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Abstract: Marine transportation and operations have attracted the attention of more and more
countries and scholars in recent years. A full-state finite time feedback control scheme is designed
for the model parameters uncertainty, unknown ocean environment disturbances, and unmeasured
system states in the underactuated Unmanned Surface Vessel (USV) trajectory tracking control. The
external wind, wave and current environmental disturbances and model parameters perturbation are
extended by Nonlinear Extended State Observer (NESO) to the state of the system, namely complex
disturbances. The complex disturbances, positions and velocities of USV can be observed by NESO
and feedback to USV control system. Next, the underactuated USV error model is obtained by
operating the obtained feedback information and the virtual ship model. According to the error
model, a Nonsingular Fast Terminal Sliding Model surface (NFTSM) is constructed to realize finite-
time control. The control law is deduced through the Lyapunov stability theory to ensure the stability
of the system. The results of MATLAB numerical simulations under different disturbances show that
the trajectory tracking algorithm has fast responses, and a good convergence of the errors is observed,
which verifies the effectiveness of the designed scheme.

Keywords: nonsingular fast terminal sliding model; nonlinear extended state observer; finite time
control; full-state feedback; trajectory tracking

1. Introduction

In recent years, with the continuous development of unmanned driving, artificial
intelligence, image processing, Internet space technology, etc., the whole industry has made
great progress in digitalization and intelligence, and the USV is also rapidly developing
towards intelligence [1]. The research on USV has also become a research hotspot. USV has a
wide application prospect [2] because of its high flexibility and cost-effective characteristics,
carrying specific equipment to complete a variety of dangerous specific tasks. In the
military, the USV can be used for counter-reconnaissance and other intelligence collection,
while in the civilian field, it can be used for water quality detection/monitoring, maritime
patrol and ocean mapping [3–6]. To accomplish such missions, USVs require good motion
control ability, and trajectory tracking control is the solution. Trajectory tracking is different
from path tracking as for the former, the trajectory is parameterized and depends on
time [7], which requires the ship to reach specified coordinates along a specific trajectory at
a specified time. The under-actuation of a USV increases the control difficulty because the
number of independent control inputs is less than its degrees of freedom [8] and is thus a
nonlinear system [9].
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In practice, there are many factors in the system to deal with, such as nonlinearity,
parameter uncertainty, unmeasurable noises, unmeasurable speeds and external environ-
ment disturbances, which bring great challenges to the design of the control system. A
neural network can approximate any nonlinear function and can be used to solve the
control problems in uncertain models. In [10], the existing model uncertainties and external
disturbances were treated by radial basis function neural network and disturbance observer,
respectively. Similarly, neural network techniques and adaptive techniques were used to
compensate for the uncertainty of the model [11]. In [12], a wavelet neural network was
used to approximate completely unknown dynamic and external disturbances. In [13], an
adaptive neural network was proposed to approximate uncertain nonlinear dynamics and
external environmental disturbances. Combined with the backstepping method, adaptive
technology was used to approximate the disturbed boundary, and a neural network was
used to approximate the uncertain function to achieve trajectory tracking [14]. The difficulty
of neural network radial basis function approximating arbitrary function lies in how to
properly select the center points, the number of nodes and the appropriate width of radial
basis function to generate hidden layers. Based on the stability theory of immersion and
invariance, the asymptotic stability was guaranteed, and the adaptive law was derived to
deal with the parameter uncertainty [15]. An online constructive fuzzy approximator was
designed to dynamically adjust fuzzy rules to deal with time-varying uncertainties [16].
Combined with dynamic surface technology, the desired signal is smooth and bounded,
and the control output realizes trajectory tracking.

In [17], the external disturbances and model uncertainty were compensated by a
disturbance observer, and trajectory tracking was realized by sliding mode control. A
nonlinear disturbance observer was constructed to deal with the disturbances problem [18].
For the unmeasured velocities problem, [19] constructed a hyper-distortion observer to
observe the velocity. The unknown disturbance is estimated by RBF neural network
combined with adaptive method. In order to ensure sufficient safety, the state of the system
is subject to certain boundary constraints to perform a specific task; Li et al. [20] used the
barrier Lyapunov function to constrain all states of the system to achieve trajectory tracking
control. A pre-defined performance tracking control law based on quantization state was
proposed to achieve tracking control without requiring system structural parameters and
function approximators for a long time [21]. In the trajectory tracking control of mobile
robot [22], state feedback control and disturbance feedforward compensation control are
designed to solve the problems of unmeasurable speed and disturbance. Given that the
disturbances are bounded, the disturbances suppression and tracking error reduction were
guaranteed by finite time convergence.

