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Abstract: Predicting the maneuvering motion of an unmanned surface vehicle (USV) plays an
important role in intelligent applications. To more precisely predict this empirically, this study
proposes a method based on the support vector regression with a mixed kernel function (MK-SVR)
combined with the polynomial kernel (PK) function and radial basis function (RBF). A mathematical
model of the maneuvering of the USV was established and subjected to a zig-zag test on the DW-
uBoat USV platform to obtain the test data. Cross-validation was used to optimize the parameters of
SVR and determine suitable weight coefficients in the MK function to ensure the adaptive adjustment
of the proposed method. The PK-SVR, RBF-SVR, and MK-SVR methods were used to identify the
dynamics of the USV and build the corresponding predictive models. A comparison of the results
of the predictions with experimental data confirmed the limitations of the SVR with a single kernel
function in terms of forecasting different parameters of motion of the USV while verifying the validity
of the MK-SVR based on data collected from a full-scale test. The results show that the MK-SVR
method combines the advantages of the local and global kernel functions to offer a better predictive
performance and generalization ability than SVR based on the nuclear kernel function. The purpose
of this manuscript is to propose a novel method of dynamics identification for USV, which can help
us establish a more precise USV dynamic model to design and verify an excellent motion controller.

Keywords: unmanned surface vehicle; support vector regression; mixed kernel function; predicting
maneuvering motion

1. Introduction

With technological developments, the unmanned surface vehicle (USV) has been
developed as a new type of intelligent platform that plays a significant role in military
and civilian tasks, such as automated patrolling, hydrological exploration, and monitoring
aquaculture. Their strong nonlinear movements and random environmental noise impose
stringent requirements on the design of intelligent systems for USVs [1]. Autonomous
navigation and automatic collision avoidance are critical for their intelligent application,
and a model to accurately predict their maneuvers is essential for these tasks. Identification
based on a full-scale or free-running test is primarily applied in models to predict the
maneuvering of ships.

Classic methods of system identification, such as the least-squares method, the Kalman
filter and maximum likelihood estimation, have been applied to identify and establish
models to predict the maneuvering motions of ships. Subsequent research revealed signif-
icant deficiencies in traditional algorithms: for example, their dependence on the initial
values of the variables or parameter estimation, poor generalization performance, and
difficulty of application. In recent decades, artificial intelligence-based approaches have
compensated for these shortcomings, and have been widely applied. Examples include
the neural network, support vector machine (SVM), and ensemble learning. Rajesh and
Bhattacharyya [2] applied the artificial neural network method to identify and model the
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motion of a large tanker at sea. Recursive neural networks, feed-forward neural networks,
and long short-term memory-based deep neural networks have been used to identify the
dynamics of ships [3–5]. Ensemble learning based on several artificial intelligence-based
algorithms has been used to establish the model of USV, and the results have shown that
this method is superior to any single base learner [6].

Support vector regression (SVR), which applies SVM to regression problems, has a
strong capacity for processing nonlinear data, and can theoretically overcome the issue of
dimensionality as well as the problem of the local extrema. Luo and Zou [7] were the first to
study the applicability of SVM to parameter identification in response models of ship mo-
tion. They proved the validity of the method, and subsequently [8] used the least-squares
SVM (LS-SVM) to identify the parameters of the relevant hydrodynamic models. Bo and
Aiguo [9] examined the SVR model and confirmed its viability for use in predicting a ship’s
motion. Wang et al. [10] applied the nu-SVM with an adjusted parameter ε and automat-
ically controlled the number of SVs to construct a model to predict the motion of ships,
and verified its robustness using different noise models. Particle swarm optimization [11],
the artificial bee colony algorithm [12] and the cuckoo search algorithm [13] have been
used to optimize the hyper-parameters of the LS-SVM. Most studies in the literature have
focused on the accuracy of the algorithm for system identification, whereas its learning and
generalization performances have not been tested sufficiently rigorously.

