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Abstract: During the service life of offshore pipelines, many start-up and shut-down cycles take
place, possibly leading to significant cyclic loads. Fatigue failure may occur, resulting in serious
environmental pollution and loss of property. The study aims to assess the fatigue strength of single-
sided girth welds in offshore pipelines under these specific fatigue loads. The longitudinal stress
range caused by the variation of the pipeline’s internal pressure and temperature is calculated. The
effective notch strain approach is used to assess the fatigue strength of welds. The plastic behaviour
of the weld root is investigated for a study case to justify the use of low-cycle fatigue assessment
approaches. The effect of weld root geometry on the notch stress factor is studied to identify the
dominant geometrical parameters. The fatigue strength of the study case is assessed, and some
limitations of the assessment are discussed. The results show that the plastic behaviour of the weld
root is only significant for severe local stress concentrations, which is mainly governed by the axial
misalignment, weld root angle and the weld root bead width. If the fatigue damage at failure is 0.1, a
limited number of start-up and shut-down cycles are allowed during the service life of the pipeline
for the study case, indicating the necessity of fatigue strength assessment.

Keywords: fatigue strength; offshore pipelines; girth welds; low cycle fatigue

1. Introduction

Subsea pipelines are subjected to fatigue loading in operation conditions, which
include those induced by motions of floating platforms, free span vortex-induced vibrations,
and thermal cycles. These fatigue loadings may result in significant fluctuating stresses
acting on the girth welds of pipelines, leading to fatigue failure. The fatigue strength of
subsea pipelines has been a major concern.

An increasing number of high-pressure and high-temperature (HPHT) offshore
pipelines have been applied in recent years because more and more HPHT oil and gas fields
are being developed. HPHT applications of 150 ◦C and 68.95 MPa are common nowadays,
and more severe HPHT operating conditions also exist [1]. Subsea pipelines under HPHT
operating conditions have to face various challenges. The global lateral buckling may
happen because of the high compressive axial force when the pipelines are laid on the
seabed and heated, but the axial extensions are restrained by the soil [2]. The pipelines
are subjected to a number of cycles of start-up and shut-down through the design life
of an offshore field. The pipeline walking, i.e., global axial movement can be triggered
by the start-up and shut-down cycles in some cases, leading to some problems that may
endanger the pipeline system [3]. The HPHT conditions can increase the corrosion rate of
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the pipeline significantly [4]. Relative large stress ranges may take place due to the start-up
and shut-down process, resulting in low cycle fatigue (LCF) of the pipeline [5].

In the present study, the focus is given to the fatigue damage of single-sided girth welds
in offshore pipelines caused by the start-up and shut-down cycles. Since the loading cycles
may be significant, the LCF approaches instead of high cycle fatigue (HCF) approaches
are recommended. Compared with the HCF approaches, the LCF approach needs more
computational efforts. The LCF approaches are generally classified into two types, one
based on S-N curves and linear damage rule, and another relies on fatigue crack propagation
analyses. The strain parameters or the elastic–plastic fracture mechanics are used in these
approaches. The first type of approach includes the pseudo hotspot stress approach [6,7],
structural strain approach [8,9], notch strain approach [10,11] and effective notch strain
approach [12,13]. The approaches belonging to the second type usually use the cyclic
J-integral [14–17] and the cyclic crack tip opening displacement [18,19] as the driving forces
of crack growth. The first type of approach is easier to use in practice because a lower
number of parameters is usually involved, and the calculation is more efficient, while the
second type of approach is closer to the physical fatigue process.

Although many approaches have been developed for the LCF problem, the study on
fatigue strength assessment of offshore pipelines subjected to start-up and shut-down cycles
is rare. One reason may be that the special fatigue problem can be coupled with global
bucking, which complicates the problem. When the pipeline is heated, global buckling
may happen and can lead to a release of the global compressive force. Furthermore,
the associated bending of the pipeline can either increase or decrease the local stress
depending on the location of interest. In the present study, it is assumed that the pipeline
remains straight during start-up and shut-down cycles, and the effects of global buckling
are ignored.

The study on the fatigue strength assessment under these specific cyclic loads may
contribute to improving the safety of subsea pipelines. The allowed number of cycles can
be obtained from the analyses, which is valuable for the management of offshore oil and
gas fields.