Finite time control has better convergence performance and is more desirable in
practical applications. It is able to complete the trajectory tracking task within finite time
and has fast response characteristics [23–28]. Sliding mode control has been widely used
in nonlinear uncertain systems because of its strong robustness, simple design and easy
implementation. Traditional sliding mode control does not have the characteristics of finite
time control. The terminal sliding mode can control the convergence rate near or away
from the equilibrium point to realize finite time control because it introduces nonlinear
function into sliding hyperplane design. It is widely used to solve finite time control
problems [29–31]. In [32], a finite time adaptive sliding mode controller is designed, and
the adaptive law is obtained by Lyapunov function. In [33], a finite time control strategy is
designed based on proportional integral-differential sliding mode control to make the error
converge in finite time.

The above studies deal with the problems of external environmental disturbances
by designing disturbance observers to compensate for the disturbance or neural network
approximation and using state observers for velocity estimation. In this study, perturbation
and velocity unmeasurable problems are considered and dealt with together. NESO and
NFTSM are combined to realize finite time underactuated USV trajectory tracking control.
The overall structure block diagram of this study is shown in Figure 1. The underactuated
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USV mathematical model is taken as the research plant, and then NESO and NFTSM are
designed and verified by numerical simulation. The main contributions are as follows:

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 3 of 22 
 

 

tion and velocity unmeasurable problems are considered and dealt with together. NESO 
and NFTSM are combined to realize finite time underactuated USV trajectory tracking 
control. The overall structure block diagram of this study is shown in Figure 1. The un-
deractuated USV mathematical model is taken as the research plant, and then NESO and 
NFTSM are designed and verified by numerical simulation. The main contributions are 
as follows: 

A NESO is designed to achieve full-state feedback, which eliminates the need for a 
separate disturbance observer to compensate the disturbance, thus reducing the design 
difficulty. Uncertainty of model parameters and external disturbances are regarded as 
complex disturbances and expanded as part of the state variables of the system, and the 
observation values of complex disturbances feedback to the controller to simplify the 
design process. The observed values of velocity and position are obtained and feedback 
to the system, which is particularly useful in the case of sensor malfunction. 

NFTSM can realize the convergence of tracking error in a shorter time, which is used 
to solve the problem of slow convergence of trajectory tracking error. According to 
Lyapunov stability theory, the corresponding surge force and yaw moment are derived 
to ensure the stability of the system. The numerical simulation by MATLAB verifies that 
the controller has fast response characteristics, and the chattering phenomenon of the 
controller is also reduced. 

Kinematics

Kinetics

Underactuated USV Full-state Feedback 
Scheme

Constructing 
Error Model

Constructing 
NFTSM

Design 
Control Law

Finite Time Control 
Scheme

Numerical Simulation and 
Verification

Design NESO

Stability 
proof

 
Figure 1. Structure diagram of research. 

2. Definition 
For first-order nonlinear systems, NTSM and NFTSM were defined [34] as follows: 

( )
( ) 1

1 2 1 2 1

sign 0,   0,  1 2,

sign sign 0,  0, 0,1 2,

a

a a

t x k x k a

t x k x k x k k a a a

σ

σ

= + = > < <

= + + = > > < < >




 (1)

where x R∈ , sign : sign aa x x x= ⋅ , 1,k k and 2k are coefficients greater than 0, a p q= ,
p  and q are positive integers 0p > , 0q > . 

Figure 1. Structure diagram of research.

A NESO is designed to achieve full-state feedback, which eliminates the need for a
separate disturbance observer to compensate the disturbance, thus reducing the design
difficulty. Uncertainty of model parameters and external disturbances are regarded as
complex disturbances and expanded as part of the state variables of the system, and the
observation values of complex disturbances feedback to the controller to simplify the design
process. The observed values of velocity and position are obtained and feedback to the
system, which is particularly useful in the case of sensor malfunction.