This study proposes a robust method to predict the maneuvering of USVs by combin-
ing the SVR algorithm with a mixed kernel (MK) function, named MK-SVR. To enable the
adjustment of this method, cross-validation was used to determine the weight coefficients
of the MK function. Contaminated data obtained from full-scale tests of a USV were used to
test the proposed method by considering the effects of the parameters of motion on its flow
velocity. A comparison of the predictions of SVR models with an MK and single kernel
function verified the efficiency and superiority of the proposed method. The remainder of
this article is organized as follows: Section 2 describes the simplification and discretization
of dynamic models of a USV with three degrees of freedom to develop the identification
model. The DW-uBoat USV developed by our team was used as the test platform of the
study. Section 3 describes the basis of the proposed algorithm as well as its procedure of
identification and modeling based on the MK-SVR method. In Section 4, the zig-zag test of
the USV is outlined, and the parameters of its motion relative to water after denoising and
isolation are given. Section 5 details the results of the predictions of three methods, and the
conclusions of this study are summarized in Section 6.

2. Dynamic Model of USA
2.1. DW-uBoat USV

DW-uBoat, developed independently by the Institute of Marine Vehicle and Under-
water Technology in Nanjing, Jiangsu Province, is a small, unmanned surface vehicle
with twin propellers installed symmetrically. In this paper, DW-uBoat was used as a test
platform to carry out the full-scale test of the USV in a real environment to provide data for
the follow-up identification and modeling. The navigation of the DW-uBoat is shown in
Figure 1 and its main physical characteristics are listed in Table 1.

The DW-uBoat consists of three parts: a hull, dynamic propulsion system, and func-
tional modules. It uses two servo electrical motors to impel twin propellers to move in
the scheme of its dynamic propulsion system. Because it is not equipped with a rudder or
propeller, the DW-uBoat relies on two thrusters revolving at different speeds to control its
course. Two thrusters operating at the same rate of revolution keep the USV in a straight
line in theory. The system of functional modules is equipped with various sensors, such as
high-definition cameras, a global positioning system, and compass. The main components
of the DW-uBoat USV are listed in Table 2.
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Figure 1. DW-uBoat USV.

Table 1. DW-uBoat’s physical characteristics.

Parameters Value

Length overall 1.80 m
Breadth 0.70 m

Draft 0.24 m
Displacement 75 kg

Propeller diameter 14 cm
Distance between two propellers 29 cm

Max propeller revolution rate 1200 Rpm
Endurance 12 h

Table 2. Parameters of DW-uBoat USV.

Parameters Content Characteristics

System of communication VHF Wireless 2.5 km distance
Image transmission Wireless digital data link

Inertial sensor SBG Ellipse-A
Motor Servo integrated motor 3000 rpm/min, 0.6 Nm

Camera YTH-IPQ16 IP66 protection

Position system GPS

(horizontal accuracy, heading
accuracy ± 0.1 degrees,
pitch/roll accuracy < 1 degree,
speed accuracy 0.03 m per
second); Electronic compass

Controller board SCM9022 X86 Atom, Dual core 1.66 g

2.2. Kinematics of USV

In general, the movement control system of the USV involves horizontal degrees of
freedom, including surge, sway, and yaw [14]. To describe its motion, an inertial frame of
reference with origin on and a body-fixed frame of reference with origin Ob were used, as
shown in Figure 2. The inertial frame of reference is usually defined as the tangent plane
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on the surface of the Earth moving with the USV, with the x-axis pointing toward the true
north and the y-axis pointing east, different from the directions of the body-fixed axes. The
body-fixed frame of reference is a moving coordinate frame that is fixed to the USV. Both
frames of reference follow the right-hand thread rule. The position and orientation of the
USV are normally described relative to the inertial frame of reference, while the linear and
angular velocities should be expressed in the body-fixed frame of reference. In the inertial
frame of reference, (xG, yG) is the position of the origin Ob that is usually chosen to coincide
with a point between ships in the water line, and ψ is the heading angle of the USV. In the
body-fixed frame of reference, u, v, and V represent the surge, sway, and total speed of the
USV, respectively.
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Figure 2. Inertial frame of reference and body-fixed frame of reference.

