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Abstract: Green tides originate from the rapid growth of green macroalgae and their large accumu-
lation. In the past few decades, the severity and frequency of green tides have increased and the
range of their geographical distribution has widened. In recent years, Ulva meridionalis Horimoto et
Shimada has been reported in many countries. This species has stable morphological characteristics,
and its length can reach 3 m in indoor cultures. Its cells contain pyrenoids, and the sporangium
and gametangium of each cell contain 8 spores and 16 gametes, respectively, which confer a high
proliferation potential. The phylogenetic tree constructed in this study showed that the Internal
Transcribed Spacer sequence identified U. meridionalis with a high identification reliability, and the
genetic relationship between U. meridionalis and Ulva pertusa in the ITS sequence was close. The
haplotype network analysis clarified the relationship of the U. meridionalis samples collected from four
different sea areas in China and indicated that they were closely related. Five haplotypes were identi-
fied: Hap_2 and Hap_1 were the most frequent, and they were also the haplotypes shared among
the three groups. The degree of subspecies formation was not reached among these U. meridionalis
samples collected from the Chinese seas. Up to 20 years ago, U. meridionalis had only been recorded
in Japan. After 2011, it has been found to be widely distributed in the United States, China, French
New Caledonia, French Polynesia, and Australia, where it proliferates. It has spread as a new kind of
green tide-forming macroalga. The present study found that U. meridionalis is widely distributed in
the Chinese seas; specifically, there have been small-scale blooms in the Bohai Sea, the Yellow Sea,
and the South China Sea. Further investigations should focus on establishing whether U. meridionalis
will cause large-scale green tide events in the future.

Keywords: Ulva meridionalis; Ulvaceae; algal bloom; Yellow Sea; intertidal zone

1. Introduction

A green tide is an ecological phenomenon caused by the rapid proliferation and
aggregation of green macroalgae after they detach from specific substrata and reach a
free-floating state. Most green tides occur in semi-closed sea areas, such as estuaries or
inner bays. When a green tide occurs, large amounts of green macroalgae float on the sea.
Green macroalgae consume a large number of dissolved oxygen and release toxins when
decaying, which affect other marine organisms and change the structure and function of
the marine ecosystem [1–3]. Eventually, the green macroalgae will land under the influence
of wind and ocean currents, which will not only affect the tourism of coastal cities, but
will also affect the aquaculture industry, causing huge economic losses. At the same time,
the bad smell of green macroalgae may also be harmful to human health [4,5]. There is
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a higher risk of biological invasion associated with green algae than with red and brown
algae [6]. Ulva species are common to the global oceans and estuaries, and they are usually
dominant in green tides due to their rapid growth, diverse reproduction modes, and strong
adaptability to the environment [7,8].

Ulva spp. can spread to different marine areas through ballast water and seafood
trade, or by attaching to ships and other floating objects [9–12], and they tend to bloom
in new habitats as invasive species [13]. At present, about 100 Ulva species are known
in the world [14–16], some of which are the main dominant species causing green tide
outbreaks [17,18]. At the same time, as marine eutrophication continues to intensify
worldwide, green tides are becoming more frequent at a global scale [19]; for example,
South Africa [20], the United States [21], Japan [22], the Philippines [23], Ireland [24], and
France [25] have seen outbreaks of green tides. In addition, Ulva can cause green tides not
only in marine ecosystems, but also in freshwater ecosystems. such as U. pilifera [26] and
U. flexuosa subsp. paradoxa [27].

Approximately 20 Ulva species have been recorded in China [28], and among those
responsible for the outbreaks are Ulva prolifera O.F. Müller, Ulva compressa Linnaeus,
Ulva intestinalis Linnaeus, Ulva linza, Ulva flexuosa Wulfen, and Ulva australis Areschoug
(as U. pertusa Kjellman) [29–33]. However, over the last 10 years, a new species causing
green tides has emerged: Ulva meridionalis Horimoto et Shimada. U. meridionalis is native
to the tropical and subtropical areas of the Indian and Pacific Oceans [34,35], but can also
grow in temperate areas and is commonly found on the gravel or reefs of intertidal zones,
bays, and estuaries. In 2000, samples of U. meridionalis were collected for the first time in
the estuary of the Todoroki River, Japan, and the first small-scale outbreak occurred in its
estuary area [36]. In 2015, a large amount of U. meridionalis was found in the intertidal
zone of Townsville, Queensland, Australia, accounting for 94% of the Ulva specimens
sampled [37]. In 2020, a large biomass of green macroalgae with high species diversity was
found in the intertidal zone of locations along the eastern coast of the United States and the
Gulf of Mexico. This study reported the existence of U. meridionalis in North America for
the first time, but the species did not cause green tides in the region [12]. In 2022, for the
first time, researchers detected a considerable biomass of U. meridionalis in Oceania. This
species might have emerged in this region due to natural diffusion or maritime traffic [35].
At present, there is an increasing trend of green tides at the regional scale in Oceania.