NFTSM can realize the convergence of tracking error in a shorter time, which is used to
solve the problem of slow convergence of trajectory tracking error. According to Lyapunov
stability theory, the corresponding surge force and yaw moment are derived to ensure the
stability of the system. The numerical simulation by MATLAB verifies that the controller
has fast response characteristics, and the chattering phenomenon of the controller is also
reduced.

2. Definition

For first-order nonlinear systems, NTSM and NFTSM were defined [34] as follows:

σ(t) = x + ksigna .
x = 0, k > 0, 1 < a < 2,

σ(t) = x + k1signa1 x + k2signa .
x = 0, k1 > 0, k2 > 0, 1 < a < 2, a1 > a

(1)

where x ∈ R, signax := signx · |x|a, k, k1 and k2 are coefficients greater than 0, a = p/q, p
and q are positive integers p > 0, q > 0.

3. Underactuated USV Modeling and Problem Formulation

Assumption 1: Only three degrees of freedom of the underactuated USV are considered,
namely, surge, sway and yaw.
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Assumption 2: The underactuated USV has a uniform mass distribution and a left-right
symmetry.

Assumption 3: The (Center of Gravity) CoG and Center of Buoyancy (COB) of the underac-
tuated USV are located on the z-axis of the body-fixed coordinate system.

On the premise of the above assumptions, the kinematic and dynamic equations of
USV can be obtained as follows:

.
η = R(ψ)v

M
.
v = −C(v)v−D(v)v + τ+ τE

(2)

where η = [x, y, ψ]T denotes the actual positions and heading angle of underactuated USV
in the Earth-fixed coordinate also called North-East-Down coordinate; v = [u, v, r]T denotes
the actual velocities and angle velocity; R(ψ) is the transformation matrix between the
Earth-fixed coordinate system and the Body-fixed coordinate system, as shown in Figure 2.
M is inertial matrix; C(v) is the Coriolis and centripetal matrix; D(v) is the hydrodynamic
damping parameters matrix; τ = [τu, 0,τr]

T denotes the surge force, sway force and yaw
moment, where sway force is 0; τE = [τEu,τEv,τEr] is used to represent the disturbances
caused by the wind, wave and current environment of the USV. The above parameter
matrices satisfy the following properties:
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Figure 2. Earth-fixed O− XoYo and Body-fixed A− XY coordinate frames of a USV.

Property 1: The rotation matrix is orthogonal to satisfy ‖R(ψ)‖ = 1 and

RT(ψ) = R−1(ψ)
.

R(ψ) = R(ψ)S(r)
R(ψ)S(r)RT(ψ) = R(ψ)TS(r)R(ψ)

(3)

where

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

, S(r) =

0 −r 0
r 0 0
0 0 0

 (4)

Property 2: The symmetric positive definite of the inertia matrix satisfies:

M = MT > 0 (5)

Property 3: The Coriolis and centripetal force matrices are obliquely symmetric and
satisfy:

C(v) = −CT(v), ∀v ∈ R3. (6)
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Property 4: Hydrodynamic damping matrix is an asymmetric and strictly positive
definite real matrix, which satisfies:

D(v) > 0, ∀v ∈ R3. (7)

The expressions of matrix M, C(v), and D(v) are, respectively:

M =

m11 0 0
0 m22 0
0 0 m33

 =

m− X .
u 0 0

0 m−Y .
v 0

0 0 Iz − N.
r

 (8)

C(v) =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 (9)

D(v) =

d11 0 0
0 d22 0
0 0 d33

 =

−Xu 0 0
0 −Yv 0
0 0 −Nr

 (10)

Define auxiliary quantityω = R(ψ)v, there are:

.
ω =

..
η

=
.

R(ψ)v + R(ψ)
.
v

= f (η, v,τE) + B(ψ)τ
(11)

where f (η, v,τE) = R(ψ)M−1[τE −C(v)v−D(v)v] +
.

R(ψ)v, B(ψ) = R(ψ)M−1.
Therefore, the underactuated USV mathematical model can be written in the following

form: .
η =ω

.
ω = f (η, v,τE) + B(ψ)τ

(12)

In this study, a reference trajectory is generated by providing a predefined input to the
virtual underactuated USV, as shown in Figure 3.
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Similarly for virtual underactuated USV:

.
ηd = Rd(ψd)vd

Md
.
vd = −Cd(vd)vd −Dd(v)vd + τd

(13)
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Defining an auxiliary quantityωd = Rd(ψd)vd, there are:

.
ωd =

..
ηd

=
.