As defined by SNAME, the different quantities above can be expressed in a vectorial
setting as follows:

η =

x
y
ψ

 (1)

ν =

u
v
r

 (2)

where η denotes the vectors of position and orientation, and ν denotes the vectors of
linear and angular velocity that are decomposed in the body-fixed frame of reference. The
transformation of the two vectors from a body-fixed frame to an inertial frame can be
represented by means of the rotation matrix R(ψ), which is expressed as follows:

.
η = R(ψ)ν (3)

R(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (4)
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2.3. Dynamic Model of USV

The rigid-body kinetics of the USV in surge, sway, and yaw motions can be derived by
applying the Newtonian formulation, which can be expressed as:

(m + mx)
.
u− (m + my)rv = XH + XP

(m + mx)
.
v + (m + my)ru = YH + YP

(IZ + JZ)
.
r = NH + NP

(5)

where m is the mass of the ship, mx and my are the added masses, Iz is the moment of inertia
about the z-axis, Jz is the additional inertia, u, v, and r are the speeds of surge and sway, and
the yaw rate, respectively, XH, YH, and NH are the viscous hydrodynamic forces/moments,
and XP, YP, NP are the thrusts/torques of the propeller.

As the DW-uBoat is not equipped with a side thruster and there are no active swaying
forces, the sway could only be generated by Coriolis–centripetal forces due to the rotation
of the body-fixed frame relative to the inertial frame of reference. However, a coupling was
found between the v- and r-related hydrodynamic coefficients. Furthermore, v is small, and
the effects of higher-order terms are not considered in this paper. We simplified Inoue’s
model [15] to obtain the following computational model of viscous hydrodynamic forces
and moments: 

XH = Xuuu2 + Xrrr2

YH = Yvv + Yrr + Y|r|r|r|r
NH = Nvv + Nrr + N|r|r|r|r

(6)

where Xuu, Xrr, Yv, Yr, Y|r|r, Nv, Nr, N|r|r are the hydrodynamic coefficients.
The thrust of the propellers is the exclusive active source of force of the DW-uBoat, and

can be generated by controlling the speed of the motors to keep the USV moving forward
against external resistance. Woo et al. (Ref. [16]) described the thrust and torque as follows:

XP= (Ts + Tp)
YP = 0

NP =
(
Tp − Ts)l /2

(7)

where Ts and Tp denote the thruster forces of the starboard-side thruster and the port-side
thruster, respectively, and l is the beam of the DW-uBoat.

The thruster force can be described as a function of the rate of revolution of the
propeller and its diameter, and is expressed as follows:

T = (1− t)kρn2D4 (8)

where t is the deduction coefficient of the thrust, k is the thrust coefficient, ρ is the density
of water, n is the input rate of revolution, and D is the diameter of the propeller.

3. MK-SVR Algorithm for Modeling and Identification
3.1. SVR Formulation

The SVM is a statistical method based on supervised learning that was proposed in the
1990s [9]. The objective of the SVM is to obtain the equation of the hyperplane of structural
risk minimization. In the context of regression, the SVM is called the SVR. For the training
data {(xi,yi), i = 1, 2, . . . N}, where xi ∈ Rn is the input data, yi ∈ R is the target value
for xi and N is the number of training samples. The SVR equation of the hyperplane is
presented as:

f (x) = ωTx + b (9)

where ω denotes the matrix of weights and b denotes the bias constant.
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In contrast to traditional regression algorithms, SVR enables the maximum deviation ε
between f(x) and yi. The value of the loss function lε is chosen according to the following
formula:

lε =
{

0, i f | f (xi)− yi| < ε

| f (xi)− yi| − ε, otherwise
(10)

