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Abstract: Undersea terrain and resource exploration missions using autonomous underwater vehicles
(AUVs) require a great deal of time. Therefore, it is necessary to monitor the state of the AUV in
real time during the mission. In this paper, we propose an online health-monitoring method for
AUVs using fault-tree analysis. The entire system is divided into four subsystems. Fault trees of
each subsystem are designed based on the information of performance and reliability. Using the
given subsystem fault trees, the health status of the entire system is evaluated by considering the
performance, reliability, fault status, and weight factors of the parts. The effectiveness of the proposed
method is demonstrated through simulations with various scenarios.

Keywords: autonomous underwater vehicle; performance analysis; fault-tree analysis; reliability; failure

1. Introduction

The exploration of undersea resources and terrain using autonomous underwater
vehicles (AUVs) is being actively conducted because of the recent advances in AUV tech-
nology. Undersea exploration missions are performed over a long period of time during
which underwater communication and human accessibility are significantly limited. Con-
sequently, there is a high risk of mission failure or loss of the AUV in the event of failure or
degradation in some part of the system. Therefore, continuous monitoring of the operation
state of the AUV is essential.

Various studies have been conducted to perform fault diagnosis and health monitoring
on key components of the system [1–3]. However, since existing methods only utilize
information on whether a component has failed or not, there are restrictions on accurately
determining the state of the entire vehicle. In other words, it is not possible to consider the
performance degradation condition that occurs during the transitional period right before
the failure is judged. The performance of the mission plan/change reflecting the condition
of the required parts for each mission is also limited.

The AUV considered in this paper is being developed to perform a long-term subma-
rine topographic exploration mission with an unmanned surface vehicle (USV) (Figure 1).
This AUV is being developed for long-term undersea terrain exploration in consideration
of cooperation with a unmanned surface vehicle (USV). The AUV is equipped with a
variety of equipment for exploration missions, including wireless chargers for charging
during missions.
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Figure 1. Overview of the autonomous underwater vehicle (AUV) in development.

There are methods, such as fault diagnosis, fault prognosis, and health monitoring, for
diagnosing the state of a system. Fault diagnosis is a monitoring method to identify the
faults by using hardware or analytical redundancy [4]. Failure diagnosis includes model-
based methods, signal-based methods, knowledge-based methods, and hybrid methods.
Model-based methods diagnose a fault of the part based on a model of the part [5]. Signal-
based methods use sensors measuring the part signal, such as vibration and sound, to
diagnose a fault [6].

Knowledge-based methods use historical data for fault diagnosis [7]. Fault prognosis
is a method to predict the future status of components and estimate the remaining useful
lifetime based on the information [4]. In addition, fault prognosis includes model-based
methods [8], data-based methods [9], and knowledge-based methods [10]. Health monitor-
ing is a method that continuously evaluates the health of a part in operation [11]. Earlier
health-monitoring methods primarily focused on single parts, such as the battery [12],
capacitor [13,14], servo [15], power connector [16], and bearings [17].

In this paper, we propose a method that evaluates the health of the system in real time
using fault-tree analysis (FTA). In order to calculate the health of the AUV, we consider
the performance, reliability, and fault information of its parts. Performance refers to the
ability to perform a task within a specified time frame and is an indicator of the state of the
system for the task currently being performed [18]. Reliability refers to the probability that
a system containing all hardware, firmware, and software will satisfactorily perform its
tasks at a specified time and in a specified environment [19].

The reliability can be used to gauge the current or future operability of the system.
The proposed method collects fault diagnosis information and performance information
from each part. Based on the pre-designed AUV fault tree, the reliability and performance
of the subsystem are computed. We use the reliability and performance to calculate the
health of the subsystems. The health of the whole system is computed by considering the
health of the subsystems and weights. The novelty with the algorithm proposed in this
paper is that we use fault trees to predict the health status of the whole system based on
the information about the subsystems, such as the performance degree, weights, and the
presence of faults within the components.
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2. Literature Review

FTA [20] is widely used as an effective technique to evaluate the reliability and safety
of the system based on the fault tree that reflects the system. A fault tree (FT) is a deductive,
top-down analysis method used to identify potential causes of undesired system failures.
FT uses graphical representations to express the logical relationship between various faults
and their causes based on Boolean logic. A top event usually represents a system failure
that can result in catastrophic risk or economic loss. From the highest event, the FT is
constructed downwards until the basic event is defined. System reliability can be improved
by calculating the probability of the occurrence of possible system failure combinations
and taking corresponding measures [21].