Over the past five years, U. meridionalis has also been found in China [38,39]. At
present, the species has mainly bloomed in the Bohai Sea (Figure 1A), the Yellow Sea
(Figure 1B), and the South China Sea (Figure 1C), but no outbreaks have been recorded
in the East China Sea. Current observations show that U. meridionalis mainly grows near
intertidal mudflats, dikes, offshore plastic waste, and sewage outfalls, where it becomes
the dominant species. In November 2018, a U. meridionalis outbreak occurred in the South
China Sea [39], and this species accounted for about 92% of the biomass of algal blooms.
Similarly, in 2021, a green tide consisting primarily of U. meridionalis occurred for the first
time in Yingkou, Dalian, Liaoning Province. In addition, U. meridionalis drops from the
attached state and floats in the local sea area (e.g., the Bohai Sea area), and a large quantity
of U. meridionalis has been found in offshore mariculture ponds [40] The aim of the present
study was to investigate U. meridionalis using basic biology, molecular identification, and
phylogenetic methods for analysis, and to introduce the basic biological characteristics of
U. meridionalis, the species relationship of U. meridionalis in the four sea areas of China,
and the current distribution of U. meridionalis in the world. In addition, this study may
contribute to further understanding the regularity of green tides caused by U. meridionalis
and providing a dataset and reference for the control of future outbreaks.
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Figure 1. Green tide outbreaks dominated by U. meridionalis in (A) Yingkou, Dalian City, Liaoning 
Province, August 2021; (B) Qidong, Nantong City, Jiangsu Province, July 2021; (C) Wenchang City, 
Hainan Province, May 2021. 

2. Materials and Methods 
2.1. Sample Collection and Molecular Identification 

From May to November 2021, green macroalgae were collected in the intertidal zones 
of the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea. The samples 
were washed with sterilized seawater, and all epiphytes on the surface of algae were re-
moved with a sterilized brush. Then, the samples were numbered for subsequent molec-
ular identification. 

An Ezup Column Plant Genomic DNA Purification Kit was used to extract DNA 
from the samples. The ITS primer sequences were ITS-F (5’-TCTTTGAAACCG-
TATCGTGA-3’) and ITS-R (5’-GCTTATTGATATGCTTAAGTTCA GCGGGT-3’) [41]. The 
ITS region was amplified via polymerase chain reaction (PCR). The PCR reaction mix con-
tained 2 μL of sample DNA, 2 μL of upstream primer, 2 μL of downstream primer, 25 μL 
of PCR-Mix, and 19 μL of dd-H2O. The PCR amplification procedure was performed un-
der the following conditions: initial denaturation at 94 °C for 5 min, 30 cycles of denatur-
ation at 94 °C for 1 min, primer annealing at 60 °C for 1 min, extension at 60 °C for 2 min, 
and holding at 60 °C for 10 min. The samples were stored at 4 °C. All the high-quality PCR 
products were sent to Sangong Biotechnology Co. Ltd. (Shanghai, China) for DNA se-
quencing, and all the samples identified as U. meridionalis were used for subsequent re-
search (Table 1). 

2.2. Morphological and Microscopic Observations 
Through observation, it was found that the morphological characteristics of U. me-

ridionalis in the four sampled areas were consistent, and the samples collected from Liao-
ning Province in the Bohai Sea area were selected (Station number: CN9) (Table 1) to con-
duct further basic biological observations. An optical microscope (E200, Nikon, Tokyo, 

Figure 1. Green tide outbreaks dominated by U. meridionalis in (A) Yingkou, Dalian City, Liaoning
Province, August 2021; (B) Qidong, Nantong City, Jiangsu Province, July 2021; (C) Wenchang City,
Hainan Province, May 2021.

2. Materials and Methods
2.1. Sample Collection and Molecular Identification

From May to November 2021, green macroalgae were collected in the intertidal zones
of the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea. The
samples were washed with sterilized seawater, and all epiphytes on the surface of algae
were removed with a sterilized brush. Then, the samples were numbered for subsequent
molecular identification.

