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Abstract: To create an autonomous surface vehicle, the microcontroller that will be responsible for
the vessel’ s response will have access to both engine thrust controls and steering controls. In the
case of a vehicle with waterjet propulsion, the term “controls” refers to engine RPM and nozzle
angle. The latter allows the thrust vectoring. Having performed the mathematical modelling of the
surface vessel, a method must be found such that the microcontroller actions on the controls create the
desired outputs, based on predefined performance objectives. A commonly selected control algorithm
considered an industry standard for control applications—at least from the perspective of classical
control methods—is the PID control scheme. Many times, a PID control scheme is sufficient for
achieving the required performance. There are also many methods that extend the functionality of the
PID to robust control schemes, to accomplish more specific targets, such as noise rejection. The vast
majority of all these implementations, will have to be implemented using a digital microcontroller or
an FPGA. This paper assists theoretically in implementing PID controllers digitally, by elaborating
on the discrete-time perspective of PID control. It also provides a test method for evaluating the
algorithmic implementation.

Keywords: PID; discrete-time; digital control

1. Introduction

This study mainly aims to assist in digital implementation of PID controllers, with
references to the case the authors needed it for, i.e., for a surface vessel autopilot—course
controller. The implementation method described is supported by a simple testbed, which
serves as an evaluation tool for the verification of each user’s implementation. The math-
ematical tools needed for this purpose are presented in a step-by-step approach, where
each step uses the previous as a background. It must be noted that the implementation
presented does not intend to be optimal in any way, meaning that it does not guarantee
that provides the most efficient way of digital resources usage. If reduction in memory cells
or multipliers is needed (for use in FPGA for example), you may have to refer to Ogata and
Kuo [1,2].

As an initiative for the development of this work, has been the need for controlling
our ship model velocity and heading, by producing the correct stimulus to our waterjet
propulsion. Due to the nature of the waterjet, our target is translated to controlling the
magnitude and angle of the force the waterjets create at the stern of the vessel.

Quickly introducing the type of waterjets used, refer to Figure 1a which is a side-cut of
a similar waterjet [3]. A PMDC motor attached to the right end of the shaft, turns the pump
(No2 at Figure 1a), that moves water from the intake (No1 at Figure 1a) to the output of
the nozzle (No4 at Figure 1a). The water mass displacement creates momentum variation,
which in turn means force (vector F in Figure 1c,d). Figure 1b is a graphical representation
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of the waterjet function, where the velocities of water masses are shown. The force created,
pushes the vessel stern as shown schematically in Figure 1c,d.
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Figure 1. Waterjet schematic views. (a) Side-cut view; (b) functionality schematic; (c) top schematic 
view at zero turn; (d) top schematic view at θ turn. 
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at zero initial velocity, thus maneuvering ability is present in all possible velocities range. 
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ated by two control loops shown in Figure 2, and will be discussed later in this section. A 
view of the implementation can be seen at Figure 3c,d.  

As mentioned, both waterjets were joined. The join was at both turn angle and motor 
rpm as can be seen schematically at Figure 4. The “trained” readers in RC models will also 
recognize the nozzle turning joint at Figure 3d numbered item 5. These two types of join 
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Figure 1. Waterjet schematic views. (a) Side-cut view; (b) functionality schematic; (c) top schematic
view at zero turn; (d) top schematic view at θ turn.

What Figure 1d adds as information, is the use of the ball-joint at the attachment point
of the nozzle to the main body of the waterjet. By changing the angle θ of the nozzle, the
force applied to the vessel changes direction creating turning movement. The interesting
part regarding waterjets is that the force from water displacement creates force even at zero
initial velocity, thus maneuvering ability is present in all possible velocities range.

2. Materials and Methods

Focusing again on the propulsion system, we used a pair of joined waterjets to create
the thrust for the vessel movement. The commands for the propulsion system are generated
by two control loops shown in Figure 2, and will be discussed later in this section. A view
of the implementation can be seen at Figure 3c,d.

As mentioned, both waterjets were joined. The join was at both turn angle and motor
rpm as can be seen schematically at Figure 4. The “trained” readers in RC models will also
recognize the nozzle turning joint at Figure 3d numbered item 5. These two types of join
creates the need for two control loops for the vessel: one for velocity control and one for
heading control. A higher application layer decides on the velocity and heading setpoints,
driven by guidance goals that, for example, stem from maintaining a formation in a swarm.
For these setpoints the control loops produce the appropriate actions, based on a digitally
implemented PID algorithm.