Rd(ψd)vd + Rd(ψd)
.
vd

= fd(ηd, vd) + Bd(ψd)τd

(14)

where fd(ηd, vd) = Rd(ψd)M−1
d [−Cd(vd)vd −Dd(v)vd] +

.
Rd(ψd)vd, Bd(ψd) =

Rd(ψd)M−1
d .

According to Equations (11) and (14), an error model can be obtained.

.
ηe =

.
η− .

ηd..
ηe =

..
η− ..

ηd
= f (η, v,τE) + B(ψ)τ− fd(ηd, vd)− Bd(ψd)τd

(15)

4. Design of NESO

In the actual navigation process, it is inevitable that the USV is subjected to the distur-
bances of the external environment: wind, wave and current. At the same time, considering
the parameters perturbation, that is, the system inertia matrix, Coriolis centripetal force
matrix and hydrodynamic damping matrix, this part of the influence will be regarded
as whole complex disturbances, and it will be expanded into part of the system states
to deal with together. Further considering the situation that the system states cannot be
measured, NESO will be used to observe the system states, that is, the velocities, positions
and composite disturbances are feedback to the underactuated USV system.

The following NESO can be designed for the underactuated USV model (12).
e1 = z1 − x1, e2 = z2 − x2, e3 = z3 − x3.
z1 = z2 + λ1e1.
z2 = z3 + Bτ+ λ2fal(e1, β1, δ1).
z3 = λ3fal(e1, β2, δ2)

(16)

where x1 = η, x2 =
.
η = ω, the derivative of complex disturbances x3 = f (η, v,τE) is

unknown but bounded, that is, f (η, v,τE) <= f > 0, z1 is position observed value of η,
z2 is the observed value of

.
η, z3 is complex disturbances observed value of f (η, v,τE); λ1,

λ2, λ3 are gain matrix of NESO, ei =
[
ei,j
]T
(i = 1, 2, 3, j = 1, 2, 3) are the corresponding

approximation errors. The function of fal(•) expression is as follow:

fal(x, β, δ) =

{
|x|βsign(x) , |x| > δ

s
δ1−β , |x| ≤ δ

(17)

where x is independent variable of the function. β ∈ (0, 1), δ an arbitrary small positive
number.

Combining Equations (12) and (16) to calculate the derivatives of e1, e2, e3, the error
system of NESO is as follows: 

.
e1 = e2 − λ1e1.
e2 = e3 − λ2e1.
e3 = f (η, v,τE)− λ3e1

(18)

The error state equation of NESO can be expressed as:

.
e = Ae + B

.
f (η, v,τE) (19)
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where

A =

−λ1 I3×3 03×3
−λ2 03×3 I3×3
−λ3 03×3 03×3

, B =

03×3
03×3
I3×3

 (20)

The eigenequation of matrix A is

∣∣sI−A
∣∣ =

s + λ1 −I3×3 03×3
λ2 s −I3×3
λ3 03×3 s

 (21)

The characteristic polynomial of Equation (19) is

s3
i +α1s2

i +α2s1
i +α3 = 0 (22)

where si = [s1i, s2i, s3i]
T , i = 1, 2, 3. Appropriate choice of parameter matrixes, λi, i = 1, 2, 3,

makes A satisfy the Hurwitz stability condition. By Lyapunov’s second method, for
arbitrary given positive definite matrix Q and P, the following Lyapunov equation is
satisfied.

ATP + PA + Q = 0 (23)

Define the Lyapunov function regarding NESO as

V = eTPe (24)

The differential Equation (24) can be obtained.

.
V =

.
eT Pe + eT P

.
e

= eT AT Pe +
[

B
.
f (η, v,τE)

]T
Pe + eT PAe + eT PB

.
f (η, v,τE)

= eT
(

AT P + PA
)

e + 2eT PB
.
f (η, v,τE)

≤ eT(Q)e + 2‖e‖·‖PB‖·‖
.
f (η, v,τE)‖

≤ λmin(Q)‖e‖2 + 2 f ‖e‖·‖PB‖

(25)

When
.