An Ezup Column Plant Genomic DNA Purification Kit was used to extract DNA from
the samples. The ITS primer sequences were ITS-F (5’-TCTTTGAAACCGTATCGTGA-3’)
and ITS-R (5’-GCTTATTGATATGCTTAAGTTCA GCGGGT-3’) [41]. The ITS region was
amplified via polymerase chain reaction (PCR). The PCR reaction mix contained 2 µL of
sample DNA, 2 µL of upstream primer, 2 µL of downstream primer, 25 µL of PCR-Mix, and
19 µL of dd-H2O. The PCR amplification procedure was performed under the following
conditions: initial denaturation at 94 ◦C for 5 min, 30 cycles of denaturation at 94 ◦C for
1 min, primer annealing at 60 ◦C for 1 min, extension at 60 ◦C for 2 min, and holding at
60 ◦C for 10 min. The samples were stored at 4 ◦C. All the high-quality PCR products were
sent to Sangong Biotechnology Co. Ltd. (Shanghai, China) for DNA sequencing, and all
the samples identified as U. meridionalis were used for subsequent research (Table 1).

2.2. Morphological and Microscopic Observations

Through observation, it was found that the morphological characteristics of
U. meridionalis in the four sampled areas were consistent, and the samples collected from
Liaoning Province in the Bohai Sea area were selected (Station number: CN9) (Table 1) to
conduct further basic biological observations. An optical microscope (E200, Nikon, Tokyo,
Japan) was used to observe the thallus structure of the algae in detail, and the length and
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width of cells at the basal, middle, and upper regions were measured. The pyrenoids and
morphology of algal cells were photographed. After using the punching method to induce
algal release [42] and then the release of tetraflagellate meiospore, biflagellate gametes
were observed and photographed under an optical microscope. Then, single-cell culture
of U. meridionalis was performed at 20 ◦C, 62.5–75 µmol m−2 s−1, and a 12 h light: 12 h
dark photoperiod (12L:12D) for 65 days; the culture medium was changed every 3 days.
Photographs of U. meridionalis were taken with a Sony camera (7M3, SONY, Tokyo, Japan)
as morphological records. The preparation method of the herbarium documentation was
according to Gao & Liu [43], and we digitized it according to the document description
of Quick Response code usage. Voucher specimen was deposited in the herbarium of the
College of Marine Ecology and Environment, Shanghai Ocean University (Figure 2A).
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Figure 2. Morphological photography and herbarium documentation: (A) specimen of Ulva merid-
ionalis (Voucher code: SHOU-GMA-0316), and (B) morphology of the thallus under indoor
culture conditions.

2.3. Morphological and Microscopic Observations

The U. meridionalis ITS sequences were obtained for the following samples collected
from the four sea areas of this study: (1) the Bohai Sea (Sample number: CN9-1-China; CN9-
2-China; CN9-3-China); (2) the Yellow Sea (Sample number: CN1-1-China; CN2-1-China;
CN2-2-China; CN3-1-China; CN3-2-China; CN4-1-China; CN4-2-China; CN5-1-China;
CN6-1-China; CN6-2-China; CN7-1-China; CN7-2-China; CN7-3-China; CN7-4-China);
(3) the East China Sea (Sample number: CN8-1-China); and (4) the South China Sea (Sample
number: CN10-1-China; CN10-2-China; CN10-3-China) (Table 1).

The following sequences, which were similar to that of U. meridionalis, were down-
loaded from the National Biotechnology Center (National Center for Biotechnology Infor-
mation, NCBI) database: MK426969 U. meridionalis (Zhanjiang, Guangdong, South China
Sea), MK426968 U. meridionalis (Zhanjiang, Guangdong, South China Sea), MK426970
U. meridionalis (Yancheng, Jiangsu, Yellow Sea), MK426972 U. meridionalis (Rizhao, Shan-
dong, Yellow Sea), MK426971 U. meridionalis (Yancheng, Jiangsu, Yellow Sea), and other
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related species (HQ902008 U. pertusa, MG017465 U. prolifera, AJ000203 U. linza, EU933981
U. compressa, HM031176 U. flexuosa, KC661326 U. erecta (Lyngbye) Fries, KC661346 U. fasci-
ata Delile, MF139299 U. intestinalis, MZ596117 U. tepida Y. Masakiyo et S. Shimada). Then, a
phylogenetic tree was constructed in MEGA7.0.14 using the Maximum Likelihood (ML)
method. In addition, DNASP5 software [44,45] was used to count and analyze the haplo-
types of the 26 samples (21 samples from the four sea areas in this study and five samples
from the NCBI), and Network 5.0 was used to perform the haplotype network analysis and
examine the evolutionary relationship among the haplotypes in each sample.

Table 1. Geographical location of the U. meridionalis sample stations.