To get an insight on these loops, Figure 2 presents a high-level approach of each one.
Figure 2a describes the loop for velocity control. The velocity setpoint is selected by the
positioning algorithm. The setpoint is compared to the current vessel velocity, producing
an error output. The error output is fed to PID controller, which produces a control signal
for the motor drive. The motor drive induces a current by the control signal, which in turn
changes the motor torque. The motor torque impacts the waterjet impeller rpm, changing
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the waterjet thrust. The thrust applied to the boat produces a new velocity which is then
fed back and the loop closes.

The heading control loop shown in Figure 2b functions in a similar way by controlling
the waterjet nozzle, which creates a yaw moment that applied to the boat creates a new
heading. The heading is fed back closing the heading control loop.
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Figure 2. Control loops formed for the vessel. (a) Loop for velocity control; (b) Loop for heading control.
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Figure 3. Development platform. (a) Initial phase of construction; (b) Vessel ready for measurements;
(c) Waterjet nozzles; (d) Propulsion motors and control servos.
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From the mathematical toolset point of view, the work is largely based on Z-Transform,
difference equations and Laplace transform.

All algorithms were built for our development platform, for which we will devote the
next section.

The watercraft propulsion powertrain for which the discrete-time controller architec-
tures are proposed in this text is intended for a small boat modeled after landing craft.

Details of the powertrain configuration, consisting of a waterjet propulsor driven
by a Permanent-Magnet Direct Motor with Pulse Width Modulation control, are given in
Appendix A “Electric Propulsion System for Unmanned Craft”. The boat is intended to
complement a low-cost unmanned heterogeneous swarm capable of operating in the air,
on sea surface and underwater. The landing craft architecture allows for a unit offering
extra deck space that can be used for payload or launching and retrieving rotorcraft or
smaller amphibious or ground vehicles, extra energy storage (e.g., fuel tanks, batteries),
etc. The unit is required to operate autonomously and this is why effective operational



J. Mar. Sci. Eng. 2022, 10, 1844 5 of 27

controllers for all the unit subsystems (of which propulsion is one of the most important
ones) were developed.

3. Development Platform

As a development platform for the ideas described, an RC model of a flat hull,
ferry boat style vehicle was used, for which more information can be found at Xiros
and Loghis [4,5]. The vessel is equipped with two waterjets for propulsion. Figure 3a
shows the vessel at the initial steps of its construction. Figure 3b shows the vessel fully
equipped with electronics, ready for measurements and control applications.

Figure 3c,d depict details on the propulsion system. Figure 3a focuses on the waterjet
nozzles. The ball-shaped end of the nozzles allows changing thrust direction, allowing
heading control even at zero translational velocity.

Figure 3b gives an overview of the propulsion motors and control servos. Referring to
numbered items:

1. Electric motors. These motors provide the thrust for waterjet propellers.
2. External cooling ring that encapsulates the motors. As the vessel surge velocity

increases, an amount of water is forced into the silicone tubes shown by number (3).
The water circulates at the outer ring cooling the motors and is rejected from another
silicone tube not yet attached at the time this photo was taken.

3. Silicone tubes and input of water for motor cooling.
4. Servos controlling the backward fin that changes the direction of propulsion (forward—

backward movement).
5. Shaft that joins the two waterjets for simultaneous turning (left right).
6. The servo motor that is used for turning the waterjets.

All these elements along with appropriate sensors as RPM sensor, magnetometer, GPS
and IMU, form the development platform for our algorithms.

Figure 4 provides a block diagram of system interconnections from the electronics
perspective. It is apparent that the microcontroller (marked as µC) is the heart of the system
since every peripheral refers to it.

4. Introductory Concepts

Before beginning the analysis, it must be noted that digital systems operate in dis-
crete time instants, that are defined by the clock used for the device under consideration
timing [1]. The clocks that are important for the mathematical analysis are the clocks of
data converters present in the system (analog-to-digital signal converters or ADCs and
digital-to-analog signal converters or DACs). These clocks are considered the same regard-
ing frequency and phase for this work. The frequency of these clocks will be denoted as fs
but most importantly, the period of these clocks using the symbol Ts.

Another important notion is the way used to approximate continuous-time differenti-
ation and integration. For the derivative the first-order backward differentiation formula is
going to be used [2,6]. For integral approximation a summation approximation is utilized,
that will be analyzed in the following section [2].

