; convolutional neural
network; feature fusion

1. Introduction

Due to the increase in inland waterway traffic, the probability of the occurrence of
ship traffic accidents is rapidly increasing [1]. It is necessary for the maritime departments
to strengthen the supervision and law enforcement of inland waterway transportation
to ensure the safety of ship navigation through precise recognition and target location
of passing ships in inland waterways. Inland waterway ship detection methods have
been proposed by researchers employing a variety of technologies throughout the last few
decades. At present, there are many kinds of ship detection methods, including automatic
radar plotting aid (ARPA) [2,3], laser measurement [4], automatic identification system
(AIS) [5–8], infrared imaging [9,10], video monitoring [11,12], light detection and ranging
(LiDAR) [13], as well as some new ship monitoring technologies [14,15]. Each kind of
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detection method has its advantages and disadvantages. Maritime radar can operate in
all weather conditions, has a broad detection range, and can take active measurements,
but it is readily hampered by impediments like buildings and has poor ability to block
interference. Although the laser measurement method has a wide detection range and
good range accuracy, it is expensive and requires a specific installation location. AIS can
obtain the position and speed of a ship accurately and reliably, but it requires that the
ship be properly installed and turned on with AIS equipment. Some small vessels are not
installed. In addition, AIS signals have packet loss problems, and a lot of work must be
done in data collation. Although infrared imaging is a method that can be used day or night
and has great anti-interference capabilities, its low resolution has an impact on detection
accuracy and makes it challenging to pinpoint the ship. Computer vision is mostly used in
video surveillance to detect ships. It offers the benefits of flexible deployment, economy,
and automatic target identification in challenging settings. Currently, effective monitoring
of inland vessels employing video surveillance systems has emerged as a development
trend due to the quick development of computer vision technology. It performs ship
detection via visible light images, which might usefully fill the gap left by the lack of other
monitoring techniques.

At present, the research on ship detection based on visible light image is mainly based
on the following platforms: (1) Ship detection based on space-based visible remote sensing
image [16], which mainly relies on satellite and aircraft platforms to obtain images and
then detect ships. It has the advantage of a large detection range, but it is easy to cause
small targets to be missed and cannot be monitored in real time. (2) Ship detection based
on the monitoring image of a mobile water platform [17,18]. It mainly refers to the real-
time monitoring of ships in the surrounding environment by relying on the water mobile
platform to achieve autonomous navigation, which requires high real-time monitoring and
model deployment to embedded devices. (3) Ship detection based on static shore platform
monitoring image [19–22], which is usually used in ports and coasts. The background of the
monitoring image remains basically unchanged, and it is used to monitor the ship’s state in
a specific area. The model can be deployed on desktop computers or cloud computers.

The following challenges with ship identification frequently arise from a perspective
in permanent camera stations on interior riverbank bases to monitor traffic in congested
waterways: (1) Background of the seaside region—buildings along the riverbank and on
the shoreline are readily a threat to ship targets. (2) Significant variation in ship scale—
inland rivers are home to enormous commercial ships, little fishing boats, and bamboo
rafts. (3) Ships crossing paths—during times of high traffic, inland rivers are prone to
dense ship arrangements that cause reciprocal occlusion of ships. Additionally, changes
in the environment, such as those caused by light, rain, fog, etc., might impact how well
ships can be identified and located. Therefore, accurately identifying ship targets in inland
waterways is a difficult task.

This paper mainly focuses on the ship detection of inland river static shore platform
based on monitoring images. Considering that the background is usually complex and
the ships in the monitoring area are prone to mutual occlusion, this paper proposes a
ship target detection algorithm SR-CNN with improved feature fusion and non-maximal
suppression based on Faster R-CNN.

The main contributions of this paper are as follows:

(1) This paper proposes a Soft-DIOU-NMS with weighted box fusion to improve the
accuracy and recall of ship detection.

(2) This paper proposes a hybrid weighted feature fusion method, which can reduce the
miss detection and error detection of ships in complex background environment and
improve the localization accuracy of ships.

The rest of this paper is organized as follows. Section 2 reviews previous literature on
ship detection. Section 3 proposes a ship target detection algorithm based on improved
feature fusion and non-maximal suppression. Section 4 introduces the details of the
experiment preparation, the experimental results, and a comparative analysis. Section 5
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analyzes the shortcomings of the current study and the next research directions. Section 6
proposes the conclusion of this paper.

2. Related Works

The current research on ship target detection based on visible light image is divided
into detection methods based on traditional image processing technology and detection
methods based on deep learning.