Therefore, the equation of the hyperplane can be obtained by minimizing the opti-
mization problem as follows:

min
ω,b

1
2
‖ω‖2 + C

N

∑
i=1

lε( f (xi)− yi) (11)

where C is the regularization parameter.
Slack variables ξi and ξ̂i were selected to make the model more robust so that it can

handle unfeasible constraints of the optimization problem as follows:

min
ω,b,ξi ,ξ̂i

1
2‖ω‖

2 + C
N
∑

i=1
(ξi + ξ̂i)

s.t.
f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ̂i

ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , N

(12)

The optimal solution can be obtained by solving the dual form of Equation (7). The
Lagrange multipliers were imposed to solve this problem:

L(ω, b, α, α̂, ξ, ξ̂, µ, µ̂) = 1
2‖ω‖

2 + C
N
∑

i=1
(ξi + ξ̂i)−

N
∑

i=1
µiξi −

N
∑

i=1
µ̂i ξ̂i

+
N
∑

i=1
αi( f (xi)− yi − ε− ξi) +

N
∑

i=1
α̂i(yi − f (xi)− ε− ξ̂i)

(13)

where µi ≥ 0, µ̂i ≥ 0, α ≥ 0, α̂ ≥ 0.
We then computed the derivatives of ω, b, ei, and αi, and set them to zero to obtain the

following: 

ω =
N
∑

i=1
(α̂i − αi)xi

0 =
N
∑

i=1
(α̂i − αi)

C = αi + µi
C = α̂i + µ̂i

(14)

By placing Equation (9) into the Lagrangian function, the dual problem can be ex-
pressed as follows:

max
α,α̂

N
∑

i=1
yi(α̂i − αi)− ε(α̂i + αi)− 1

2

N
∑

i=1

N
∑

j=1
(α̂i − αi)(α̂j − αj)xT

i xj

s.t.
N
∑

i=1
(α̂i − αi) = 0

0 ≤ α̂i, αi ≤ C

(15)

Equation (10) meets the Karush–Kuhn–Tucker conditions as follows:
αi( f (xi)− yi − ε− ξi) = 0
α̂i(yi − f (xi)− ε− ξ̂i) = 0

αiα̂i = 0, ξi ξ̂i = 0
(C− αi)ξi = 0, (C− α̂i)ξ̂i = 0

(16)
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The following solution can be acquired by calculating the dual problem:

f (x) =
N

∑
i=1

(α̂i − αi)xTxi + b (17)

3.2. MK Function and Choosing the Weight Coefficients

The use of the kernel function is typically a simple way to avoid the problem of dimen-
sionality, and is used to compute the inner product caused by the nonlinear transformation
of the input space of mapping into a high-dimensional feature space to solve a nonlinear
problem [17]. It can be expressed as follows:

K(x, xi) = φ(x)Tφ(xi) (18)

where ϕ(x) is the transformation of mapping x into a high-dimensional feature space.
The solution can be rewritten as follows for the nonlinear problem:

f (x) =
N

∑
i=1

(α̂i − αi)K(x, xi) + b (19)

The kernel function can be used in a variety of forms, each with its own characteristics,
and the SVRs constructed using each have different characteristics. In general, they can be
classified into two distinct types: the global kernel function and the local kernel function.
The former has good generalization ability for mastering global information far from the
test points, while the latter has a better learning ability owing to its higher sensitivity
to the features of samples with narrow distributions. The polynomial kernel (PK), the
prominent representative of the global kernel function and the radial basis function (RBF),
is a representative local kernel function that can be selected and calculated as shown in
Equations (20) and (21), respectively:

K(x, xi)d = (g · xTxi + c0)
d

(20)

K(x, xi)RBF = exp(−γ‖x− xi‖2) (21)

Based on Mercer’s theorem (1909), the appropriate conditions for a kernel function
can be described as follows:

Let X be a compact subset of Rn and K be a continuous and symmetric function; there
is a integral operator Tk : L2(X)→ L2(X) that makes (Tk f )(·) =

∫
X

K(·, x) f (x)dx positive.