V ≤ 0, it can be proved that NESO is convergent, and the convergence condi-
tions are:

‖e‖ ≤ 2 f ‖PB‖
λmin(Q)

(26)

From Equation (16), the observed value
^
η = z1 of position, the observed value

v̂ = R−1(ψ)z2 of velocity, and the observed value f̂ (η, v,τE) = z3 of complex disturbance
can be obtained. Using the observations obtained by NESO to replace the position states and
velocity states corresponding to the actual USV, and the complex disturbances composed
of unknown internal disturbances, namely model parameter disturbances and external
unknown wind, wave and current environment disturbances, can simplify the design of
the controller and reduce the complex operation process.

5. Controller Design

The feedback value of the underactuated USV system states obtained by NESO has
been mentioned before. After redefining the error model, the sliding mode surface is
designed for controller design. The control scheme structure diagram is shown in Figure 4.
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According to the design idea, the error model is redefined by the error model (15) and
NESO (16).

.
ηe =

.
^
η− .

ηd

..
ηe =

..
^
η− ..

ηd

= f̂
(

^
η, v̂,

^
τE

)
+ B

(
ψ̂
)
τ− fd(ηd, vd)− Bd(ψd)τd

(27)

From the definition of NFTSM, the following sliding surface can be obtained:

s = ηe + k1signa1ηe + k2signa .
ηe (28)

From Equations (27) and (28), the differential equation of the sliding mode surface can
be obtained:

.
s =

.
ηe + a1k1diag

(
signa1−1τe

) .
ηe + ak2diag

(
signa−1 .

ηe

) ..
ηe (29)

Since
..
ηe contains the required control τ, the Lyapunov function about the sliding

surface is constructed, and the desired controller output τ can be obtained by selecting the
appropriate τ to satisfy the Lyapunov stability condition.

Define the following Lyapunov function,

V1 =
1
2

sTs (30)

and obtain the differential equation:

.
V1 = sT .

s
= sT

[ .
ηe + a1k1diag

(
signa1−1ηe

) .
ηe + ak2diag

(
signa−1 .

ηe

) ..
ηe

] (31)

If the underactuated USV input is selected as:

τ = MR−1(ψ̂){− f̂
(

^
η, v̂,

^
τE

)
+ Rd(ψd)Md−1τd + fd(ηd, vd)

− 1
ak2

[
ak1diag

(
signa1−1ηe

)
+ I
]
sign2−a .

ηe − k3s−k4signs}
(32)
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Substituting Equation (32) into Equation (31) can be obtained:

.
V1 = sT .

s
= sT

[ .
ηe + a1k1diag

(
signa1−1ηe

) .
ηe + ak2diag

(
signa .

ηe
) ..
ηe

]
= ak2sTdiag

(
signa−1 .

ηe

)
(−k3s− k4signs)

≤ −ak2
3
∑

i=1
k3i

∣∣∣signa−1 .
ηei

∣∣∣s2
i − ak2

3
∑

i=1
k4i

∣∣∣signa−1 .
ηei

∣∣∣|si|

(33)

The Lyapunov function V1 ≥ 0 is selected, and the design τmakes
.

V1 ≤ 0, so it can be
concluded that the underactuated USV system is stable.

6. Numerical Simulation and Analysis

In order to verify the effectiveness of using NESO for full-state feedback with the
combination of NFTSM for finite-time trajectory tracking control, the BAYCLASS long-range
patrol ship in reference [35] is used for simulation, and the parameters of underactuated
USV are shown in Table 1. The virtual USV, actual USV, NESO and controller in the design
process are modeled using the Simulink simulation tool in MATLAB, and the solver is
chosen ode45 with variable step size. The work of the simulation is divided into two stages.
First of all, the simulation verifies whether the mentioned NESO has a good approximation
effect on the complex disturbances, positions and velocities state of the underactuated
USV system. Finally, the simulation incorporates parameters perturbation using NESO to
obtain the three-part state feedback values of positions, velocities, and expansion of the
underactuated USV system combined with NFTSM to verify the simulation and compare it
with the NTSM in [36] in order to verify the design of the control.

Table 1. USV model parameters.