Sample
Numbers Continent Country and Region Longitude Latitude Habitats Reference

CN1 Asia Yancheng, Jiangsu
Province, China 120◦01′06.372′′ E 34◦25′14.940′′ N Attached in the

intertidal zone This study

CN2 Asia Yancheng, Jiangsu
Province, China 120◦29′12.498′′ E 33◦49′29.484′′ N Attached in the

pond This study

CN3 Asia Yancheng, Jiangsu
Province, China 120◦31′26.526′′ E 33◦46′42.630′′ N Floating in the

pond This study

CN4 Asia Nantong, Jiangsu
Province, China 121◦17′22.158′′ E 32◦27′37.794′′ N Attached to a

seawall This study

CN5 Asia Nantong, Jiangsu
Province, China 121◦56′11.893′′ E 31◦42′51.779′′ N

Attached to the
wastewater

outlet
This study

CN6 Asia Nantong, Jiangsu
Province, China 121◦39′14.670′′ E 32◦04′28.422′′ N

Attached in the
intertidal
mudflat

This study

S964 Asia Yancheng, Jiangsu
Province, China 120◦45′ E 33◦15′ N Attached in the

pond [46]

U246-8 Asia Yancheng, Jiangsu
Province, China 120◦47′ E 33◦15′ N Attached in the

pond [46]

S023 Asia Lianyungang, Jiangsu
Province, China 119◦12′ E 34◦56′ N Attached in the

intertidal zone [46]

CN8 Asia Ningbo, Zhejiang
Province, China 121◦47′03.120′′ E 29◦32′47.274′′ N Attached to a

pier This study

S199 Asia Ningbo, Zhejiang
Province, China 121◦31′ E 29◦32′ N Attached in the

intertidal zone [46]

N001 Asia Ningbo, Zhejiang
Province, China 121◦33′ E 29◦26′ N Attached in the

intertidal zone [46]

CN9 Asia Dalian, Liaoning
Province, China 122◦05′01.198′′ E 40◦14′54.776′′ N Floating in the

intertidal zone This study

CN10 Asia Wenchang, Hainan
Province, China 110◦44′39.000′′ E 19◦24′59.000′′ N Attached in the

intertidal zone This study

S654 Asia Haikou, Hainan
Province, China 110◦32′ E 20◦01′ N Attached in the

intertidal zone [46]

S203 Asia Haikou, Hainan
Province, China 110◦16′ E 20◦01′ N Attached in the

intertidal zone [46]

S981-1a Asia Qinhuangdao, Hebei
Province, China 119◦37′ E 39◦55′ N Attached in the

intertidal zone [46]

CN7 Asia Qingdao, Shandong
Province, China 120◦06′37.756′′ E 36◦12′26.316′′ N Floating in a

pond [38,42]

H940 Asia Qingdao, Shandong
Province, China 120◦20′ E 36◦03′ N Attached in the

intertidal zone [46]

S115 Asia Qingdao, Shandong
Province, China 120◦21′ E 36◦02′ N Attached in the

intertidal zone [46]

S027 Asia Qingdao, Shandong
Province, China 120◦41′ E 36◦14′ N Attached in the

intertidal zone [46]

S149 Asia Qingdao, Shandong
Province, China 120◦10′ E 35◦53′ N Attached in the

intertidal zone [46]
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Table 1. Cont.

Sample
Numbers Continent Country and Region Longitude Latitude Habitats Reference

S079 Asia Qingdao, Shandong
Province, China 120◦20′ E 36◦03′ N Attached in the

intertidal zone [46]

U261-3 Asia Rizhao, Shangdong
Province, China 119◦36′ E 35◦29′ N Attached in the

intertidal zone [46]

N177-1 Asia Weihai, Shangdong
Province, China 122◦09′ E 37◦31′ N Attached in the

intertidal zone [46]

N186-1 Asia Weihai, Shangdong
Province, China 122◦11′ E 37◦30′ N Attached in the

intertidal zone [46]

U225a Asia Zhanjiang, Guangdong
Province, China 110◦04′ E 20◦17′ N Attached in the

intertidal zone [46]

U277-1a Asia Zhanjiang, Guangdong
Province, China 110◦25′ E 21◦13′ N Attached to a

seawall [46]

S209 Asia
Beihai, Guangxi

Zhuang Autonomous
Region, China

109◦09′ E 21◦24′ N Attached in the
intertidal zone [46]

S217 Asia Shenzhen, Guangdong
Province, China 114◦01′ E 22◦31′ N Attached in the

intertidal zone [46]

S599 Asia Xiamen, Fujian
Province, China 118◦05′ E 24◦34′ N Attached in the

pond [46]