The study [22] first predicted the theoretical failure rates of sub-assemblies and com-
ponents of the drive motors and controllers. The reliability of the entire motor system
was analyzed based on the results of the failure rate prediction and the FT of the driving
motor and motor controller. The study [23] utilized FTA and risk analysis methods for a
quantitative analysis of faults to support real-time risk prediction and the safety evaluation
of leaks in a storage tank.

The FT requires higher computational costs as the size and complexity of the system
increases. Some reliability analysis methods cannot be applied due to the complexity of the
problem [24,25]. As the system develops, various parts are used, and the system displays
dynamic characteristics due to its complex configuration. However, since the existing
static FTA does not consider the dynamic characteristics of the system, it cannot model the
statistical dependence between failures [26,27].

To resolve the problems of static FTA, researchers have considered combinations of
various reliability analysis techniques, such as the Reliability Block Diagram (RBD), Binary
Decision Diagram (BDD), Decision Tree (DT), Bayesian Network (BN), Fuzzy-FTA (FFTA),
Petri Net (PN), Monte Carlo simulation, and Neural Network (NN). Some studies showed
that RBD [28,29] and BN [30,31] could be effective for analyzing system reliability. The
system is analyzed using dynamic FT (DFT) or FFTA or dynamic RBD, and the result is
converted into a dynamic BN (DBN) to estimate the reliability of the system [32–35].

Analyzing FT using BDD allows for quantitative analysis of the system and the
identification of critical components. In addition, it is possible to identify critical risks
that have a significant impact on the system. BDD can be used as a method to deal with
the cut set of FT required to calculate the reliability of the system [36,37]. The reliability
of the system can be estimated based on the probability of the basic event through the
mathematical model designed from the BDD model [38,39]. The study [40] used the BDD
and Markov model to deal with the DFT of the solar array drive assembly.

A RBD graphically represents the components of a system and shows how these
components are related in terms of the reliability. RBD represents the functional state of the
system (normal or faulty) in terms of the functional state of the part. RBD can analyze the
reliability and availability of complex systems using a wide variety of methods, such as a
series configuration system, parallel configuration system, a mixed configuration system,
and k-out-of-n system configuration [29,41]. The study [29] used FTA and RBD based on
a functional flow diagram to evaluate the reliability of the LHD (Load-Haul-Dumpers)
system. The study [41] developed an integrated FTA-RBD model for complex robotic
systems used in advanced manufacturing systems. The study [42] analyzed the reliability
of fuzzy system using the RBD and FFTA.

BN is one of the most popular methods in the field of dealing with uncertainty
problems. BN can be used to solve the uncertain reasoning problem to deal with an
uncertainty between the failure of the system and the cause of the failure. The study [30]
combined FT and BN and applied them to system failure diagnosis. The method of
combining FT and BN proposed in this study fully utilizes a priori knowledge and has low
requirements for data quality as well as data quantity.
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The study [43] used FTA and DBN to evaluate the reliability of the flare system. The
study [44] proposed a dynamic risk analysis method for a submarine pipeline based on the
BN established based on the FTA.

In order to deal with inaccurate information and ambiguities that may occur in FTA
and FFTA (which combines fuzzy logic and FT) has been proposed [45]. The reliability
of the system was analyzed by applying a decision-making method, such as an analytic
hierarchy process. The failure probability of a basic event was converted into a quantitative
value [46–48]. The integrated FFTA–BN model was used in the optimization model to
determine the optimal maintenance intervals according to the estimated failure probability
and total expected cost [49]. The study [50] utilized a FFTA and Noisy OR gate BN model
to estimate the occurrence likelihood of navigational accidents.

Research on modeling using PN to evaluate the reliability of a system or mission has
also been conducted. By combining FTA and PN, it is possible to analyze the reliability of
all failure modes of each subsystem and the mission of the system. It is also easy to modify
the PN as the mission changes [51]. The study [52] proposed a hybrid framework with the
combination of an algebraic solution, PN, and a Monte Carlo simulation to quantify DFT.

In order to overcome the various limitations of FTA, the FT of the system can be
converted into an artificial neural network (ANN), and the reliability of the system can
be evaluated. The research [25] proposed a methodology for developing an ANN risk-
assessment model based on information from FT. A method of mapping FT to ANN was
proposed by analyzing the relationship between the architecture and configuration of ANN
and the FT structure.