Parameter Definition Value Units

m Mass of USV 1.18× 103 kg
L Length of USV 38 m

m11 Parameter of inertia matrix 1.2× 105 kg/s
m22 Parameter of inertia matrix 1.779× 105 kg/s
m33 Parameter of inertia matrix 6.36× 107 kg/s
d11 Parameter of damping matrix 2.15× 104 kg/s
d22 Parameter of damping matrix 1.47× 105 kg/s
d33 Parameter of damping matrix 8.02× 106 kg/s

The virtual underactuated USV used to generate the reference trajectory uses the same
model parameters as the actual underactuated USV model. The initial values of position
and velocity of underactuated USV are η0 = [0, 0, 0]T and v0 = [0, 0, π/6]T . The initial
values of positions and velocities of virtual underactuated USV are ηd0 = [5, 3.5, π/6]T

and vd0 = [0, 0, 0]T . To reflect the parameter perturbation, M = ±1.1M, C(v) = ±1.1C(v),
D(v) = ±1.1D(v) are used in the simulation. Four periods with higher probability of
disturbance occurrence were chosen according to the scatter diagram of the sea states. The
disturbances τE caused by wind, wave and current are assumed to be:

τE =

8× 10n sin(ω · t)
6× 10n sin(ω · t)
7× 10n sin(ω · t)

 (34)

where n = 3, 4, T = 5, 6, 7, 8s, four different periods can be obtained when the angular
frequency as ω = 1.2566, 1.0472, 0.8976, 0.7854.
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The reference trajectory is designed as the complex trajectory obtained by the combi-
nation of straight line and circle, and the control input τd of the virtual underactuated USV
is selected as follows:

τd =

{ [
1 0 0

]T × 105, 0 ≤ t ≤ 100[
1 0 2

]T × 105, 100 < t ≤ 300
(35)

The parameters selected for Equation (16) NESO are: λ1i = 6,λ2i = 9,λ3i =
15(i = 1, 2, 3), βi = 0.5, δi = 0.001(i = 1, 2). Regarding the design form Equation (32)
of the controller, the chosen parameters are k1 = 3, k2 = 1, k3 = k4 = diag

(
10 10 10

)
,

a = 9/5, a1 = 5/3. It is worth noting that the symbolic function k4signs in Equation (32)
will cause obvious chattering in the controller in the actual simulation, so the saturation
function is used to replace the symbolic function in the simulation, and the form of the
saturation function is shown below.

Sat(si) =

{
sign(si) ,|si| > v

|si|ξsign(si)/vξ ,|si| ≤ v
, (i = 1, 2, 3) (36)

The parameters used are v = 7, ξ = 0.2.
For the disturbances in the form of Equation (34), there are two different amplitudes.

For the first amplitude, the disturbances as in Equation (37) are chosen for simulation.

τE =

8× 103 sin(ω · t)
6× 103 sin(ω · t)
7× 103 sin(ω · t)

 (37)

Figure 5 shows the tracking curves of the complex disturbances f (η, v,τE) for four
periods under the disturbances of Equation (37). The complex disturbances are related to
the USV’s own velocity, position information and external environmental disturbances,
which are non-periodic disturbances. The red curve, which is the observed value, is very
close to the actual value (the blue curve), as can be seen in the figures below.
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Figure 6 shows the observation error curves of complex disturbances f (η, v,τE),
positions ηe and velocities ve. It can be seen in the three figures that for the three different
state tracking error curves converge in a minimal neighborhood of zero. The composite
disturbance error is less than 10−1, and the position and velocity observation error is less
than 10−3. Despite the change in the period of the disturbance, the NESO observations are
still valid within the error tolerance. There is an initial error in the estimation error of the
vessel positions and velocities state at the initial stage. As time goes on, the error converges
very quickly. From the convergence range of the error, it can be concluded that the estimated
vessel speed and position states can replace the actual measured states information and
feedback to the system. Therefore, when the states of the underactuated USV system cannot
be measured or is disturbed by the external environment, the structural information of the
system itself can be used to estimate the states information of the underactuated USV.
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tracking error under four periods.