The traditional approach treats ship target detection as a classification problem. The
main steps are region of interest segmentation, feature extraction, and classifier classifica-
tion. Traditional ship detection methods include two main categories outlined below. (1)
Ship detection based on sky-sea line (SSL): Zhang [23] et al. established a marine region
model by detecting sky-sea line based on discrete cosine transform and then they used the
background subtraction method and foreground segmentation method to detect the ship’s
target. Chen [24] et al. extracted the sky-sea line by using the maximum between-class
variance (OTSU) algorithm and Hough transform and the ship’s position was detected by
the peak gray value. Shan et al. [25] proposed a maritime target detection algorithm that
mainly includes three stages of SSL estimation, SSL detection, and target saliency detection.
(2) Detection based on ship structure characteristics: Liu et al. [26] detected the light points
in the video image by Laplacian of Gaussian (LoG) and filtered the invalid points using
grayscale thresholding to achieve ship detection. Xin [27] proposed the use of OTSU for
image segmentation to determine the target area, match scale invariant feature transform
(SIFT) feature points to form a matching vector, and to analyze the matching vector in the
frequency domain to determine the number and location of ships. However, the recogni-
tion accuracy of this method is low. Shafer et al. [28] combined anomaly detection and
dictionary learning methods to develop a sparsely driven anomaly detector to detect and
track ship targets in video surveillance. However, traditional ship detection methods tend
to rely too much on the extraction of manual features and have poor generalization ability.
Therefore, the recognition rate and detection accuracy of these methods cannot meet the
practical requirements in complex environmental backgrounds such as extreme weather
environments (e.g., rain, haze, strong and weak light).

The dependence on whether to rely on anchor, target detection algorithms based on
deep learning can be divided into two categories: Anchor-Base and Anchor-Free. The
target detection algorithm of Anchor-Base can be divided into a single-stage algorithm
and a two-stage algorithm according to whether the candidate box is generated or not.
The two-stage algorithm first generates a series of candidate boxes and then the filter
high-quality candidate box is used for target classification and coordinate regression.
It is characterized by higher detection accuracy, but real-time performance needs to be
improved. Classical two-stage algorithms have R-CNN [29], Faster R-CNN [30], and Mask
R-CNN [31]. The single-stage algorithm takes the equidistant sampling points on the
detection graph as the center of the anchor box, and directly uses the anchor box and
the real box to achieve the classification and coordinate regression of the target. Such
methods are characterized by faster detection but slightly reduced accuracy, among which
the representative algorithms have YOLO [32], SSD [33], etc. The Anchor-Free target
detection algorithm includes a corner point based detection method and a key point based
detection method. The corner point based algorithm identifies the target bounding box
as a pair of key points and achieves target classification and localization by detecting
corner point features, among which the representative algorithm is CornerNet [34]. The
key point based algorithm predicts the probability that each location in the feature map
belongs to the centroid and determines the target edges using the feature heat map, the
classic of which is CenterNet [35]. Deep learning has now achieved notable success in
target detection, and more and more researchers are introducing deep learning into ship
detection [36]. Compared with traditional ship detection methods, deep learning-based
detection methods greatly improve the effectiveness of ship detection. Shao et al. [37]
developed a saliency-aware convolutional neural network-based model for extracting
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discriminative ship features in coastal marine images. Kim [38] et al. proposed a new
probabilistic ship detection and classification method to determine the class of ships by
considering the confidence of the deep learning detector as probabilities and combining the
probabilities of consecutive images over time through Bayesian fusion. In order to improve
the detection capability of small target ships, Chen et al. [17] proposed a hybrid deep
learning approach combining generative adversarial networks (GAN) and convolutional
neural networks (CNN). Sun et al. [20] proposed a ship detector NSD-SSD based on a
multiscale feature fusion (MFF), prediction module (PM) and a priori box reconstruction
(RPB) visual images. For ship identification under different lighting and weather conditions,
Liu et al. [21] achieved more reliable and robust ship target detection under adverse weather
conditions by redesigning the anchor box size, predicting the localization uncertainty of the
enclosing box, introducing soft non-maximal suppression, and reconfiguring the hybrid
loss function. Based on Yolov3, Chang et al. [22] combined visible and infrared images,
then selected a suitable input image size and detection scale, fewer convolution filters, and
spatial pyramid pooling (SPP) to achieve effective detection of ships during day and night.
Chen et al. [39] proposed an end-to-end fully convolutional Anchor-Free network by using
key points to generate a ship envelope box and introducing feature fusion modules and
feature enhancement modules. This method has better detection robustness for rain and fog
occlusion, scale change, and neighboring ship interference. In addition, some researchers
have combined traditional ship detection methods with detection methods based on deep
learning. For example, Li et al. [18] combined traditional image processing methods with
deep learning methods to propose a multi-level hybrid network-based ship detection and
identification method, but this method can only detect ships near the sky-sea line. Qi
et al. [40] combined image downscaling, scene semantic reduction and topic reduction with
Faster R-CNN to speed up the model detection. However, the above studies are more about
improving the inference speed of the model by sacrificing accuracy.