RH008 Asia
Ishigaki Island,

Okinawa Prefecture,
Japan

124◦15′ E 24◦22′ N Attached in the
estuary [36]

RH001-007 Asia
Ishigaki Island,

Okinawa Prefecture,
Japan

124◦15′ E 24◦22′ N Attached in the
estuary [36]

RH009-037 Asia
Ishigaki Island,

Okinawa Prefecture,
Japan

124◦15′ E 24◦22′ N Attached in the
estuary [36]

RH043-047 Asia
Ishigaki Island,

Okinawa Prefecture,
Japan

124◦15′ E 24◦22′ N Attached in the
estuary [36]

E16 Asia Tokushima, Tokushima
Prefecture, Japan 124◦15′ E 24◦22′ N Attached in the

estuary [36]

UNA00071829 North
America

Cedar Point, Alabama,
America 88◦08′13.459′′ W 30◦18′37.865′′ N Floating in the

intertidal zone [12]

UNA00071885 North
America

Coden, Alabama,
America 88◦15′30.200′′ W 30◦22′54.894′′ N Floating in the

intertidal zone [12]

UNA00072126 North
America

Choctawatchee Bay
Bridge, Florida,

America
86◦09′20.999′′ W 30◦25′41.401′′ N Floating in the

intertidal zone [12]

UNA00072127 North
America

Choctawatchee Bay
Bridge, Florida,

America
86◦09′21.038′′ W 30◦25′41.402′′ N Floating in the

intertidal zone [12]

UNA00072079 North
America

Copano Fishing Pier,
Texa, America 97◦01′32.624′′ W 28◦06′47.833′′ N Floating in the

intertidal zone [12]

UNA00072312 North
America

Charlotte Harbor,
Florida, America 82◦04′17.893′′ W 26◦57′22.950′′ N Floating in the

intertidal zone [12]

NOU218715 Oceania NA, Moindou, French
New Caledonia NA NA Attached in the

intertidal zone [35]

NOU218742 Oceania NA, Poe, French New
Caledonia NA NA Attached in the

intertidal zone [35]

NOU218743 Oceania NA, Poe, French New
Caledonia NA NA Attached in the

intertidal zone [35]

NOU218755 Oceania NA, Bourail, French
New Caledonia NA NA Attached in the

intertidal zone [35]
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Table 1. Cont.

Sample
Numbers Continent Country and Region Longitude Latitude Habitats Reference

NOU218803 Oceania NA, islet Double,
French New Caledonia NA NA Attached in the

intertidal zone [35]

NOU218847 Oceania NA, Poe, French New
Caledonia NA NA Attached in the

intertidal zone [35]

NOU218826 Oceania NA, Cap Goulevain,
French Polynesia NA NA Attached in the

intertidal zone [35]

NOU218832 Oceania NA, Cap Goulevain,
French Polynesia NA NA Attached in the

intertidal zone [35]

NOU218770 Oceania NA, Tahiti, French
Polynesia NA NA Attached in the

intertidal zone [35]

NOU215308 Oceania NA, Marquises, French
Polynesia NA NA Attached in the

intertidal zone [35]

NOU215309 Oceania NA, Marquises, French
Polynesia NA NA Attached in the

intertidal zone [35]

NOU218867 Oceania NA, Moorea, French
Polynesia NA NA Attached in the

intertidal zone [35]

TSV31 Oceania Townsville,
Queensland, Australia 146◦48′39.999′′ E 19◦14′42′′ S Attached in the

intertidal zone [37]