Figures 7–10 show the simulation results under four periods of disturbance T =
5s, 6s, 7s, 8s. The trajectory tracking curve, position tracking error curve, velocity tracking
error curve and surge force and yaw moment curve are given for each period. For the
trajectory tracking curves under four periods, it can be seen that, overall, both control
methods can track the reference trajectory, but from the local zoom in, it can be seen that the
NFTSM control method used in this study approaches the reference trajectory earlier than
the NTSM method and the approximation error is smaller. The small error indicates that
the safety is higher and the risk is lower when performing the task using this method. As
seen from the velocity tracking error curve, there is not much difference between the two
methods because, overall, both methods can make the USV track on the reference trajectory,
while achieving the position tracking needs to satisfy the velocity tracking first. For the
simulation curves of surge force and yaw moment, it can be seen that the output curve of
the controller is smoother than the control method used in this study, and the output curve
of the NTSM control method is more strongly chattered. When the periods are T = 7s
and T = 8s, it is obvious from the position tracking Figures 9b and 10b under the two sets
of periods that the control method NFTSM of this paper is better than the NTSM control
scheme.
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Figure 8. Simulation results at disturbance period of T = 6s. (a) Trajectory tracking curves; (b) Posi-
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Figure 9. Simulation results at disturbance period of T = 7s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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Figure 10. Simulation results at disturbance period of T = 8s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

The second disturbances amplitude is 10 times the first disturbances amplitude, and
the disturbances as in Equation (38) are chosen for simulation.

τE =

8× 104 sin(ω · t)
6× 104 sin(ω · t)
7× 104 sin(ω · t)

 (38)

Figure 11 presents the observation error curves of complex disturbances, position and
velocity under disturbances as shown in Equation (38). For disturbances with amplitude
11 times larger, the observations of the complex disturbances as shown in Figure 11a
are not as good as in the case of small disturbances, but the observation errors of the
position and velocity states are within 10−2. In the case of period variation, there is no
significant difference between the simulation graphs under the four periods, and there is
good adaptability for the period variation.
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The simulation results shown in Figures 12–15 are obtained by varying the period T =
5, 6, 7, 8s of the disturbances. Since the disturbances amplitude is 10 times the disturbances
in Equation (37), the errors of the observed value obtained by NESO are relatively large
compared to the small amplitude disturbances, which have an impact on the position
tracking results and lead to a larger error. In the presence of observation errors, both control
methods can achieve trajectory tracking control as seen in the trajectory tracking result
graph, but the control effects are different. From the simulation results of Figure 12 at the
disturbance period of T = 5s, it is obvious from Figure 12b that the control effect of the blue
curve NFTSM of the control method used in this paper has a smaller error, and Figure 12d
shows that the chattering of the yaw moment is smaller. When the period becomes larger,
as seen from the position error curves of the four periods, the tracking error of the control
method in this paper is smaller, and its error curves are closer to the reference error curve
of zero value. The simulation graph of the yaw moment at four periods shows that the
control scheme proposed in this study has a smaller frequency of control output variation
and less chattering.
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Figure 12. Simulation results at disturbance period of T = 5s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 17 of 22 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Simulation results at disturbance period of 5T s= . (a) Trajectory tracking curves; (b) 
Position tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment 
curves. 

 
(a) 

 
(b) 

-100 0 100 200 300 400 500

100

200

300

400

500 NTSM
NFTSM
REF

0 10 20
0

5

10

15 0 50 100 150 200 250 300
-4
-2
0

NTSM NFTSM Reference Error

0 50 100 150 200 250 300
0
1
2
3

0 50 100 150 200 250 300
-0.3
-0.2
-0.1

0
0.1

0 50 100 150 200 250 300
-10
-5
0 NTSM NFTSM

0 50 100 150 200 250 300
-2

-1

0

0 50 100 150 200 250 300
-0.5

0
0.5

1

0 50 100 150 200 250 300
0
2
4
6

107 NTSM NFTSM

0 50 100 150 200 250 300

-2
0
2
4

109

100 101 102 103 104 105 106 107 108
0

1

2 105

100 101 102 103 104 105 106 107 108
-1

0

1
107

-100 0 100 200 300 400 500
0

100

200

300

400

500
NTSM
NFTSM
REF

0 10 20
0
5

10
15

NTSM
NFTSM
REF 0 50 100 150 200 250 300

-4
-2
0

NTSM NFTSM Reference Error

0 50 100 150 200 250 300
0
1
2
3

0 50 100 150 200 250 300
-0.3
-0.2
-0.1

0
0.1

Figure 13. Cont.