For stationary static monitoring systems, such as ports, where ships move slowly,
there is no need to strictly limit the size and power consumption of the computing devices.
The models can be deployed on desktop computers. Few studies have been conducted
on this aspect. Therefore, based on the review and analysis of ship detection related
work, this paper studies ship detection based on complex coastal scenarios to improve the
detection and localization accuracy of ships while reducing ship misdetection and missed
detection target.

3. Methodologies
3.1. Network Architecture

Faster region-based convolutional neural network (Faster R-CNN) is a two-stage de-
tector. It consists of region proposal network (RPN) and fast region-based convolutional
neural network (Fast R-CNN), which share the feature convolution network. RPN generates
regions that may contain objects; Fast R-CNN divides these regions into objects or back-
grounds and refines the boundaries of the regions. In this paper the benchmark model is
Faster R-CNN with feature pyramid networks [41] (FPN). First, by analyzing the problems
of the NMS screening mechanism and screening criteria, we propose a weighted box fusion
Soft-DIOU-NMS to improve it. Second, the features are directly added in the feature fusion
of the benchmark model, without considering the influence of different fusion methods on
the model performance. We explored this issue and proposed a hybrid weighted feature
fusion method by comparing different fusion methods. Finally, the improved two methods
are applied to the benchmark model, and the optimized detection framework is called
ship region-based convolutional neural network (SR-CNN), whose structure is shown in
Figure 1.
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3.2. Soft-DIOU-NMS with Weighted Box Fusion

The model generates a large number of candidate boxes during ship detection. These
boxes may overlap, so we need to filter them. Non-maximum suppression (NMS) [42]
is the classical method for removing redundant candidate boxes. Its confidence reset
formula is shown in Equation (1). However, it has the following shortcomings: (1) Too
strict screening mechanisms may lead to missed detection target; (2) the screening criteria
only consider the overlap area of the two boxes, ignoring the distance between them; (3)
when determining the final result, only the prediction box with the maximum confidence
of classification is considered, but the localization accuracy of the prediction box with the
maximum confidence is not necessarily optimal.

si =

{
0, IOU(bm, bi) ≥ Nt
si, IOU(bm, bi) < Nt

(1)

where bi is the i-th candidate box, si is the classification confidence corresponding to bi, bm
is the candidate box with the highest confidence, and Nt is the non-maximum suppression
threshold.

In order to solve the above problems, we propose a Soft-DIOU-NMS based on
weighted frame fusion. On the one hand, inspired by Soft-NMS [43], a penalty function f(x)
is introduced, and the DIOU [44] of the candidate box bm with the largest confidence and
the prediction box bi is used as the input of f(x). Then, f(x) is multiplied by the confidence
score si as the final confidence score, and the calculation process is shown in Equation (2).

si =

{
si f (DIOU(bm, bi)), DIOU(bm, bi) ≥ 0

si , DIOU(bm, bi) < 0
(2)

DIOU adds a measure of the distance between two boxes based on IOU. It calculates
the overlap area and the distance between the center points of the two boxes, which can
more comprehensively describe the position relationship between the boxes. The schematic
diagram is shown in Figure 2 and the calculation formula is shown in Equation (3).

DIOU =
A ∩ B
A ∪ B

− (
d2

c2 )
β

(3)

where A, B represent two ship candidate boxes, d represents the distance between the center
points of two candidate boxes, c represents the diagonal distance of the smallest box C
containing both ship candidates, and β is the center point distance penalty magnitude.
After pre-experiment we found that the model performs best when the value of β is 0.6.
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The penalty function f(x) is shown in Equation (4).

f (DIOU(bm, bi)) = exp(−DIOU(bm, bi)
2

σ
) (4)

where the parameter σ is taken as 0.5 according to Section 6.2 of Ref. [43].
On the other hand, when determining the final candidate box, we think that the

classification confidence of the candidate box is not strongly correlated with the localization
accuracy. Sometimes the low-confidence candidate box may have higher localization
accuracy than the high-confidence candidate box. For example, in Figure 3, although the
white box can detect well the main part of the ship, the edge part of the ship is not predicted
well. However, the red weighted fusion box can detect well all components of the ship.
Therefore, we take the weighted fusion box as the final candidate box. The process of
weighted fusion box is as follows: First, the DIOU of each candidate box and the candidate
box with the largest confidence are calculated. Then candidate boxes with DIOU greater
than threshold α are selected. Finally, the selected candidate box and the candidate box
with the largest confidence are weighted according to the confidence to determine the final
candidate box.
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The formula for the weighted fusion candidate box is shown in Equation (5).