The existing FTA calculates the reliability of the system by considering only the
component failure rate in general. In this paper, we propose a new system-health evaluation
method that considers the performance and reliability using FTA. The AUV is divided into
several subsystems, and the health of the entire system is evaluated by considering the
performance, weight, reliability, and failure of the major parts in each subsystem. To this
end, we design a fault tree for the performance and failure of the AUV, structurally analyze
the performance and failure of the parts, and use this for health evaluation.

The paper is organized as follows. Following the introduction in Section 1, Section 2
presents a technique for evaluating the system health considering the reliability, perfor-
mance, fault status, and weighting factors. Section 3 describes the design of FT for AUV.
In Section 4, the proposed method is demonstrated with a MATLAB simulation, and our
conclusions are discussed in Section 5.

3. Health Evaluation Method

In a system, each component can contribute differently to the system performance.
Thus, weights could be applied to each component. Since the role and weight of parts in
the overall system are different, the operability of the entire system may vary depending
on which parts are faulty.

In this paper, reliability, performance, failure, and weight are considered to evaluate
the health of the system. In calculating the performance of the system, the performance
weight is used in considering the importance of each component. In addition, since
each component failure has a different influence on the performance or operability of the
subsystem and the entire system, a weight for failure is set and reflected in the system
performance.

The proposed health evaluation method is performed through the process shown
in Figure 2. First, fault detection information and performance information of the core
elements are collected. The fault detection information includes the results of the fault di-
agnosis technique applied to each equipment and the results of the fault diagnosis inherent
when the equipment is produced. The reliability and performance for the subsystem are
calculated using the acquired information and the pre-defined weights for each part based
on the FT of the system.
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The health of the subsystem is calculated using the reliability and performance
of the subsystem. The health of the entire system is calculated based on the health of
the subsystems.

Figure 2. The calculation process of the proposed method.

3.1. Reliability Evaluation Method

When calculating the reliability of a system, the reliability function in exponential
form is mainly used. In general, the failure rate is expressed as a constant and serves as a
parameter, and the reliability R(t) of the part at time t is used as shown in Equation (2) [53].

f (t) = λe(−λt) (1)

R(t) = 1−
∫ t

0
f (t)dt = e−λt (2)

where f (t) is the failure probability density function for the part, and λ is the failure rate of
the part.

3.2. Health Evaluation Method

To calculate the health of the system, we utilize the performance reliability index
proposed in Reference [54] applied to the network. The performance reliability index of
application i is as shown in the following Equation (3).

RIi =
p

∑
j=1

ωj ×
(

m

∑
l

ωl ×
[

1− ∑T/∆t
t=1 Fl(t)
T/∆t

])
(3)

m

∑
l=1

ωl = 1,
p

∑
j=1

ωj = 1 (4)

where T is the system operation time, Fl(t) is the number of failures in time t, ∆t is the
data collection interval, ωl is the weight of the failure, and ωj is the traffic ratio of the
application. Based on Equation (3), the performance reliability index of the network is as
shown in Equation (5).

RI =
q

∑
i=1

ωAi × RIi (5)

q

∑
i=1

ωi = 1 (6)

where ωAi is the weight of application i.
In this paper, we propose a method to evaluate the health of the system using

Equations (3) and (5). First, the health of the subsystem is calculated, and, based on this,
the health of the entire system is calculated.
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3.3. Health Evaluation of Subsystem

The health of the subsystem is calculated by applying the weights of the perfor-
mance, reliability, and component performance based on the performance reliability index
proposed in Reference [54]. If the time-dependent failure probability of Equation (3) is
converted from discrete time to continuous time, it can be expressed as Equation (7) below.

1− lim
T/∆t→∞

T/∆t

∑
t=1

F(t)
T
∆t

= 1−
∫ T

0
F(t)dt = R(T) (7)

By applying Equation (7) to Equation (3), the health of the subsystem Si is calculated
using Equation (8).

HSi (t) =
n

∑
i=1

ωi × Pi(t)× Ri(t) (8)

n

∑
i=1

ωi = 1 (9)

where ωi is the performance weight of the component, Pi(t) is the performance of the
component i in time t, and Ri(t) is the reliability of the component i in time t. For parts
without reliability information, this is calculated with R = 1.

3.4. Evaluation of System Health

The health of the system is calculated based on the health of the subsystem. The
weight of a failure is used to reflect the effects of a failure that can affect the entire system.
The health of the system is calculated as follows.