5. Summation Approximation to Integral

One way of approximating integrals is by using pure summation [2]. This is very much
like the approach used by the zero-order hold (ZoH) as we will see in the next sections.

Supposing that we have a function f(t) that describes the values of a signal as a function
of time. To approximate the integral of f(t) by summation, the method depicted in Figure 5
is followed. As a reminder, with Ts the sampling period is implied.

As can be seen in Figure 5, the integral of the arbitrary signal is approximated by the
area of parallelograms with height equal to the previous instant sample and width equal to
Ts. Such parallelograms give an area of f(k) × Ts for an arbitrary k = 0, 1, 2, . . .
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For time instant Ts: ∫ Ts

0
f(t)dt ≈ f(0) · Ts (1)

For time instant 2Ts: ∫ 2Ts

0
f(t)dt ≈ f(0) · Ts + f(1) · Ts (2)

For time instant nTs:∫ nTs

0
f(t)dt ≈ f(0) · Ts + f(1) · Ts + . . . + f(n− 1) · Ts (3)
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If we use y[nTs] as the symbol for the approximation of an integral at nTs time instant,
then from the above equations we have:∫ nTs

0
f(t)dt ≈ y[nTs] = f(0) · Ts + f(1) · Ts + . . . + f(n− 1) · Ts ⇒ (4)

y[nTs] =
n

∑
k=1

f[(k− 1)Ts] · Ts (5)

Since all the signals we are dealing with are causal, their negative time instant values
are zero; for this reason (since f[(−1)Ts] = 0) Equation (5) becomes:

y[nTs] =
n

∑
k=0

f[(k− 1)Ts] · Ts (6)

From Equation (6) we also notice that:

y[Ts] = f[0 · Ts] · Ts = f(0) · Ts (7)

y[2Ts] = f(0) · T + f(Ts) · Ts = y[Ts] + f(Ts) · Ts (8)

which means that for the general case

y[nTs] = y[(n− 1)Ts] + f[(n− 1)Ts] · Ts (9)

By taking the Z-transform of Equation (9) we have that

Y(z) = z−1Y(z) + z−1TsF(z)⇔ (10)
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Y(z) =
z−1Ts

1− z−1 F(z) (11)

If we want to depict Equation (11) in the form of a block diagram, then we get
A block diagram that is more efficient regarding memory element usage (very critical

for FPGA implementations) can be derived if we simplify the above diagram by block
diagram manipulation or by considering that:

Y(z) = z−1Y(z) + z−1TsF(z) = z−1[Y(z) + TsF(z)] (12)

Which means, that the diagram of Figure 6 can be considered equivalent to
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6. Digitizing the Analog PID Functionality

Figure 8 shows the structure of an analog PID controller [7–10]. To convert the analog
PID controller to digital [11], we examine each term separately, something that is correct,
since linear systems have the property of superposition.
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6.1. P-Term

The P-term is the simplest of all. It amplifies any incoming signal by a gain of Kpc,
where the c stands for “continuous”, implying the continuous system gain; this was
done to avoid mixing these constants with Kpc that is derived for digital controllers after
manipulations. The c-marking is followed for all PID term gains.

The input to digital PID P-term is the sampled error signal e[nTs]. The output of
P-term is:

mp[nTs] = Kpce[nTs] (13)

or in terms of Z-transorm
Mp(z) = KpcE(z) (14)

The block diagram of P-term follows at Figure 9.
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As a note for Figure 9, also applicable to the rest of the document for discrete-time
signals, is that by e[n] we imply e[nTs] and we will use both notations interchangeably
throughout this text.

6.2. I-Term

For the I-term we use the approximation analyzed in section “Summation Approxima-
tion to Integral”. This results in the following equations

Kic

∫ t

0
e(τ)dτ = Kic

∫ nTs

0
e(τ)dτ ≈ Kic

n

∑
k=0

e[(k− 1)Ts] · Ts (15)

mi[nTs] = KicTs

n

∑
k=0

e[(k− 1)Ts] (16)

or in terms of Z-Transform

Z{mi[nTs]} = KicTsZ

{
n

∑
k=0

e[(k− 1)Ts]

}
⇒ (17)

Mi(z) = Kic
z−1Ts

1− z−1 E(z) (18)

For the block diagram of I-term we can manipulate Equation (18) to get

Mi(z) = z−1[Mi(z) + KicTsE(z)] (19)

which is implemented as a block diagram in Figure 10.
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6.3. D-Term