The above would be expressed as follows:∫
X×X

K(x, z) f (x) f (z)dxdz ≥ 0 ∀ f ∈ L2(X) (22)

After expanding K(x, z) to a sequence of the consequent Tk characteristic function
φj ∈ L2(χ) and normalization, we can obtain ‖φj‖L2

= 1, λj ≥ 0 and the following relation:

K(x, z) =
n

∑
i=1

λjφj(x)φj(z) (23)

We took Φ(x) as (
√

λ1φ1(x),
√

λ2φ2(x), . . . ,
√

λnφn(x))T and obtained the kernel func-
tion below:

K(x, z) =< Φ(x), Φ(z) > (24)

Based on the above, we know that if the matrix defined by a function in an arbitrary
finite point set of Rn is semi-positive, the fuction can be a kernel fuction. The convex
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combination of common kernel functions is an important means of constructing the MK. In
this paper, an MK constructor is developed by combining the PK and RBF:

K(x, xi) = exp−σ2
K(x, xi)d + (1− exp−σ2

)K(x, xi)RBF (25)

where exp−σ2
and (1− exp−σ2

) are the weights of the PK and the RBF, respectively.
With an arbitrary vector, we can obtain α′K(x, xi)dα ≥ 0; α′K(x, xi)RBFα ≥ 0. Further-

more, the validity of MK can be described as follows:

α′(exp−σ2
K(x, xi)d + (1− exp−σ2

)K(x, xi)RBF)α = exp−σ2
α′K(x, xi)dα + (1− exp−σ2

)α′K(x, xi)RBFα ≥ 0 (26)

So, the convex combination of the PK and RBF can be used as the kernel function. In
case 1 ≥ exp−σ2 ≥ 0, the problems of low precision and poor generalization due to either
the PK or the RBF can be avoided.

To implement adaptive adjustment, the coefficients of the convex combination of the
MK functions need to be optimized. K-fold cross-validation (K-fold CV) is used to find
the ideal solution; the larger the value of K is, the greater is the number of folds, which
can reduce error. However, the larger the training set is, the greater the variance and the
time cost. Therefore, five-fold CV was used to select a suitable weight coefficient in the
MK function. The samples were divided randomly into five groups of equal size. A single
subset was retained as the data for validation while the other four subsets were used for
training. The cross-validation was repeated five times, and each subset was verified once.
The mean squared error of the five groups was regarded as the final error value, and the
parameter with the least error was chosen as the weight coefficient.

3.3. Identification and Modeling

Using the field data of DW-uBoat USV as the change data sequence of the system
input and output, the support vector regression (MK-SVR) method based on the mixed
kernel function was proposed to identify the dynamics model of DW-uBoat USV to realize
the manipulation motion prediction and evaluate the prediction effect.

The processes of identification and modeling based on the MK-SVR method are shown
schematically in Figure 3. The steps are as follows:

(1) The samples for system identification obtained from the maneuvering test were
divided into a training set and a verification set.

(2) The training data were taken as the input for system identification after being normalized.
(3) The CV method was used to seek the optimum parameters in the SVR and the weight

in the MK function.
(4) Training and prediction models were established for PK-SVR, RBF-SVR, and MK-SVR.
(5) The models were used to predict the surge velocity, sway velocity, and the yaw rate,

and their results were compared.
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4. Zig-Zag Test and Data Processing
4.1. Zig-Zag Test of USV

The maneuverability of a ship is defined as its ability to maintain or change its motion
according to the intention of the operator. The zig-zag test reflects a ship’s steering perfor-
mance and directional stability, and can thus be used to obtain sample data for follow-up
work related to modeling-based identification.