HS(t) = ω f (t)
n

∑
i=1

ωSi × HSi (t) (10)

n

∑
i=1

ωSi = 1 (11)

ω f (t) =

{
0, a critical failure occurs at t
1, a critical failure does not occur at t

(12)

where ωSi is the weight of the subsystem health (HSi ), and ω f (t) is the weight of the failure
occurring in time t. When a fatal failure occurs and the system cannot operate, ω f = 0. The
system is operable even if a failure occurs, ω f = 1.

4. FTA for AUV
4.1. System Details

The AUV to be dealt with in this paper is included as part of a complex system
consisting of an unmanned surface vehicle and several unmanned submersibles. In this
paper, a power-controlled AUV (PCAUV) is considered among various types of AUV. At
the beginning of the mission, the AUV is loaded onto the Unmanned Surface Vehicle (USV)
and moved to the mission area. When the AUV arrives at the mission area, it sequentially
performs various tasks, such as launching, mission execution (exploration), and recovering.

The detailed mission of the AUV are as follows.

AUV Missions

The status information of the AUV system is regularly shared to the mission controller
located on the USV through Ethernet before launching. The AUV performs separation
control from the USV in accordance with guidance command from the mission controller
of the USV. The AUV shares status information with the mission controller. According
to the mission controller’s command to start the investigation, the AUV is switched to
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investigation mode. After launching, the AUV dives to a preset location according to the
AUV mission scenario, navigates autonomously along the route, and acquires data using
the sensors.

The AUV transmits the status information to the mission controller regularly through
the underwater ultrasonic communication modem and receives commands from the mis-
sion controller. When the mission is completed, it automatically floats and periodically
transmits the status of the AUV through the underwater communication modem. After
surfacing, the AUV connects to the USV through RF communication, regularly transmits
the status of the AUV, and receives the guidance command from the mission controller
for recovery.

The mission controller controls the AUV by sending the guidance control command.
The mission controller transmits the docking start command and attempts docking by
controlling the AUV according to the docking scenario. After recovering, the mission
controller in the USV downloads the acquisition data from the AUV and uploads the next
mission to the AUV. The AUV reports the findings and the current status. The status of the
AUV is regularly shared with the mission controller in the USV through the Ethernet. The
AUV battery is charged by receiving power from the USV.

4.2. Fault Tree of AUV

FTA is a top-down system analysis method that defines system failures as top events.
It analyzes the causes of failures, and finally identifies failures in component units. By
connecting the relationship between each basic event with a logic gate, the influence on the
failure of the system, which is the highest event, can be analyzed [20].

For the AUV considered in this paper, internal state monitoring is performed on
four main subsystems: a driving unit, a control unit, a mission equipment unit, and a
communication unit. The performance and the reliability of the part is monitored in each
subsystem. We considered the FT for the above subsystem. The details of the designed FT
are as follows:

4.2.1. Fault Tree for Driving Unit (Fault Tree A)

The driving unit includes a deflection propulsion unit, an emergency lift unit, a
buoyancy control device, and a driving unit power supply. The deflection propulsion
unit is a system, including a deflection controller and a propulsion unit, and performs
fault diagnosis on leakage and motor drives. To analyze the health of the driving unit, as
shown in Figure 3, the fault tree for the drive unit is designed considering the RPM, current,
voltage, controller temperature, and motor direction control performance of the motor. The
fault tree is composed of a fault tree for performance and a fault tree for reliability. The
details of each item can be found in Tables 1 and 2.

4.2.2. Fault Tree for Controller Unit (Fault Tree B)

The control unit includes an autonomous control computer, a complex navigation
computer, a part of communication, a depth sensor, and a power supply. The computer
monitors the internal CPU usage, memory usage, HDD capacity, and CPU temperature
and checks the interlocking status of communication modems. Based on the above, the
control unit fault tree was designed as shown in sub-fault tree B in Figure 3.

4.2.3. Fault Tree for Mission Equipment Unit (Fault Tree C)

The mission equipment unit includes various sensors to perform the mission. A
system checks the interlocking status of Sonar or underwater cameras. Cases of Inertial
Measurement Unit, Doppler Velocity Log, and CTD (Conductivity, Temperature, and Depth
Sensor) can be monitored inside the sensor. Based on the related fault diagnosis and status
monitoring, the fault tree was designed as shown in sub-fault tree C in Figure 3.
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4.2.4. Fault Tree for Communication Unit (Fault Tree D)

The communication unit consists of an underwater communication device, an under-
water position tracker, and an integrated antenna assembly. Each communication device
checks the interlocking state. The fault tree for the communication unit is shown in Figure 3
as the sub-fault tree D.