In the present study, the fatigue strength assessment of single-sided girth welds in
offshore pipelines subjected to start-up and shut-down cycles is performed. The calculation
of the longitudinal stress range due to the start-up and shut-down cycle and the effective
notch strain approach is introduced. For a specific study case, the plastic behaviour of
the weld root is investigated to justify the use of the LCF approach, and the effect of weld
root geometry on the notch stress factor is studied to identify the dominant geometrical
parameters. The fatigue strength of the study case is assessed, and some limitations of the
assessment are discussed.

2. Methods

The methods involved in the fatigue strength assessment are introduced in this section.
The fatigue loads acting on the welds are determined analytically. The effective notch strain
approach is used for the fatigue strength assessment. The finite element method (FEM) and
the analytical method are combined to calculate the effective notch strain.

2.1. Start-Up and Shut-Down Load Cycles

The stress components in pipelines are longitudinal (axial) stress, hoop (circumferen-
tial) stress and radial stress. Since fatigue cracks are usually initiated at girth welds and
propagate along the direction of the weld line and the thickness, the stress component
normal to the potential crack plane, i.e., the longitudinal stress, is of interest.

In the present study, the pipeline is assumed to be fully constrained. In other words,
there is no longitudinal movement when the internal pressure or temperature is increased.
The assumption can result in more conservative longitudinal stresses.
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The longitudinal stress for the installation condition σl,ins can be calculated by [1]:

σl,ins =
Fres + Pi,ins Ai − Pe Ae

As
(1)

where Fres is the installation residual lay tension, Pi,ins is the internal pressure of the pipe
during installation, Ai is the internal bore area of the pipe, Pe is the external pressure of the
pipe, Ae is the external area of the pipe, As is the cross-sectional area of the pipe.

When the temperature and pressure are increased to the operational condition, the
pipeline tends to expand longitudinally. However, the pipeline is fully restrained, and
thus, the compressive longitudinal stress is developed. For a fully restrained pipeline, the
longitudinal stress is caused by the Poisson’s ratio effect of hoop and radial stresses and
the thermal effect [1]:

σl =
2v(Pi Ai − Pe Ae)

As
− Eα

(
Top − Ta

)
(2)

where σl is the longitudinal stress, E is Young’s modulus, ν is the Poisson’s ratio, Pi is the
operational internal pressure, α is the thermal expansion coefficient of pipe material, Top is
the operational temperature and Ta is the ambient temperature at installation.

Taking the longitudinal stress for the installation condition as the initial condition, the
longitudinal stress for the operational condition can be calculated by:

σl,op = σl,ins +
2v(Pi − Pi,ins)Ai

As
− Eα

(
Top − Ta

)
(3)

The longitudinal stress range caused by the start-up and shut-down load cycle is

∆σl =
∣∣∣σl,op − σl,ins

∣∣∣ = ∣∣∣∣2v(Pi − Pi,ins)Ai

As
− Eα

(
Top − Ta

)∣∣∣∣ (4)

For the fully restrained condition, increasing the operating internal pressure and
increasing the operating temperature has the opposite effect on the longitudinal stress
range. Increasing the operating internal pressure means increasing the hoop stress, leading
to tensile longitudinal stresses due to Poisson’s ratio effect for the fully restrained condition.
However, increasing the operating temperature results in compressive longitudinal stress
because the extension is restrained.

The assumption of a fully restrained condition is conservative, and the fatigue strength
assessment based on this assumption is representative. If the pipeline is free at the end,
the variation of longitudinal stress is limited around the end and continuously increases
toward the centre of the pipeline until the fully restrained condition is developed. In the
present study, only the fully restrained condition is considered.

Note that significant compressive stress can be developed in the operational condition,
implying the stress variation due to the start-up and shut-down load cycle is mainly in the
regime of the compressive stress. It does not mean the fatigue problem is less important
because the local welding-induced residual stresses around the welds may approach the
yield stress of the material, which can significantly improve the local mean stress.

2.2. Fatigue Strength Assessment

The effective notch strain approach is extended from the effective notch stress approach
from the HCF regime. It can be used to deal with LCF and HCF problems and is employed
in the present study. Compared with the notch train approach, the effective notch strain
approach is easier to be applied in practice [13]. Detailed information on local geometry
and residual stresses is not required, and it can result in the total fatigue life instead of the
crack initiation life.