The DW-uBoat use a PC104 computer with RTOS to process data from sensors and
control the motion. Both remote control and automatic driving modes are used. The
software on the remote computer is developed by .Net Framework. The navigation is
based on Gmap.net components. For automatic driving, firstly, the destination points were
set; secondly, the LOS algorithm automatically output the desired commands to the PID
controller; finally, the PID controller offered corresponding thruster orders.

The full-scale test of the USV was carried out in Stone City along Qinhuai River. The
trajectory tracking control relied on a controller developed by the Institute of Marine Vehicle
and Underwater Technology [13], and the monitoring interface of the upper computer is
shown in Figure 4. The software is used for control and navigation. The test data, including
the coordinates (x, y), heading angle ψ, surge, and sway of the DW-uBoat as well as the
speed of the motor, were monitored in real time by using sensors and stored every 0.25 s.
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Figure 5 shows the expected and raw values of the heading angle, and Figure 6 shows the
raw motion trajectory in the testing process.
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4.2. Data Processing

The test was carried out in a channelized urban river that was approximately 70 m
wide and 1–7 m deep, which met the requirements of the maneuvering test. The flow was
relatively stable and featured prominent waves and currents throughout the test, which
means that the measured data included the flow velocity and other noise that needed to be
removed before the data could be used as the input to the algorithm. The Gaussian filtering
method was used to remove noise, and the datasets before and after filtering are shown in
Figure 7. The sub-figures denote the surge and sway velocities as well as the yaw rate of
the DW-uBoat. It is clear that when the yaw angle changed, the surge and sway velocities,
and the yaw rate underwent significant changes. Fluctuations were observed in the test
data for the USV with a shallow draft. This was caused by the persistent yawing motion
of the USV to maintain its course against disturbances due to the current and the large
randomness of external interference, which made it difficult to ensure that the curves were
smooth even after filtering.
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Even if the direction of flow was known, the surge and sway velocities were differently
influenced by the flow velocity for the two heading angles, and the relative speed of water
could be calculated by using the following formula:{

u = uc−Vc cos(θ − ψ)
v = vc−Vc sin(θ − ψ)

(27)

where uc and vc represent the surge and sway velocities with respect to the ground, respec-
tively, Vc denotes the flow velocity, and θ is the angle of flow in the inertial coordinate system.

Assuming that the flow was steady, the surge and sway velocities relative to water
were calculated and are shown in Figure 8. The surge velocity with respect to the ground
fluctuated around 0.4 m/s owing to being in the fixed speed mode, and the surge velocity
relative to water was greater than 0.4 m/s when navigating upstream. In addition, the
directions of the sway velocity with respect to the ground were different at the two heading
angles due to the influence of flow, which also shows that the sway velocity of the USV
relative to water was close to zero.
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5. Comparison of the Results of Prediction

The model established in Section 2 and the data detailed in Section 3 were used to
identify and model the motion of ships, and the good performance of the MK-SVR method
was verified by comparing it with SVR based on a single PK function and the RBF kernel.
We used samples acquired within 800 s as the training dataset and those acquired within
1200 s as the verification dataset. The MSE was used as the index to assess the accuracy of
the prediction models.

Figure 9 illustrates the predicted and the actual data on the surge velocity, sway
velocity, and yaw rate. This shows that all three methods had good learning ability. MK-
SVR was significantly better at predicting the surge velocity than the other two methods.
MK-SVR and RBF-SVR performed similarly in terms of predicting the sway velocity and
the yaw rate, whereas PK-SVR had the poorest performance in terms of agreement with
the test data.