3. Results
3.1. Basic Biological Characteristics of U. meridionalis

In a natural environment and under favorable growth conditions, the length and
width of U. meridionalis can reach 45 cm and 0.8 cm, respectively. The alga is light green or
yellow green, has a smooth surface, and is easy to break. Under indoor culture conditions,
it can grow to a length of 3 m (Figure 2B). It has a tubular structure and an obvious main
axis (Figure 3A), that folds in the wider part of the alga. In addition, with the growth of
the algae, the middle of the tubular algae flattens and the upper and the lower layers of
cells stick together. In the transverse section of the middle of the algae is a double-layer
cell structure. However, the edge is still monolayered tubular structure. The transverse
branches basically appear near the base, and transverse branch width gradually decreases
toward the branch node direction (Figure 3B,C). For the collected samples, the length
of algal cells in the base region was 9–30 µm, the width was 7–17 µm (Figure 3D), and
the cells contained pyrenoids (Figure 3E). In the middle region, the length and width of
algal cells was 8–23 µm and 6–16 µm, respectively (Figure 3F), and in the upper region,
the same parameters measured 8–20 µm and 5–16 µm, respectively (Figure 3G). Both the
length and width of U. meridionalis cells decreased from the base to the upper region. The
chloroplasts of each cell contained 1–11 pyrenoids; specifically, the chloroplasts of the basal
and the middle cells mainly had 4–5 and 4–6 pyrenoids, respectively, while there were
3–4 pyrenoids in the chloroplasts of the upper algal cells. The surface cells of U. meridionalis
had a rounded triangle, rectangle, or polygon shape. Generally, after induced dispersal,
U. meridionalis releases reproductive cells in about 3.5 days, which gradually disperse, and
new sporophytes or gametophytes can form. The biflagellate gametes [which form in the
gametangium (Figure 3H)] are oval, have a reddish eyespot (Figure 3I,J) and show positive
phototaxis; tetraflagellate meiospores are ovate, have a reddish eyespot (Figure 3K), and
show a negative phototaxis.
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horizontal branch to the base area; (D) surface view of cells in the basal portion; (E) cells containing
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upper region; (H) gametangium; (I) tetraflagellate meiospore; (J) biflagellate female gamete; and
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3.2. Genetic Relationship among U. meridionalis Samples

Based on the ITS-ML phylogenetic tree (Figure 4), all the samples examined in this
study fell into seven evolutionary clusters, and HM031176 U. flexuosa, HQ902008 U. pertusa,
and EU933981 U. compressa were grouped into separate evolutionary clusters.
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The following sequences were grouped into single clusters: MF139299 U. intesti-
nalis and MZ596117 U. tepida, (with a 100% sequence similarity); KC661326 U. erecta and
KC661346 U. fasciata (sequence similarity, 99%); and MG017465 U. prolifera and AJ000203
U. linza (sequence similarity, 100%) (Figure 4). There are two reasons for this: On the one
hand, although the ITS sequence as a barcode has a strong universality, it is not sufficient to
distinguish few species under certain circumstances. On the other hand, it is also possible
that the same species have different names.

All the U. meridionalis sequences were grouped into a single cluster (Sample num-
bers: CN9-1-China; CN9-2-China; CN9-3-China; CN1-1-China; CN2-1-China; CN2-2-China;
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CN3-1-China; CN3-2-China; CN4-1-China; CN4-2-China; CN5-1-China; CN6-1-China;
CN6-2-China; CN7-1-China; CN7-2-China; CN7-3-China; CN7-4-China; CN8-1-China;
CN10-1-China; CN10-2-China; CN10-3-China; MK426969 U. meridionalis; and MK426970
U. meridionalis; MK426972 U. meridionalis; MK426971 U. meridionalis; MK426968 U. meridion-
alis), showing that the ITS bar code can identify U. meridionalis with a high accuracy. Among
these sequences, the relationship between genetic distance and proximity was determined
as follows: the U. meridionalis samples collected from Wenchang City, Hainan Province in
the South China Sea (CN10-3-China; CN10-2-China) 
 the U. meridionalis samples collected
from Nantong City, Jiangsu Province in the Yellow Sea (CN6-1-China) 
 the U. meridionalis
samples collected from Yancheng City, Jiangsu Province in the Yellow Sea (CN5-1-China;
CN4-1-China; CN4-2-China; CN3-1-China; CN3-2-China; CN2-2-China; CN2-1-China; CN1-
1-China) 
 the U. meridionalis samples collected from in Dalian City, Liaoning Province in
the Bohai Sea (CN9-2-China; CN9-1-China; CN9-3-China) 
 the U. meridionalis samples
collected from Nantong City, Jiangsu Province in the Yellow Sea (CN6-2-China) 
 the
U. meridionalis samples collected from Wenchang City, Hainan Province in the South China
Sea (CN10-1-China) 
 the U. meridionalis samples collected from Qingdao City, Shandong
Province in the Yellow Sea (CN7-1-China; CN7-2-China; CN7-3-China; CN7-4-China) 

the U. meridionalis samples collected from Ningbo City, Zhejiang Province in the East
China Sea (CN8-1-China). Individual, basic group differences were detected between the
above U. meridionalis samples, but the degree of subspecies differentiation was not reached
(Figure 4). Moreover, the ITS sequence indicated a close genetic relationship between
U. meridionalis and U. pertusa, which is inconsistent with the results of the phylogeny of
U. meridionalis based on organelle genome analysis.