The method for the estimation of the effective notch strain, which is proposed by
Dong et al. [13], is used. The method is simpler than the elastic–plastic finite element
method. It can be divided into two steps. The first step is to calculate the effective notch
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stress as recommended by the International Institute of Welding [20]. The weld toe and
root are rounded by a fictitious notch whose radius is ρf = 1 mm for welded steel structures
with a thickness larger than 5 mm, as shown in Figure 1. The FEM is usually used. The
maximum first principal stress along the notch is taken as the effective notch stress.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 14 
 

 

method. It can be divided into two steps. The first step is to calculate the effective notch 

stress as recommended by the International Institute of Welding [20]. The weld toe and 

root are rounded by a fictitious notch whose radius is ρf = 1 mm for welded steel structures 

with a thickness larger than 5 mm, as shown in Figure 1. The FEM is usually used. The 

maximum first principal stress along the notch is taken as the effective notch stress.  

fictitious 
notch radius

 

Figure 1. Fictitious notch rounding [20]. 

The second step is to convert the elastic stress to the elastic–plastic strain. The step is 

mainly based on the plane strain equivalent strain energy density approach [21,22]. The 

plane strain state is assumed, implying that the strain component along the notch is zero 

and a biaxial stress state exists at the notch tip when the notched component is remotely 

loaded. The uniaxial cyclic stress–strain curve of the material is assumed to follow the 

Ramberg–Osgood relation: 

𝜀 =
𝜎

𝐸
+ (

𝜎

𝐾′
)

1
𝑛′

 (5) 

where K′ is the cyclic strength coefficient, n′ is the cyclic strain hardening exponent and E 

is the elastic modulus. According to [23], the above curve should be transformed into the 

plane strain curve by using: 

{
  
 

  
 𝜎1 =

𝜎

√1 − 𝜇 + 𝜇2

𝜀1 =
𝜀(1 − 𝜇2)

√1 − 𝜇 + 𝜇2

𝜇 =
1

2
− (

1

2
− 𝜈)

𝜎

𝐸𝜀

 (6) 

where stress and strain with a subscript 1 represent the first pri ncipal quantities, ν is the 

Poisson’s ratio and μ is the generalised Poisson’s ratio. The data points in the uniaxial 

cyclic stress–strain curve can be transformed into the data points of (σ1, ε1). The plane 

strain curve can be fitted based on these data points, and the plane strain curve is in the 

form of: 

𝜀1 =
𝜎1
𝐸
(1 − 𝜈2) + (

𝜎1
𝐾1
′)

1

𝑛1
′

 (7) 

where 𝐾1
′ and n′1 are the new material properties. The plane strain equivalent strain en-

ergy density approach can be expressed by: 

𝜎𝑒𝑓𝑓
2 (1 − 𝜈2)

2𝐸
= ∫ 𝜎1𝑑𝜀1

𝜀1

0

 (8) 

where σeff is the effective notch stress. The first principal notch strain ε1 can be solved by 

combining Equations (3) and (4). The generalised Poisson’s ratio μ can also be obtained. 

According to Equation (6), the effective notch strain can be estimated by: 
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The second step is to convert the elastic stress to the elastic–plastic strain. The step is
mainly based on the plane strain equivalent strain energy density approach [21,22]. The
plane strain state is assumed, implying that the strain component along the notch is zero
and a biaxial stress state exists at the notch tip when the notched component is remotely
loaded. The uniaxial cyclic stress–strain curve of the material is assumed to follow the
Ramberg–Osgood relation:

ε =
σ

E
+
( σ

K′
) 1

n′ (5)

where K′ is the cyclic strength coefficient, n′ is the cyclic strain hardening exponent and E
is the elastic modulus. According to [23], the above curve should be transformed into the
plane strain curve by using: 

σ1 = σ√
1−µ+µ2

ε1 =
ε(1−µ2)√

1−µ+µ2

µ = 1
2 −

(
1
2 − ν

)
σ
Eε

(6)

where stress and strain with a subscript 1 represent the first pri ncipal quantities, ν is the
Poisson’s ratio and µ is the generalised Poisson’s ratio. The data points in the uniaxial
cyclic stress–strain curve can be transformed into the data points of (σ1, ε1). The plane
strain curve can be fitted based on these data points, and the plane strain curve is in the
form of:

ε1 =
σ1

E

(
1− ν2

)
+

(
σ1

K′1

) 1
n′1 (7)

where K′1 and n′1 are the new material properties. The plane strain equivalent strain energy
density approach can be expressed by:

σ2
e f f
(
1− ν2)
2E

=
∫ ε1

0
σ1dε1 (8)

where σeff is the effective notch stress. The first principal notch strain ε1 can be solved by
combining Equations (3) and (4). The generalised Poisson’s ratio µ can also be obtained.
According to Equation (6), the effective notch strain can be estimated by:

εe f f =
ε1
√

1− µ + µ2

(1− µ2)
(9)
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Generally, the effective notch strain range is of interest in fatigue strength assessment.
The effective notch strain amplitude εeff is obtained by solving Equations (3)–(5), in which
the σeff is the effective notch stress amplitude. The effective notch strain range is twice the
effective notch strain amplitude.

The curves of effective notch strain range ∆εeff vs. fatigue life Nf for a survival proba-
bility of 97.7% can be expressed by:{

N f (∆εeff)
m1 = C1 N f < 104

N f (∆εeff)
m2 = C2 N f ≥ 104 (10)

The segment of Nf < 104 is derived from the LCF test data [12], and the segment of
Nf ≥ 104 is derived from the S-N curve of FAT225 for the effective notch stress approach [20].
The relationship between the effective notch strain range and effective notch stress range in
the elastic domain is:

∆εe f f =
∆σe f f

√
1− v + v2

E
(11)

The values of S-N curve parameters are listed in Table 1, and the S-N curves are shown
in Figure 2.

Table 1. S-N curve parameters [13].

S-N Curve Parameter Value

C1 1.25 × 10−3

m1 3.195
C2 1.83 × 10−3

m2 3
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3. Case Study

The fatigue strength of a specific case is investigated in the present study. The data of
the example pipeline are presented in Table 2.
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Table 2. Information for the example pipeline.

Modelling Parameters Unit Value

Pipeline outer diameter, De mm 355.6
Pipeline wall thickness, t mm 19.8

Area of steel pipeline’s cross-section, As m2 0.0209
Internal pressure of installation/shut-down, Pi,ins MPa 2

Operating internal pressure, Pi MPa 20
Operating temperature, Top

◦C 120
Seabed ambient temperature, Ta

◦C 12
Coefficient of thermal expansion, α ◦C−1 1.3 × 10−5

Young’s modulus, E MPa 2.06 × 105

Poisson’s ratio, ν - 0.3
Cyclic strength coefficient, K′ MPa 923

Cyclic strain hardening exponent, n′ - 0.118

According to Equation (4), the longitudinal stress range due to start-up and shut-down
cycles is approximately 248.7 MPa. This stress range is considered the nominal stress range
∆σn and used in the following fatigue strength assessment.

In the present study, the cyclic mechanical properties of API 5L X65 pipeline steel are
used. Detailed information on the material and its mechanical properties can be found
in [24]. In fact, the mechanical properties of heat affected zone are more relevant because
fatigue cracks are usually initiated from this location. However, the cyclic mechanical
properties of heat affected zone are not available. The use of mechanical properties of
parent material usually results in the conservative estimation of local strains [25]. Therefore,
the mechanical properties of the parent material are still used in the present study.

For offshore pipelines, single-sided girth welds are more relevant in the industry.
According to fatigue tests, the fatigue cracks most likely originate from the inside, i.e., the
weld root, due to a possible poor weld root profile [26–28]. It has been shown that weld
geometry plays a significant role in fatigue strength. It is assumed that the weld has a flush
ground weld toe, and only the idealised geometry of the weld root is considered. The weld
root geometry is characterised by four parameters, as shown in Figure 3. They are the weld
root bead width Wi, weld root bead height h, weld root angle θ and axial misalignment δ.
The weld toe bead width We is Wi + 1.15t, where t is the wall thickness.
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To investigate the effect of weld geometry on the fatigue strength of single-sided girth
welds, the weld geometry parameters are varied, as outlined in Table 3.
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Table 3. Weld geometry of the single-sided girth weld.