M′ = ∑n
i=1 si · bi + sm · bm

sm + ∑n
i=1 si

(5)

where M’ is the weighted fusion candidate box, bi is the i-th candidate box, si is the
classification confidence corresponding to bi, bm is the maximum confidence candidate box,
sm is the classification confidence corresponding to bm, and n is the number of candidate
boxes finally selected.

The proposed Soft-DIOU-NMS with weighted fusion box algorithm pseudocode is
shown in Algorithm 1.

Algorithm 1 Pseudocode of Soft-DIOU-NMS with weighted fusion box.
Soft-DIOU-NMS with weighted fusion box

Input: B = {b1, · · · , bN}, S = {s1, · · · , sN}, α

B is the list of one class initial detection boxes
S contains corresponding detection scores
α is bounding box location information fusion threshold

Output: D, S
1 D← { }
2 while B 6= empty. do
3 m← argmax S
4 M← bm
5 if f(DIOU(bm, bi)) ≥ α. then
6 M′ = ∑n

i=1 si ·bi+sm ·bm
sm+∑n

i=1 si

7 end if
8 D← D ∪M′ ; B← B−M
9 for bi in B do
10 if f(DIOU(bm, bi)) ≥ 0. then
11 si ← si f (DIOU(bm, bi))
12 end if
13 end for
14 end while

3.3. Hybrid Weighted Feature Fusion

In the feature extraction network, the shallow feature has low semantics due to less
convolution, but it contains more image texture information such as location and details.
The deep feature contains more global semantic information, but its resolution is low and
its perception of details is poor [45]; FPN enhances the semantic information of low-level
features by fusing high-level features with low-level features from top to bottom. This
improves the ability to detect small targets. However, when feature fusion is carried out
by FPN, the features from different feature layers are added directly according to the
same weight. Different weights in the fusing features can have different effects on the
performance of the model. Therefore, we use an attention mechanism and add additional
weights to the feature layers to make the network learn the importance of different input
features autonomously.

The first feature fusion method is ECA-based weighted feature fusion. It mainly uses
the channel domain-based attention module efficient channel attention (ECA) [46] to learn
the weight values of features in each channel. The main idea of ECA is to obtain the
average value of each channel feature through the global average pooling, and then learn
the weight of each channel through a weighted one-dimensional convolution. The size
of the convolution kernel k represents the cross-channel information interaction rate of
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the module, which can be adaptively determined by the total number of channels. The
calculation formula is shown in Equation (6).

k = ϕ(C) =
∣∣∣∣ log2 C + b

γ

∣∣∣∣
odd

(6)

where k is the size of the convolution kernel, C is the total number of channels, and odd is
the nearest odd number. In this paper, we set γ and b to 2 and 1 according to Section 3.2.3
of Ref. [46].

The structure of the ECA module is shown in Figure 4, and its operation process is
shown in Equation (7).

ECA(x) = σ(Conv1x1
1d (GAP(x)))× x (7)

where σ is the Sigmoid activation function, Conv1X1
1d denotes the one-dimensional convolu-

tion operation with k kernel, GAP denotes the global average pooling operation, and x is
the input tensor.
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After learning the weight value wi of each channel in the feature layer pi through
the ECA module, the original feature pi is not multiplied directly by the learned weight
wi. Instead, the weights of different feature layers are weighted and fused to obtain the
fused feature layer p’

i. The fusion structure of the feature layer is shown in Figure 5. The
calculation process is as follows:

wi = σ
(

Conv1x1
1d (GAP(pi))) (8)

wi+1 = σ
(

Conv1x1
1d (GAP(pi+1))) (9)

p′i =
pi·wi + pi+1·wi+1

wi + wi+1
(10)

where, pi represents the shallow feature, pi+1 represents the deep feature after sampling, wi
represents the weight value of each channel learned by the attention mechanism ECA of
the feature layer pi, wi+1 is the same.
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The second feature fusion method is normalized weight feature fusion. By adding
an autonomously learnable weight for different input feature layers, it makes the network
learn the importance of each feature layer. To ensure the stability of training and minimal
computational cost [47], we use weight normalization to constrain the range of each weight,
and the calculation process of each weight is shown in Equation (11):

w′i =
f (wi)

ε + ∑1
j f (wi)

(11)

where w′i denotes the normalized weight value of wi
′, f (wi) denotes that wi ≥ 0 is guaran-

teed by applying the rule activation function to the weights, and ε represents a constant of
0.0001 here to avoid denominator 0.