Table 1. Basic performance event description of the fault tree.

Event Meaning Event Meaning Event Meaning Event Meaning

P1 Motor RPM P14 Power supply
temperature P27 HDD Capacity P40 Controller PTM current

P2 Motor voltage P15 Controller battery
voltage P28 CPU temperature P41 Controller PCM voltage

P3 Motor current P16 Controller battery
temperature P29 CPU usage P42 Controller PCM current

P4 Controller voltage P17 Controller battery
charging state P30 Memory usage P43 Charging time

P5 Controller temperature P18 Charging current P31 HDD capacity P44 Pressure sensor

P6 Motor horizontal
direction control P19 Discharging current P32 CPU temperature P45 Conductivity

P7 Motor vertical
direction control P20

Motor power
transformation module

(PTM) voltage
P33 Temperature P46 Temperature

P8 Hydraulic pump motor
ouput current P21 Motor PTM current P34 Actuator battery voltage P47 Pressure sensor

P9 Throttle valve motor
output current P22 Motor power charging

module (PCM) voltage P35 Actuator battery
temperature P48 Underwater sound

velocity

P10 Pressure sensor P23 Motor PCM current P36 Actuator battery
charging state P49 Position accuracy

P11 LVDT P24 Charging time P37 Carging current P50 Depth accuracy
P12 Battery voltage P25 CPU usage P38 Discharging current
P13 Driver status check current P26 Memory usage P39 Controller PTM voltage

Table 2. Basic reliability event description of the fault tree.

Event Meaning Failure Rate
(λ · 10−6/h) Event Meaning Failure Rate

(λ · 10−6/h) Event Meaning Failure Rate
(λ · 10−6/h)

R1 Leak detection 13.59 R13 CAN communication
connector 3.624 R25 Pressure sensor failure 1

R2 Motor driver 1.8 R14 Leakage 1 R26 Gyroscope sensor failure 1
R3 SOL 0.1 R15 Actuator battery 0.24 R27 Accelerometer failure 1

R4 Power supply leakage 1 R16 Controller PTM 8.6 R28 Highest temperature
warning 1

R5 Controller battery 0.24 R17 Controller PCM 8.6 R29 Lowest temperature
warning 1

R6 Motor PTM 8.6 R18 Depth gauge 0.3 R30 Presurre out of range 1
R7 Motor PCM 8.6 R19 SSS transducer 1.5 R31 Gyroscope out of range 1

R8 WIFI/LTE communication
modem 3.624 R20 Forward monitoring MBS 1.5 R32 Accelerometer out

of range 1

R9 Satellite communication
modem 5 R21 Underwater camera 1 R33

Underwater ultrasonic
communication

transducer
3.624

R10 RF communication
modem 3.624 R22 GPS antenna 1 R34 Underwater wireless

optical transmitter 0.24

R11 RS232 communication
connector 3.624 R23 GPS failure 1 R35 Integrated antenna

assembly 0.24

R12 Ethernet communication
connector 3.624 R24 DVL failure 0.1 R36 Underwater location

tracker 14
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Figure 3. The design of a fault tree for AUV.

5. Simulation
5.1. Simulation Setup

The AUV operation scenario for the simulations consists of two types: exploration/recovery
(20 h) and charging (20 h). In order to confirm the effect of component performance
degradation and failure influence on the health of the system, simulations are performed
for various scenarios, including various failures. We define the priority of a failure in
consideration of its influence on the system. A system with a failure corresponding to
priority 1 can no longer be operated. If a failure corresponding to priority 2 occurs, the
system can be operated with degraded performance. Each scenario is 40 h long and
performs a mission that includes exploration/recovery and charging twice.

The scenario for the AUV is set as follows.

• Case 1: Normal operation.
• Case 2: Failure corresponding to priority 1.
• Case 3: Failure corresponding to priority 2.
• Case 4: Transient failure corresponding to priority 2.

The failure rate of the basic event for calculating the reliability of AUV using the fault
tree is shown in Table 2 [55–58]. Simulations are performed using MathWorks’ MATLAB in
a PC environment.

5.2. Simulation Results
5.2.1. Case 1: Normal Operation

The left side of the graph in Figure 4 represents the health of the AUV, and the right
side represents the performance of components. In the case of the performance of parts, only
four major parts with different performance characteristics are shown on the graph. The
performance of parts changes while the AUV performs exploration/recovery and charging.
The simulation results of case 1 show the change in the health of the system according to the
change of performance of various parts. As the AUV performs its exploration mission, the
performance of various parts gradually decreases, and as it charges and transmits data after
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recovery to USV, the performance gradually improves. It can be seen that the performance
change of these parts is well-represented in the AUV health.
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Figure 4. The simulation results of scenario case 1.