Geometrical Parameters Unit Value

Weld root bead width, Wi mm 4, 6, 8, 10, 12, 14, 16
Weld root bead height, h mm 2, 3, 4, 5

Weld root angle, θ ◦ 50, 65, 97.5, 130, 145
Axial misalignment, δ mm 0, 1, 2, 3

The finite element analyses for the estimation of the effective notch stress are performed
using ANSYS [29]. Linear elastic analyses are carried out. The plane strain cross-sectional
models, which are usually employed in plate-welded structures [13], are used. A circular
notch with a radius of 1 mm is placed at the weld root. The element type of PLANE183
is chosen, and the maximum element size at the circular arc is less than 0.02 mm, which
satisfies the requirement of [20]. In the recommendation, the maximum mesh size at
the circular arc should be less than 0.25 mm to obtain convergent results. The mesh
and boundary conditions of the finite element models are shown in Figure 4. The mesh
conditions for θ < 90◦ or θ ≥ 90◦ are both shown in the figure. All the nodes on the right
side of the model are fixed, and the nominal stress is applied on the left side of the model.
The first principal stress around the notch area is effective notch stress. The total number of
nodes and elements varies with the geometrical parameters. The total number of elements
is about 17,000, and the total number of nodes is about 50,000.
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4. Results

In this section, the plastic behaviour of the weld root is investigated to justify the use
of the LCF approach, and the effect of weld root geometry on the notch stress factor is
studied to identify the dominant geometrical parameters. The fatigue strength of the welds
is assessed, and the limitations of the assessment are discussed.

4.1. Plastic Behaviour

The effective notch strain approach is extended from the effective notch stress approach
to consider the elastic–plastic behaviour. It is suitable for both LCF and HCF. However, the
procedure for effective notch strain estimation is still complex, even though a simplified
analytical method is used. For the study case, one may be interested in whether it is
necessary to use only the effective notch stress approach instead of the effective notch strain
approach.

Various notch stress factors Kf is assumed, which is defined by the effective notch stress
divided by the nominal stress. For each Kf, the elastic–plastic effective notch strain range
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∆εeff and the effective notch strain calculated using Equation (11) ∆εeff,e are determined,
respectively. The latter quantity is determined under the assumption of the elastic material.
The ratio between the two quantities is used to represent the effect of plasticity:

rp =
∆εe f f

∆εe f f ,e
(12)

The results of rp are shown in Figure 5. The rp increases nonlinearly with Kf. For
the study case, if Kf is less than 4, the rp is close to 1, indicating that the elastic behaviour
dominates. With a further increase in Kf, plastic behaviour becomes more and more
important. The result indicates that if the local stress concentration is kept at a low level,
the HCF approach can also be used, and the use of the LCF approach is not necessary.
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4.2. Effect of Weld Geometry

The weld geometry has a significant impact on Kf. Some results of Kf for different
weld geometries are illustrated in this section. The Kf is calculated using FEM. An example
of the first principal stress contour is shown in Figure 6.
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The effect h and Wi on Kf is shown in Figures 7 and 8. The effect of h is not as significant
as the effect of Wi. The Kf is almost unchanged with the increase of h. The Kf increases
rapidly with Wi when Wi is small but tends to approach a plateau value with a large Wi.
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The h has a minor effect on the plateau value. The lower h results in a slightly lower
plateau value. The effect of Wi may be explained by the development of the eccentricity
around the weld. Because of the unsymmetrical weld profile between the weld root and
toe, the eccentricity of the neutral line exists around the weld [30]. With the increase of
Wi, the eccentricity effect, i.e., local bending, is gradually developed. The fully developed
eccentricity effect is similar to the problem of axial misalignment [31].
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Figure 8. The effect of weld root bead width Wi (δ = 0, θ = 50◦).

The effects of weld root angle and axial misalignment are more significant, as shown
in Figures 9 and 10. The Kf decreases linearly with θ and increases linearly with δ. The
effect of δ is the most significant among the four geometrical parameters. The Kf can be
higher than four if δ is higher than 2 mm. The dangerous conditions are those with a low θ

and a high δ.
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4.3. Fatigue Strength

There are still some problems to be addressed to assess the fatigue strength of single-
sided girth welds in offshore pipelines subjected to start-up and shut-down cycles. Firstly,
the representative number of cycles should be assumed. The number of these stress cycles
is usually up to several hundred during the design life of the offshore field [5]. However,
knowledge of the exact number is not available. The number may be subjected to significant
uncertainty. Statistical analyses should be performed based on the relevant data collected
from various offshore fields. A representative number of cycles, which corresponds to a
low level of probability of exceedance, may be employed.