The normalized weights are multiplied with different feature layers and then summed
up. The calculation process is as in Equation (12).

p′i = ∑j w′i pi (12)

where pi represents the input feature map and w′i represents the normalized weight value
of feature layer pi.

The ECA-based weighted feature fusion module can achieve fine feature fusion,
especially for high-resolution feature fusion., but its computational cost is higher. The
computational cost of the normalized feature fusion method is lower, but it also cannot
realize the feature fusion at the channel level. Therefore, based on FPN, we apply two
feature fusion methods to propose four hybrid weighted feature fusion schemes as shown
in Figure 6.
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4. Experiments and Results
4.1. Dataset Description

To validate the effectiveness of the proposed algorithm, the research team collected
and labeled 10,000 pictures of ships. It includes six categories: liner, container ship, bulk
carrier, island reef, other ships, and sailboat. In order to visualize the size and number
distribution of ships in the dataset, we normalized the width and height of all ship targets
to draw a visual distribution map, as shown in Figure 7. In this paper, the criteria for
classifying target size are small targets with pixel sizes below 322, medium targets between
322 and 962, and large targets above 962. The dataset is in COCO standard format, and the
ratio of training set to test set is 8:2 for the experiments.

4.2. Evaluation Metrics

All experimental evaluations were calculated using the COCO API and the evaluation
metrics include AP, AP50, AP75, APS, APM, APL, ARall-100. Among them, AP refers to
the average accuracy, that is, the average precision rate of each category when predicting
multiple categories; AP50 and AP75 mean the average accuracy at IOU thresholds of 0.5
and 0.75 respectively; APS, APM, APL refer to the average accuracy of the target size under
different pixel area; ARall-100 refers to the average recall rate of all categories when each
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one picture does not exceed 100 test results, that is, the average recall rate of each category
when predicting multiple categories.
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4.3. Experimental Environment and Parameter Settings

For the experimental platform, the CPU is Intel Xeon Silver 4210R @ 2.40 GHz with
32 GB of RAM and the GPU is GeForce RTX3090 with 24 GB of video RAM. In terms of
the software environment, the operating system is a 64-bit Win10 and the deep learning
framework is Pytorch1.10.0. In this paper, all experiments were conducted based on the
open source object detection framework mmdetection [48]. All models were trained for
24 epochs, the initial learning rate was 0.02, the sixteenth epoch learning rate penaltized to
1/10 of the original, and the rest of the parameters were mmdetection default parameters.

4.4. Experimental Results and Analysis
4.4.1. Soft-DIOU-NMS with Weighted Box Fusion Experiment

The super parameter α was introduced into the Soft-DIOU-NMS with weighted box
fusion post-processing algorithm. In order to study the influence of different α values on
the Soft-DIOU-NMS with weighted box fusion: first, the original NMS was replaced by
soft-NMS and the confidence attenuation function was selected as Gaussian function for
the experiment; then the filter criteria from IOU to DIOU was replaced; finally, the influence
of different α on the model’s detection performance was researched.

As shown in Table 1, first, after replacing the post-processing algorithm NMS with Soft-
NMS in Faster-RCNN, the mAP increased by 1.1%. Second, when replacing the original
screening criterion IOU with DIOU, the model detection accuracy and recall rate are slightly
improved compared with Soft-NMS, which are 0.1% and 0.7%, respectively. This shows
that using DIOU as a screening criterion is more reasonable. Finally, when the weighted
fusion boxes algorithm is introduced, the detection accuracy of the model is improved
under different α values. The maximum value of mAP was 53.1% when α was 0.85, which
was 1.0% higher than that of Soft-NMS. This shows that it is not reasonable to only select
the prediction box with the highest classification confidence as the final prediction box in
the post-processing algorithm. The classification confidence of the prediction box is not
strongly correlated with the localization accuracy. It is necessary to consider the prediction
box under different confidences to obtain the final target prediction box.



J. Mar. Sci. Eng. 2022, 10, 1903 12 of 21

Table 1. The influence of different α on Soft-DIOU-NMS with weighted box fusion.