Comparisons of the surge velocity, sway velocity, and yaw rate predicted by the three
methods on the validation set are shown in Figure 10. It is clear that MK-SVR and PK-SVR
were significantly superior to RBF-SVR in terms of predicting the surge velocity, and the
trend of changes in their curves as predicted by MK-SVR was more similar to that of
the experimental data than the trend predicted by PK-SVR. Both MK-SVR and PK-SVR
exhibited good predictive capability for the sway velocity and the yaw rate, but MK-SVR
was slightly more accurate, as reflected by the MSE values. RBF-SVR failed to accurately
predict these factors in some intervals, and on occasion even predicted a trend opposite to
the actual trend. It is worth mentioning that Xu et al. [6], conducted a contrastive study
of SVR with a single kernel function and neural network method. From the results of this
paper, SVM based on the single kernel function showed a better ability of identification
than the neural network method, which has a higher accuracy and faster convergence
speed when predicting the motion of USV, verified by the full-scale test. That is, MK-
SVR has prominent advantages for predicting the maneuvering motion of USV in a real
environment.
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The MSE index in Figure 11 shows that the predictive accuracies of all three methods
were lower in the validation set than the training set, but the MK-SVR method still delivered
a satisfactory MSE index of less than 0.05 in a practical environment. Moreover, relatively
large deviations were observed in the predicated sway velocity and yaw rate, possibly
because their values fluctuated less than in the case of a sudden change in course. When
a large amount of noise made it difficult to distinguish the dynamic characteristics of the
USV, the problem of over-fitting occurred. Table 3 shows that the MK-SVR improved the
prediction accuracy with the same amount of computational time.
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Figure 11. Estimated predictive accuracies of the three methods in terms of MSE. (a) Surge MSE
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To sum up, the proposed method not only alleviates the problem of features being
easily influenced by noise or occlusion to obtain a satisfactory fit with the empirical data,
but also restrains local fluctuations in the predicted output due to the RBF kernel. Therefore,
the MK-SVR method can be used to formulate dynamic models of USVs using a finite
number of samples because it is better in terms of learning and generalization than SVR
with a single PK and an RBF kernel.
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Table 3. Comparison of CPU times of the three methods in training set and testing set.

MK-SVR PK-SVR RBF-SVR

In training set
Surge velocity 36 s 37 s 34 s
Sway velocity 41 s 44 s 38 s
Yaw rate 40 s 41 s 38 s

In testing set
Surge velocity 42 s 40 s 43 s
Sway velocity 44 s 43 s 46 s
Yaw rate 42 s 41 s 43 s

6. Conclusions

To control the motion of a USV in light of the dual requirements of high precision
and generalization, this paper proposed an MK-SVR-based method of identification to
establish a model to predict its motion. We focused on the model design, maneuverability
test, and data processing. We use DW-uBoat’s raw data as the training and testing datasets
for the method.

The proposed identification model was compared with models prevalent in the litera-
ture. The main contributions of this study are as follows:

(1) A full-scale USV test was carried out, and the data obtained from it were used to
validate the accuracy of the MK-SVR method in terms of predicting the motion of the
USV in an empirical setting.

(2) Cross-validation was used to automatically search for the best weights in the MK
function to better leverage the benefits of the global and local kernels. This helps
maintain the accuracy of prediction through adaptive adjustment and reduces the
time required for tuning.

(3) The MK-SVR method was proposed to model and identify the motion of the DW-
uBoat USV. The results of experiments showed that the MK-SVR method integrates the
advantages of the local and global kernel functions such that it makes more accurate
predictions and has better generalization ability than SVR based on the nuclear kernel
function. The superior predictive performance of the MK-SVR method is quantified
in Table 3 and Figures 7–9, with less than 0.05 MSE in a practical environment in
DW-uBoat field data.

Based on the SVR algorithm, this study proposes a novel method of dynamics identifi-
cation for USV, and although some results have been achieved, there are still some works
to be further studied.

This study is based on inland river environments with common hydrology factors. In
field applications of USVs, their motions are disturbed by complex environmental loads. In
the future, we will intend to offshore applications and consider the influence of waves on
the hydrodynamics model.
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