The circle symbol represents one haplotype, and its size reflects the number of different
haplotypes. The different colors represent different sources from which the haplotypes
were derived. The network evolution diagram (Figure 5) shows that the U. meridionalis
samples collected in the four sea areas in China are genetically close, and the haplotype
evolution network shows a chain structure. A total of five haplotypes were detected: the
samples from the East China Sea corresponded to the independent haplotype Hap_3; those
from the South China Sea contained three haplotypes, Hap_1, Hap_2, and Hap_5; those
from the Bohai sea presented two haplotypes, Hap_1 and Hap_2; and finally, the samples
from the Yellow Sea contained three haplotypes, Hap_1, Hap_2, and Hap_4. Hap_2 and
Hap_1 were the largest haplotypes and they were shared among the three groups (the South
China Sea, the Bohai sea, and the Yellow Sea). They are located in the center of the network
evolution map, and it is speculated that they are very likely the ancestral haplotypes of the
group. Hap_3, which was detected in the U. meridionalis samples of the East China Sea,
showed limited level of genetic isolation from the other haplotypes; however, it did not
reach the degree of subspecies formation (Figure 4). It is speculated that the samples with
this haplotype might have experienced a short period of geographical isolation. At the
same time, the haplotype network diagram supports the results of the phylogenetic tree.
The U. meridionalis samples from the East China Sea might be local, but they might also
be invasive, either derived from natural conditions or artificially introduced new strains.
The U. meridionalis samples in the Yellow Sea, the Bohai Sea, and the South China Sea have
expanded from haplotype Hap_2 and Hap_1 populations in recent years, and no obvious
systematic geographical pattern has been detected among them (Figures 4 and 5).
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4. Discussion

Since 1970s, the incidence of green tides has increased steadily [47] and, as the scale
of these events continues to expand, prevention has become the focus of attention among
researchers. In fact, with the increase in nitrogen supply, the growth rate of Ulva spp. also in-
creases [48], and their distribution is expected to expand also due to global warming [49,50].
Therefore, controlling green tide outbreaks is a global challenge. For a long time, the species
diversity and the distribution of Ulva spp. have attracted considerable attention in terms
of the investigation of algal resources, especially as species belonging to this genus can
easily cause green tide outbreaks. As more investigations in seaweed farms were con-
ducted worldwide [51], new species or new records were successively reported. For
example, U. meridionalis, which has a high growth rate with an average daily growth rate
of 37% day−1 and maximum daily growth rate of more than 112% day−1 [34], has been
shown to be a new green tide-forming species [34,38,39,52]. At present, there are frequent
outbreaks of harmful algal blooms around the world (such as red tides, green tides, and
golden tides) [53–55].

As a eurythermal and salt-tolerant species, U. meridionalis is widely distributed. At
present, it has been found in Asia, Oceania, and North America (Figure 6; Table 1). Up to
20 years ago, this species had been recorded only in Japan. However, in recent years, it has
also been reported in the United States, China (the Bohai Sea, the Yellow Sea, the East China
Sea, and the South China Sea), Australia, French New Caledonia, and French Polynesia.
Furthermore, massive proliferation of this macroalga has been reported in the Bohai Sea,
the Yellow Sea, and the South China Sea. At present, U. meridionalis blooms as a dominant
species in the tropical and subtropical coastal seawaters of China in spring and autumn
(Figure 1). In summer, large-scale outbreaks occur even in temperate regions, suggesting
that this species has a strong diffusion ability and can gradually spread to higher northern
latitudes, which may be due to global warming [50,51,56,57]. The distribution of U. merid-
ionalis is increasingly extensive (Table 1); however, the routes through which it is spreading
and the diffusion mechanism are unknown, and further studies should investigate these
aspects. The discovery of the invasive behavior of U. meridionalis in Chinese seas increases
the uncertainty of the future trend of green tide outbreaks in various countries.
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U. meridionalis has unique and stable morphological characteristics, and it is clearly
different from the Ulva spp. commonly found in China. At present, there is no obvious
evidence that U. meridionalis is native to any particular country, therefore the possibility
that this macroalga is a new alien invasive species entering China cannot be ruled out.
Further molecular studies need to be conducted to trace its source. Previous comparative
analyses based on the mitochondrial genome showed that U. meridionalis and U. flexuosa
are genetically close. However, comparative analyses of the chloroplast genome [52,54]
revealed that U. meridionalis is also closely related to U. linza [38]. In the present study,
a close genetic relationship was found between U. meridionalis and U. pertusa based on
the ITS sequence. This is inconsistent with the results of previous phylogenetic studies of
U. meridionalis based on organelle genomes [38,52,54]. In addition, there are relatively few
studies on Ulva DNA barcode sequences and organelle genomes for the four sea areas in
China sampled in the present study (for instance, there is a lack of research on the organelle
genome of U. meridionalis and other Ulva spp. at different sites). At present, the number and
type of gene sequences available from the NCBI are not sufficient to effectively determine
the genetic relationship of U. meridionalis with other Ulva species, which remains to be
further studied. Genome-wide research [58], plant organelle genome research [40], single
nucleotide polymorphism technology, simple sequence repeat technology, DNA barcode
sequence research, and other technologies could be adopted at their maximum capacity
to clarify the origin of U. meridionalis and its outbreak mechanism. These technologies
would also allow to explore whether the distribution and outbreaks of this macroalga are
related to its own biological characteristics and environmental factors, or they are affected
by species variation, intraspecific hybridization, and other associated reasons.