AP AP50 AP75 APS APM APL ARall-100

Baseline 51.0 78.4 55.3 6.1 23.0 58.8 60.8
Soft-NMS (Gaussian) 52.1 78.1 57.9 6.4 23.6 60.2 67.0

Soft-NMS (DIOU) 52.2 78.0 58.1 6.4 23.6 60.2 67.7
Candidate box fusion (α = 0.70) 52.5 78.0 57.6 6.1 23.9 60.6 66.4
Candidate box fusion (α = 0.75) 52.8 78.0 58.0 6.2 23.9 60.9 66.9
Candidate box fusion (α = 0.80) 53.1 78.0 57.8 6.3 24.0 61.3 67.6
Candidate box fusion (α = 0.85) 53.1 77.9 57.8 6.3 23.3 61.4 67.9
Candidate box fusion (α = 0.90) 52.9 78.0 57.8 6.3 24.0 61.1 68.2

As shown in Figure 8, when the fusion threshold α gradually increases, the detection
accuracy first increases and then decreases, and is higher than that without fusion. However,
the detection time decreases with the increase of threshold α. This is because the larger the
threshold α, the less weighted are the prediction boxes. The detection accuracy is the same
for threshold values α equal to 0.8 and 0.85, but the detection time of the model is shorter
for α equal to 0.85. Therefore, the threshold value α of the subsequent experiment is 0.85.
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4.4.2. Hybrid Weighted Feature Fusion Experiment

The ECA-based weighted feature fusion module learns the weights of different feature
layers by using the channel-based domain attention module ECA. Then the learned weights
are used to weight the features of different channels to achieve feature fusion. Adding
additional weights to the feature layers can also autonomously adjust the importance of
different feature layers to achieve feature fusion. In order to explore the influence of the two
feature fusion methods on the detection ability of the model, on the basis of Faster-RCNN,
the four feature fusion schemes proposed in Section 3.3 were verified, and also compared
with the classical PAFPN [49] structure.

It can be seen from Table 2 that the four feature fusion schemes proposed, effectively
improve the detection ability of the model. Among them, B-FPN has the greatest improve-
ment. Compared with the original FPN, mAP increases by 2.5% and ARall-100 increases by
1.5%. Compared with PAFPN, mAP increases by 0.7%, and ARall-100 increases by 0.5%. This
shows that the hybrid weighted feature fusion method proposed can effectively improve
the localization accuracy of the model for the target and reduce the target miss detection.
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Table 2. Comparison of different FPN structure detection results.

AP AP50 AP75 APS APM APL ARall-100

Baseline 51.0 78.4 55.3 6.1 23.0 58.8 60.8
PAFPN 52.8 79.4 57.1 6.7 24.7 60.5 61.8
A-FPN 52.0 78.4 55.4 5.2 22.4 60.2 61.2
B-FPN 53.5 79.0 57.3 7.1 25.2 61.4 62.3
C-FPN 52.2 78.3 56.2 5.8 23.6 60.3 61.2
D-FPN 52.5 78.7 56.8 6.2 24.4 60.6 61.7

In order to further analyze the role of each module of B-FPN, we tested the model
detection effect when only normalized weight feature fusion is added to the upper two
layers and only ECA-based weighted feature fusion is added to the lower layer.

As shown in Table 3, adding normalized weight feature fusion to only the top two
layers, and ECA-based weighted feature fusion to only the bottom layer can both improve
the localization accuracy and recall of the model. Moreover, only adding ECA-based
weighted feature fusion at the lowest level can improve the detection ability of the model
better, which further verifies that ECA-based feature fusion can achieve efficient feature
fusion for high-resolution feature maps.

Table 3. B-FPN ablation experiments.

AP AP50 AP75 APS APM APL ARall-100

Baseline 51.0 78.4 55.3 6.1 23.0 58.8 60.8
Only_ Normalized 52.4 78.6 56.1 7.2 23.2 60.4 61.7
Only_ECA-based 52.7 79.0 57.1 7.3 23.5 60.6 62.0

B-FPN 53.5 79.0 57.3 7.1 25.2 61.4 62.3

4.4.3. Combination Experiment of Two Methods

In order to further verify the effect of the two methods, the combination of the B-
FPN(Method1) and Soft-DIOU-NMS with weighted box fusion (Method2) was used in the
benchmark algorithm Faster R-CNN for the experiments.

It can be seen from Table 4 that after the final combination of the two methods, the mAP
of the model increases by 3.9% and ARall-100 also increases to a certain extent. Therefore,
the improved method proposed in this paper can effectively improve the detection ability
of the model and achieve more accurate localization of the ship target.

Table 4. Combination experiment of two improved methods.

Method1 Method2 AP AP50 AP75 APS APM APL ARall-100

51.0 78.4 55.3 6.1 23.0 58.8 60.8√
53.5 79.0 57.3 7.1 25.2 61.4 62.3√ √
54.9 78.8 59.5 7.4 26.1 63.0 68.3

4.4.4. Visual Comparative Analysis

The model can be explained by the generated heat map. We use the process that each
position on the feature map will be repeatedly extracted and discarded with the continuous
stacking of convolution layers. The feature map finally retains useful feature information.
The learned feature information is linearly combined to form an activation feature map.
Then, the activation feature map is restored to the same size as the original map by using
the up-sampling and the original image is added with the activation feature map. In this
way, the proposed hybrid feature fusion method is visually interpreted and analyzed.