5.2.2. Case 2: Failure Corresponding to Priority 1

In the second scenario, it is assumed that a fault corresponding to priority 1 occurs
at time 25 h during AUV operation. Figure 5 shows the effect of the performance of parts
that change over time and the mission performed by AUV on the health of the system. In
addition, it can be seen that the health of the system decreases to zero due to the fault of the
motor driver corresponding to priority 1 at time 25 h. It is shown in Figure 5 that a fault
corresponding to priority 1, which makes the system impossible to operate, is immediately
reflected in the system health.
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Figure 5. The simulation results of scenario case 2.
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5.2.3. Case 3: Failure Corresponding to Priority 2

In the third scenario, it is assumed that a fault corresponding to priority 2 occurs
during operation. Figure 6 shows that the health of the AUV decreases when the CAN
communication connector failure occurs at time 25 h while performing a mission. Some
of performance degradation or multiple faults of multiple components do not cause a
complete failure of the system. In that case, it can be confirmed that the health of the system
can be estimated by combining the performance and reliability of each component.
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Figure 6. The simulation results of scenario case 3.

5.2.4. Case 4: Transient Failure Corresponding to Priority 2

In the last scenario, it is assumed that a fault corresponding to priority 2 occurs and
the fault recovers after a certain time. A CAN communication connector failure occurred at
time 25 h while the AUV is operating, and the AUV continues to operate with degraded
health. Afterwards, the health of the AUV is restored by recovering from the fault at time
35 h. It can be seen from Figure 7 that the health of the AUV changes as the performance of
these various parts degrades and the fault recovers.
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Figure 7. The simulation results of scenario case 4.
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6. Discussion

In order to perform a long-duration mission, the AUV requires accurate information on
the current system status. In general, information, such as the reliability and performance,
is used to determine the system status. In this paper, a method for evaluating the health
of a system, which is an index that integrates the reliability and performance, is proposed.
By considering the system failure and performance status in real time, it is possible to
represent the overall system status more accurately. According to the simulation results,
we confirmed that the health of the entire system changes according to the failure and
performance changes of various parts of the system.

For operating such a complex system, the information about the health status of each
system is critical for efficient system operation. The system-level health status obtained
from this algorithm will be used by the higher-level decision-maker, including the mission
planner and the path planner, to determine the most desirable system operation mode under
the given environment. As a result, it is possible to reduce the social cost by increasing the
accuracy of the operation judgment of the system and preventing accidents, such as failure
or loss of the system. The advantages and disadvantages between the proposed method
and conventional fault diagnosis and prognosis are summarized in Table 3.

Table 3. Comparison of the fault diagnosis, fault prognosis, and proposed method.

Approaches Advantages Disadvantages

Fault diagnosis and prognosis [59]

• Effective and powerful to conduct real-time monitoring
• Convenient for implementation (signal-base)
• Estimate the remaining useful life
• Prior warning of a failure

• Need accurate model (model-based)
• Sensitive to external disturbances and load

changes (data-driven)
• Dependent on the quality of the recorded

data (data-driven)
• Focus on a single part

Proposed method
• Early detection of performance degradation
• Effectively reduce failure
• Evaluate the health status of the entire system
• Reflect the impact of a minor fault

• Time cost at early steps
• Needs an experienced system expert

7. Conclusions

In this paper, a health-monitoring method of AUVs considering the reliability, per-
formance, and weight based on a FT is proposed. Fault-tree analysis, including failure
and performance, was performed for an AUV. Based on the FT, the reliability and perfor-
mance of subsystems were calculated by considering the weights of fault and performance.
Using the calculated results, the health of the subsystems and, finally, the health of the
system were calculated. The effectiveness of the proposed method was verified through
simulations, including various failures and performance.

As a result of performing simulations by applying the proposed algorithm to an AUV
under development, we confirmed that the current health state of the system could be
determined more clearly. The proposed method can be applied to any system with the
ability of fault detection and performance evaluation for its components. The system-level
health status, which is predicted by the proposed method, may be effectively utilized in
determining the optimal system operation mode by a higher-level decision-maker, such
as an onboard mission planner and/or a human operator. As future work, the proposed
method will be implemented and verified with a fleet of real vehicles consisting of a USV,
two AUVs, and two gliders.
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