At present, the area with the largest green tide outbreaks in the world is the Southern
Yellow Sea. Green tides with U. prolifera as the dominant species have occurred in this
sea in spring and summer for 15 consecutive years. These events occur on a large scale,
and they last long [59]. Whether U. meridionalis will bloom under suitable conditions in
the Yellow Sea is uncertain. The possibility that this species may also cause large-scale
outbreaks similar to U. prolifera, harm the structure and function of the local ecosystem,
and complicate the green tide dynamics in the Southern Yellow Sea should be the reasons
of major concern. In particular, it should be considered that, at present, U. meridionalis has
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appeared as a floating phenomenon and a large-scale outbreak has been reported in the
Bohai Sea (Figure 1A). In addition, this species is also widely distributed in the Yellow Sea,
where its biomass is enormous, and large-scale floating has been reported in offshore ponds
and intertidal areas as well (Figure 1B).

U. meridionalis has a strong ecological adaptability. Studies have shown that at P and N
concentrations of 0.125 mg/L and 4.02 mg/L, respectively, its maximum growth rate could
reach 79.6% day−1 [34]. Compared to the other Ulva spp. [47,59–64], U. meridionalis shows
a very high growth rate. For example, the growth rate of U. prolifera in a wide salinity
range between 5 and 30 PSU and temperature between 10 and 30◦C was 37%-89% day−1.
In comparison, at a 10–30 salinity range and temperature of 30 ◦C, the growth rate of
U. meridionalis could reach 140% day−1 [65]. Hiraoka et al. [66] proved that, under the best
culture conditions, the growth rate of U. meridionalis exceeded 100% day−1. Similarly, we
found that its daily growth rate was 1.2% day−1 under the conditions of 28-30 PSU salinity
range and 30 °C temperature, which was also consistent with Hiraoka et al. [66]. Among the
multicellular autotrophic plants, U. meridionalis shows the fastest growth rate, which makes
it a high-quality algal biomass resource [65]. In addition, U. meridionalis is characterized
by a high photosynthetic carbon sequestration rate, frequent cell proliferation, and rapid
formation of algal bodies composed of cell walls in high-temperature environments. The
accumulated cell and cell wall components include polysaccharides and rare sugars [65–68].
The prospect of resource utilization is broad. At present, only few studies have been
conducted on U. meridionalis globally. Just twelve articles (two in Chinese and ten in
English) have been published, and the present study mainly reports the physiological
and ecological characteristics of this macroalga [14,34,39,40,52,65,69–72]. In general, no
taxonomic studies have been conducted on U. meridionalis, but fortunately, researchers are
gradually beginning to focus on it. For instance, it has been shown that this species has a
fast growth rate and a high ammonia nitrogen absorption rate; at P and N concentrations
of 3.04 mg/L and 4.26 mg/L, the maximum daily removal rates of NO3-N and PO4

3−-P
by U. meridionalis are 79% and 90%, respectively [34]. It has a broad temperature and
salinity resistance and may have several future applications, for example, in the advanced
treatment of municipal sewage, in the sulfated polysaccharide extraction industry, and
also as a potential pharmaceutical and raw food material [66]. However, its tolerance to
toxic heavy metals is unknown. Previous studies have shown that agarophyte Gracilaria
domingensis (Kutzing) Sonder ex Dickie has strong absorption to Cd and U. compressa
has strong tolerance to copper [73,74]. However, high concentrations of copper and Cd
affect U. prolifera gene expression, protein activity, and maximum quantum yield [75].
Therefore, we suggested strengthening the research on the absorption of toxic heavy
metals by U. meridionalis. Moreover, we also need to further develop new ways to utilize
U. meridionalis resources by transforming the biomass produced by this green tide-forming
species into materials that are beneficial to human life. The use of U. meridionalis as a
resource will contribute to the reduction of the algal biomass, and, consequently, to the
control of potential large-scale outbreaks in the future.
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