As shown in Figure 9b, the shallow features of the feature extraction network contain
more texture position information, while the deep features contain more semantic informa-
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tion. Compared with P2–P5 in Figure 9c–e, it can be found that the different feature fusion
schemes have a great influence on the focus area of the model. Both PAFPN and FPN can
learn effectively the target area. However, B-FPN is more accurate than PAFPN and FPN.
To sum up, through visualization results of feature layer, B-FPN can more effectively use
multi-scale structure to learn ship characteristics and more accurately detect ship targets.
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4.4.5. Comparative Analysis of the Detection Results of the Two Methods under Different
Backgrounds

In order to reflect the impact of the two improved methods more intuitively on the
performance of the target detection model, single-target images in simple scenes and



J. Mar. Sci. Eng. 2022, 10, 1903 15 of 21

multi-target images in complex scenes were selected for testing. The images were first
detected using the benchmark algorithm, and then the images were detected using the
improved algorithm. In the following figure the green box indicates the real target box, the
yellow box indicates the missed ship target, and the other color boxes indicate the predicted
boxes of the model. The fonts above the anchor box represent the target category and the
classification confidence, respectively.

The results of the detection of the baseline algorithm (a) and the improved algorithm
(b) for simple and complex scenes are shown in Figure 10. It can be seen that the prediction
box localization is more accurate after the Soft-DIOU-NMS with weighted box fusion
processing; At the same time, for dense targets, the original NMS readily causes target miss
detection, while using the improved algorithm can avoid target miss detection.
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As shown in Figure 11, in simple scenes, the hybrid weighted feature fusion (B-FPN)
can effectively identify the ship target, while FPN cannot distinguish the ship body from
the background and wrongly classifies the bulk carrier’s head as another ship; in complex
scenes, the FPN has missed the detection target, but B-FPN can better learn the ship features
to reduce the occurrence of the missed detection target.
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Figure 11. Comparison of FPN and B-FPN detection results (Green box is real target box and yellow
box is missed ship target).

4.4.6. Compare with Other Methods

In order to further verify the performance of the proposed algorithm for ship target
detection, SR-CNN was compared with three representative two-stage target detection
algorithms which are Faster R-CNN, Cascade R-CNN, and Libra R-CNN. These methods
use the same data partitioning and optimization parameters, using pre-trained weights
on ImageNet.

As shown in Table 5, compared with the other detection algorithms, SR-CNN is able to
achieve better detection results under the same conditions. In fact, the parameters (Params)
of Faster R-CNN are 28.147502 M and the Params of SR-CNN are 28.147514 M. Therefore,
compared to the Faster R-CNN with backbone as Resnet18 and neck as FPN, the SR-CNN
improves mAP by 3.9% with only a few parameters and floating-point operations per
second (FLOPs) added. Compared to Faster R-CNN with backbone as Resnet50, neck as
FPN and backbone as Resnet18, neck as PAFPN, when the Params and FLOPs of SR-CNN
are far less than these two structures, the mAP of SR-CNN increases by 0.8% and 2.1%,
respectively. Compared with Cascade R-CNN, although the mAP of the model is the
same, the Params of SR-CNN are only half of Cascade R-CNN and the FLOPs are smaller.
Compared with Libra R-CNN, SR-CNN also has smaller Params and FLOPs, while the
mAP of the model is improved by 0.9%.

In order to compare the detection results of different algorithms more intuitively, two
typical scenarios of nearshore and remote shore were selected from the ship dataset and
Faster R-CNN benchmark algorithm, Cascade R-CNN algorithm, Libra R-CNN algorithm
and SR-CNN algorithm were used for detection. The comparison results are shown in
Figures 12 and 13. In the figures, the yellow box represents the missed ship target and the
orange box represents the incorrect ship detection.



J. Mar. Sci. Eng. 2022, 10, 1903 17 of 21

Table 5. Performance comparison of different detection algorithms.