J. Mar. Sci. Eng. 2022, 10, 1845 18 of 21
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 18 of 22 
 

 

 
(c) 

 
(d) 

Figure 13. Simulation results at disturbance period of 6T s= . (a) Trajectory tracking curves; (b) 
Position tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment 
curves. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Simulation results at disturbance period of 7T s= . (a) Trajectory tracking curves; (b) 
Position tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment 
curves. 

0 50 100 150 200 250 300
-10
-5
0 NTSM NFTSM

0 50 100 150 200 250 300
-2

-1

0

0 50 100 150 200 250 300
-0.5

0
0.5

1

0 50 100 150 200 250 300
0
2
4
6

107
NTSM NFTSM

0 50 100 150 200 250 300

-2
0
2
4

109

100 102 104 106 108
0

1

2 105

100 102 104 106 108
-1

0

1
107

-100 0 100 200 300 400 500

100

200

300

400

500

NTSM
NFTSM
REF

0 10 20
0

5

10
0 50 100 150 200 250 300

-4
-2
0

NTSM NFTSM Reference Error

0 50 100 150 200 250 300

0
1
2
3

0 50 100 150 200 250 300
-0.3
-0.2
-0.1

0
0.1

0 50 100 150 200 250 300
-10

-5
0

NTSM NFTSM

0 50 100 150 200 250 300
-2
-1

0

0 50 100 150 200 250 300
-0.5

0
0.5

1

0 50 100 150 200 250 300
0
2
4
6

107 NTSM NFTSM

0 50 100 150 200 250 300

-2
0
2
4

109

100 101 102 103 104 105 106 107 108
0

1

2 105

100 102 104 106 108
-1
0
1

107

Figure 13. Simulation results at disturbance period of T = 6s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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Figure 14. Simulation results at disturbance period of T = 7s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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The simulation results of the above two amplitudes and four periods show that the
observation errors of position and velocity are less than 10−3 and the complex disturbance
less than 2× 10−2 in the case of small disturbance amplitude. In the case of a large dis-
turbance of 10 times the small amplitude disturbance, the observation errors of position
and velocity are less than 1× 10−2, and the observation errors of the complex disturbance
are less than 0.3. Under the disturbance of small amplitude and large amplitude distur-
bances, the position, velocity and composite disturbance observations with a small enough
error can be obtained, which shows that the designed full state observer is feasible. The
comparison of different periods of the two control methods highlights that the control
method NFTSM in this paper has a better trajectory tracking effect, a smaller error and less
controller chattering.

7. Conclusions

In this study, a method combining NESO and NFTSM is presented for trajectory control
of an underactuated USV under the disturbances of wind, wave and current in external
environment, in the presence of perturbation of the parameters of an underactuated USV
model and in the absence of accurate information about the state of the system. Based
on theoretical analysis, it is proved that the design process of NESO and NFTSM satisfies
the Lyapunov stability condition. Two types of disturbances with 10 times difference in
amplitude and four different periods are designed. The four period disturbances with
the higher probability of generating wind and wave currents are chosen according to the
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scatter diagram of the sea states, and the numerical simulation verifies the effectiveness
of NESO for all of the states observed. Finally, the NTSM and NFTSM are compared
with the position, velocity and complex perturbation observations obtained by NESO, and
the following conclusions can be drawn: (1) The stability demonstration and simulation
results of NESO show that the designed observer can quickly approximate the actual
complex disturbances and the underactuated USV system state, and the vessel position
and vessel velocity observation errors for different periods of the two disturbances are
less than 10−3, thus it is feasible and easier to implement the observer as a measurement
module of the system to feedback the underactuated USV system state. (2) The simulation
results show that the actual trajectory has a good approximation for the combined linear
and circular trajectory, and the error curve shows the control scheme of NFTSM with a
smaller error, and the error finally converges to the small neighborhood of zero, thus the
probability of accidents is lower. (3) The simulation results show that under the conditions
of environmental disturbances, model parameter uncertainty and state unpredictability, the
control method of NFTSM can achieve rapid trajectory tracking control with less tracking
error and less chattering in the process.

In future work, the focus will be on adaptive NESO, since the control accuracy is
affected by the observer accuracy when using state feedback.
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