For the D-term we approximate the derivative by differences as follows:

md(t) = Kdc
de(t)

dt
≈ Kdc

∆e(t)
∆t

⇒ (20)

md[nTs] = Kdc
e[nTs]− e[(n− 1)Ts]

Ts
(21)

or in terms of Z-transform

Md(z) =
Kdc
Ts

(
1− z−1

)
E(z) (22)

The block diagram of Equation (22) is shown in Figure 11.
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6.4. Combining All Terms

After analyzing each term separately, we can now provide the equation for the total
output of digital PID controller:

m[nTs] = mp[nTs] + mi[nTs] + md[nTs]⇒ (23)

m[nTs] = Kpce[nTs] + KicTs

n

∑
k=0

e[(k− 1)Ts] + Kdc
e[nTs]− e[(n− 1)Ts]

Ts
(24)

or in terms of Z-transform:

M(z) = Mp(z) + Mi(z) + Md(z)⇒ (25)

M(z) = KpcE(z) + Kic
z−1Ts

1− z−1 E(z) +
Kdc
Ts

(
1− z−1

)
E(z)⇔ (26)

M(z) =
[

Kpc + Kic
z−1Ts

1− z−1 +
Kdc
Ts

(
1− z−1

)]
E(z) (27)

What should be pointed out is that the digitization of the analog PID introduces Ts as
a multiplier in I and D terms. This reveals the utmost importance of sampling frequency
selection, because improper selection of Ts can lead to unstable digital implementation
of an otherwise stable analog PID controlled system. As a last note to this paragraph,
Equation (27) is named as “Positional Form” of PID controller. There is also the “Velocity
Form” [1] that will be shown later.
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7. Block Diagrams for Digital PID

Equation (27) can also be shown as a block diagram after some mathematical manipu-
lations. We eliminate the (1 − z−1) factor from the denominator, which gives(

1− z−1
)

M(z) =
[(

1− z−1
)

Kpc + KicTsz−1 +
Kdc
Ts

(
1− z−1

)2
]

E(z)⇔ (28)

M(z) = z−1M(z)+[(
Kpc +

Kdc
Ts

)
+
(

KicTs −Kpc − 2Kdc
Ts

)
z−1 + Kdc

Ts
z−2
]
E(z)

(29)

Moving back to difference equations using inverse Z-Transform we have:

m[nTs] = m[(n− 1)Ts] +
(

Kpc +
Kdc
Ts

)
e[nTs]+

+
(

KicTs −Kpc − 2Kdc
Ts

)
e[(n− 1)Ts]+

+Kdc
Ts

e[(n− 2)Ts]

(30)

Equation (29) or Equation (30) give the block diagram of Figure 12.
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8. Alternative PID Implementation (Velocity Form)

There is also an alternative implementation of Digital PID, which focuses on reducing
the impact of sudden changes at input. The mathematical trick that implements the above
statement will be shown at the derivation of the equations that follows.

This form can also be used in our application, and relevant results will be given.
To derive the equations for velocity form we begin from Equation (24) of the previous

section and elaborate:

m[nTs] = Kpce[nTs] + KicTs

n

∑
K=0

e[(k− 1)Ts] + Kdc
e[nTs]− e[(n− 1)Ts]

Ts
(31)
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We want to find the difference between successive samples of the controller, which
will be denoted as ∇m[nTs].

∇m[nTs] = m[nTs]−m[(n− 1)Ts]⇒ (32)

∇m[nTs] = Kpc{e[nTs]− e[(n− 1)Ts]}+

KicTs

{
n
∑

k=0
e[(k− 1)Ts]−

n−1
∑

k=0
e[(k− 1)Ts]

}
+

Kdc
Ts
{e[nTs]− e[(n− 1)Ts]−

e[(n− 1)Ts] + e[(n− 2)Ts]} ⇔

(33)

∇m[nTs] =
(

Kpc +
Kdc
Ts

)
e[nTs]+(

KicTs −Kpc − 2Kdc
Ts

)
e[(n− 1)Ts]+

Kdc
Ts

e[(n− 2)Ts]

(34)

By replacing e[nTs] with its equivalent, i.e.,Rref[nTs]− c[nTs], Equation (34) becomes

∇m[nTs] =
(

Kpc +
Kdc
Ts

)
Rref[nTs]+(

KicTs −Kpc − 2Kdc
Ts

)
Rref[(n− 1)Ts]+

Kdc
Ts

Rref[(n− 2)Ts]−(
Kpc +

Kdc
Ts

)
c[nTs]−(

KicTs −Kpc − 2Kdc
Ts

)
c[(n− 1)Ts]−

Kdc
Ts

c[(n− 2)Ts]

(35)

The mathematical trick that is used in derivation of velocity form is to force equality
of the last three samples of reference input: Rref[nTs] = Rref[(n− 1)Ts] = Rref[(n− 2)Ts].