Algorithm Backbone FLOPs (G) Params (M) mAP (%)

Faster R-CNN+FPN Resnet18 148.00 28.15 51.0
Faster R-CNN+FPN Resnet50 203.44 41.15 54.1

Faster R-CNN+PAFPN Resnet18 174.02 31.69 52.8
Cascade R-CNN+FPN Resnet18 150.02 55.94 54.9

Libra R-CNN+FPN Resnet18 149.11 28.41 54.0
SR-CNN Resnet18 148.03 28.15 54.9
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As can be seen from Figure 12, unreasonable feature fusion in Faster R-CNN algorithm
leads to low localization accuracy in the nearshore complex background. The small ship
has missed and false detections in Figure 12a. Cascade R-CNN sets different overlap
thresholds for each R-CNN through the joint multi-level network structure to balance
the distribution of positive and negative samples of the network, thus obtaining a higher
precision prediction box. However, it still has missed detection of small target ships
and ship targets in complex backgrounds, as shown in Figure 12b. Libra R-CNN has
significantly improved the detection capability for small target ships, but there are still
missed and false detections of ship targets in complex backgrounds, as shown in Figure 12c.
SR-CNN can not only identify ship targets in the complex background of offshore scenes,
but also reduce false detection, as shown in Figure 12d.

As can be seen from Figure 13, due to the complexity of the background in the remote
shore scene and the high ambiguity of the ship itself, the discrimination between the ship
and the background is low, so it is more likely to cause missed detection of ship targets. As
shown in Figure 13a,b, Faster R-CNN algorithm and Cascade R-CNN algorithm are not
sensitive to small-scale target ship targets in remote shore areas. Libra R-CNN has better
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detection of small targets, but it still misses some small targets in complex backgrounds, as
shown in Figure 13c. SR-CNN improves the top-down information flow through feature
fusion to provide low-level details needed for coordinate regression and improve the
positioning ability of ship features as shown in Figure 13d.
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5. Discussion

With the development of economy and society, the demand for inland waterway cargo
transportation is increasing, and ship transportation is becoming more and more frequent.
However, due to the complex navigation environment, the large number of ships, and the
frequent occurrence of overtaking and crossing, various types of traffic accidents occur
frequently. This shows that the maritime supervision ability of inland ships is obviously
insufficient. Therefore, it is particularly important to improve the existing water traffic
safety supervision system. A video surveillance system can visually display the water
traffic and ship movements. It has become an important monitoring method to detect ships.
However, the processing of video surveillance at this stage usually relies mainly on manual
viewing, which is inefficient. This is also not conducive to compatibility with other ship
monitoring methods.

Based on the above reasons, this paper applies the target detection technology based
on deep learning for the identification of ships in inland rivers. We optimized the existing
methods according to the characteristics of the inland river environment. To a certain
extent, the problems of false detection, missed detection, and inaccurate positioning in
ship detection under the complex background of inland waterways were improved. For
example, in the first example of Figures 10 and 11, the ship target boxes obtained by our
method are closer to the real ship contour. Therefore, our method is more accurate for
ship positioning. In the second and third examples of Figure 12, our method can detect
missing ship targets in complex backgrounds. It indicates that our method improves the
performance of the model in complex environments. However, this technology still has
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some limitations: first, object detection techniques based on deep learning often require a
large amount of data for training to obtain strong robustness. However, the lack of diversity
of shooting angles of ships in the data collected in this paper affects the overall recognition
performance of the model. Second, this paper only focuses on ship recognition under
illumination conditions, and does not consider ship recognition under night conditions.
At night, the ship navigation environment is more complex, and more effective means
are needed to detect it. Finally, this study only considers the ship recognition method
based on video images. The advantages of different methods are not combined to achieve
more efficient and accurate ship identification. In view of these shortcomings, the next
research work will be carried out from the following aspects: (1) Collecting multi-angle ship
images to expand the data set to enhance its universality; (2) combining with multi-spectral
image recognition technology to improve the stability of ship identification in different
environments—for example, ship recognition based on infrared images can be considered;
(3) combining different detection methods, comprehensively analyzing the advantages and
disadvantages of different methods, and combining different methods to achieve more
comprehensive ship monitoring, such as video, AIS, and radar.

6. Conclusions

In order to address the issues of false detection, missed detection, and inaccurate
localization in ship identification for maritime video surveillance in the challenging en-
vironment of inland rivers, an improved feature fusion and non-maximum suppression
ship target detection algorithm, SR-CNN, is proposed in this paper. By upgrading the
post-processing technique through Soft-DIOU-NMS with weighted box fusion, it enhances
the model’s capacity to detect ships in surveillance photographs in dense settings. The
relevance of various features is determined using ECA-based weighted feature fusion and
normalized weighted feature fusion, which makes feature fusion more logical. This can
enhance noise interference in complicated situations and lessen information loss during the
fusion process. Finally, a ship dataset was produced by collecting ship monitoring images
and comparing the proposed algorithm with the classical algorithm. The results show that
the detection accuracy of SR-CNN is improved by 3.9% and the recall rate is improved by
1.5% compared with Faster R-CNN.
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