Secondly, representative values of weld geometrical parameters should be assumed.
The weld geometry is subjected to significant uncertainty. The representative values of
some geometrical parameters can be assumed based on the worst-case scenario or the
acceptance tolerance of fabrication. The notch radius of 1 mm is based on the worst-case
scenario [20]. The fabrication tolerance for δ is less than 0.1t or a maximum 3 mm (t = wall
thickness) [32]. However, the values of other parameters are not available. For other
parameters that have a significant effect on the stress concentration, a statistical analysis of
the data obtained from the measurement of the weld geometry is needed.

Thirdly, the effect of corrosion and the environment should be considered. The wall
thickness, weld geometry and material properties can be changed during the service life
due to corrosion. Using the values associated with the initial stage of the service life seems
inappropriate. Additionally, the stress cycles are associated with significant thermal cycles,
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which may invalidate the traditional approaches for fatigue strength assessment because
these approaches are usually developed under room temperatures with minor variation.

For the study case, the following assumptions on the values of geometrical parameters
are made: Wi = 10 mm, h = 2 mm, θ = 90◦ and δ = 2 mm. The value of δ is equal to the
tolerance for fabrication. The effective notch strain approach introduced in Section 2.2 is
still used despite possible invalidation of the approach. The corrosion effects are ignored.
The fatigue damages for different numbers of start-up and shut-down cycles Nss are shown
in Figure 11.
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If the fatigue damage at failure is 1, the fatigue damage is acceptable even for
Nss = 1000. However, if the fatigue damage at failure is 0.1, which is usually used in off-
shore pipelines and risers, only about 150 start-up and shut-down cycles are allowed during
the service life of the pipeline, indicating the necessity of fatigue strength assessment.

5. Conclusions

The following conclusions may be established:

1. For the fully constrained condition, the longitudinal stress range due to start-up and
shut-down cycles depends on the variation of internal pressure and temperature.
Increasing the operating internal pressure and increasing the operating temperature
has the opposite effect on the longitudinal stress range.

2. For the study case, the plastic behaviour of the weld root is only significant for severe
local stress concentrations. If the local stress concentration is kept at a low level, the
HCF approach for fatigue strength assessment can also be used.

3. For single-sided girth welds, the axial misalignment, weld root angle, and weld root
bead width are the main geometrical parameters influencing the notch stress factor of
the weld root.

4. If the fatigue damage at failure is 0.1, a limited number of start-up and shut-down
cycles are allowed during the service life of the pipeline for the study case, indicating
the necessity of fatigue strength assessment.

5. There still exist some unsolved problems for the fatigue strength assessment of single-
sided girth welds subjected to start-up and shut-down cycles. Some assumptions
are made to simplify the fatigue problem and may be used in engineering practice.
Further investigations are still required.
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Nomenclature

Ae External area of the pipe
Ai Internal bore area of the pipe
As Cross-sectional area of the pipe
C1, C2 S-N curve parameters
E Young’s modulus
FEM Finite element method
Fres Installation residual lay tension
HCF High cycle fatigue
HPHT High-pressure and high-temperature
h Weld root bead height
K′ Cyclic strength coefficient
Kf Notch stress factor
LCF Low cycle fatigue
m1, m2 S-N curve parameters
Nf Fatigue life
n′ Cyclic strain hardening exponent
Pe External pressure of the pipe
Pi Operational internal pressure
Pi,ins Internal pressure of the pipe during installation
rp Ratio between ∆εeff and ∆εeff,e
Ta Ambient temperature
Top Operational temperature
t Wall thickness
We Weld toe bead width
Wi Weld root bead width
α Thermal expansion coefficient
µ Generalised Poisson’s ratio
ν Poisson’s ratio
∆εeff Effective notch strain range
∆εeff,e Elastic effective notch strain range
∆σl Longitudinal stress range
∆σn Nominal stress range
δ Axial misalignment
θ Weld root angle
ρf Fictitious notch radius
σeff Effective notch stress
σl Longitudinal stress
σl,ins Longitudinal stress for the installation condition
σl,op Longitudinal stress for the operational condition
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