This was inspired by the factors of Rref, to eliminate the proportional and derivative
action on the reference input, thus drastically reducing the effect of a change in the reference
input. With this assumption Equation (35) changes to

∇m[nTs] = m[nTs]−m[(n− 1)Ts] =
KicTsrref[nTs]−(

Kpc +
Kdc
Ts

)
c[nTs]−(

KicTs −Kpc − 2Kdc
Ts

)
c[(n− 1)Ts]−

Kdc
Ts

c[(n− 2)Ts]⇔

(36)

m[nTs] = m[(n− 1)Ts]+
KicTsRref[nTs]−(

Kpc +
Kdc
Ts

)
c[nTs]−(

KicTs −Kpc − 2Kdc
Ts

)
c[(n− 1)Ts]−

Kdc
Ts

c[(n− 2)Ts]

(37)

From Equation (37) we can proceed with Z-transform to provide a formula in z.

M(z) = z−1M(z) + KicTsRref(z)−
(

Kpc +
Kdc
Ts

)
C(z)

−
(

KicTs −Kpc − 2Kdc
Ts

)
z−1C(z)− z−2 Kdc

Ts
C(z)⇔

(38)

M(z) = −KpcC(z) + KicTs

[
Rref(z)− z−1C(z)

]
(1− z−1)

− Kdc
Ts

(
1− z−1

)
C(z) (39)

A block diagram for the implementation of Equation (39) is provided in Figure 13.
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Figure 13. Block diagram of velocity form implementation of PID. 

  

Figure 13. Block diagram of velocity form implementation of PID.

9. Test Bed for PID Control

For testing the PID algorithm, a simple system is used such as an integrator (1/s
at Laplace).

The next important thing is to identify which parts of the loop belong to digital domain
and which parts belong to the analog domain. This will determine the correct position and
number of analog-to-digital (A/Ds or ADCs) and digital-to-analog (D/As or DACs) that
are needed.

Considering that the system is continuous time, and that all the calculations for
control will be done in the digital domain, we recognize that the parts that belong to the
digital domain are all apart from the system itself. This means that the only places where
converters to interface the digital to the analog world are needed, are system boundaries.

The block diagram that describes the system interfacing is shown in Figure 14.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 14 of 30 
 

 

9. Test Bed for PID Control 
For testing the PID algorithm, a simple system is used such as an integrator (1/s at 

Laplace). 
The next important thing is to identify which parts of the loop belong to digital do-

main and which parts belong to the analog domain. This will determine the correct posi-
tion and number of analog-to-digital (A/Ds or ADCs) and digital-to-analog (D/As or 
DACs) that are needed. 

Considering that the system is continuous time, and that all the calculations for con-
trol will be done in the digital domain, we recognize that the parts that belong to the dig-
ital domain are all apart from the system itself. This means that the only places where 
converters to interface the digital to the analog world are needed, are system boundaries. 

The block diagram that describes the system interfacing is shown in Figure 14. 

PID+ Zoh
DAC

ADC

rref[n] e[n] m[n] c(t)

c[n]

−
f(t)

 
Figure 14. Control loop with PID and data converters. 

The important elements that Figure 14 hides, are the reconstruction filter after DAC 
and the antialiasing filter before ADC. These filters belong to the analog world, are neces-
sary, but have been left out for simplicity. Though for a thorough analysis of the system 
they must be there, since they have an effect in the total loop response. 

10. Mathematical Analysis in Discrete Time 
The first thing that must be said, regarding the analysis of the system in discrete time, 

is that the fictious impulse samplers representing half DAC (the other half of DAC repre-
sentation being Zoh) and ADC must be synchronized; this means same frequency and 
phase. This saves a lot of effort in the mathematical domain (such as sample rate convert-
ers) and guarantees that the signals available for processing refer to same sampling in-
stant. Additionally, any internal processing must be aligned with the sampling frequency 
of both converters and must be carried out at time less that the sampling period. 

Having already analyzed the digital PID (refer to equations Equation (27) to Equation 
(30)) the next step is to analyze Zoh contribution in discrete time. 

10.1. Zoh Mathematical Treatment 
What zero order hold does is keeping steady the value between sampling instants 

[12,13]. Mathematically and referring to Figure 15: 

 
Figure 15. Reference figure for Zoh analysis. 

Figure 14. Control loop with PID and data converters.

The important elements that Figure 14 hides, are the reconstruction filter after DAC and
the antialiasing filter before ADC. These filters belong to the analog world, are necessary,
but have been left out for simplicity. Though for a thorough analysis of the system they
must be there, since they have an effect in the total loop response.



J. Mar. Sci. Eng. 2022, 10, 1844 13 of 27

10. Mathematical Analysis in Discrete Time

The first thing that must be said, regarding the analysis of the system in discrete
time, is that the fictious impulse samplers representing half DAC (the other half of DAC
representation being Zoh) and ADC must be synchronized; this means same frequency and
phase. This saves a lot of effort in the mathematical domain (such as sample rate converters)
and guarantees that the signals available for processing refer to same sampling instant.
Additionally, any internal processing must be aligned with the sampling frequency of both
converters and must be carried out at time less that the sampling period.

Having already analyzed the digital PID (refer to equations Equations (27)–(30)) the
next step is to analyze Zoh contribution in discrete time.

10.1. Zoh Mathematical Treatment

What zero order hold does is keeping steady the value between sampling instants [12,13].
Mathematically and referring to Figure 15:

h(nTs + t) = x(nTs), t ∈ [0, Ts) (40)
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This means that

h(t) = x(0)[U(t)−U(t− Ts)] + x(Ts)[U(t− Ts)−U(t− 2Ts)] + . . .
+x(nTs)[U(t− nTs)−U[t− (n + 1)Ts]]

(41)

By taking the Laplace transform of Equation (42) we have that

L{h(t)} = x(0)
(

1
s − e−sTs 1

s

)
+ x(Ts)

(
e−sTs 1

s − e−s2Ts 1
s

)
+ . . .

+x(nTs)
[
e−snTs 1

s − e−s(n+1)Ts 1
s

]
⇒

(42)

H(s) =
∞

∑
n=0

[
x(nTs)e−snTs

(
1− e−sTs

)
s

]
⇔ (43)

H(s) =

(
1− e−sTs

)
s

∞

∑
n=0

x(nTs)e−snTs (44)

The sum at equation Equation (45) is the starred Laplace transform of signal x(t)
(equals Z-tranform with z = esTs ), which means that Equation (44) translates to

H(s) = GZoh(s)X
∗(s) (45)

which in turn means that

GZoh(s) =

(
1− e−sTs

)
s

(46)

Since analysis of the system in discrete time involves Z-transform, then it is important
to find the Z-transform of a continuous time transfer function when multiplied by the Zoh
transfer function [1].

To do so we suppose that an arbitrary signal Y(s) is

Y(s) = Gzoh(s)G(s)⇒ (47)
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Y(s) =
1− e−sTs

s
G(s) =

G(s)
s
− e−sTs

G(s)
s

(48)

if G(s)
s = G1(s) then Equation (49) becomes

Y(s) = G1(s)− e−sTs G1(s)⇒ (49)

L−1{Y(s)} = L−1{G1(s)} − L−1
{

e−sTs G1(s)
}
⇒ (50)

y(t) = g1(t)−
∫ T

0
δ(t− Ts − τ)g1(τ)dτ ⇒ (51)

y(t) = g1(t)− g1(t− Ts)⇒ (52)

Y(z) = G1(z)− z−1G1(z)⇔ (53)

Y(z) =
(

1− z−1
)

G1(z) (54)

where

G1(z) = Z
{

G(s)
s

}
(55)

10.2. Applying Previous Results to Closed Loop

After completing the analysis of positioning the samplers in the loop and Zoh transfer
function, we are ready to proceed to full loop analysis.

Starting with the continuous time section, we have (in s):

F(s) = M∗(s)
1− e−sTs

s
(56)

Note that with the * we imply the starred Laplace transform, i.e., the Laplace transform
of an impulse sampled signal [1].

C(s) = F(s)
1
s

(57)

Considering N(s) = 0 for the moment (superposition step), we have from Equation (58)
and Equation (59) that

C(s) = M∗(s)

(
1− e−sTs

)
s

· 1
s
⇒ (58)

C(z) = Z
{

M∗(s) (
1−e−sTs)

s · 1
s

}
= M(z)

(
1− z−1)Z{ 1

s2

}
= M(z)

(
1−��z−1) Tsz−1

(1−z−1)�
2
⇔

(59)

C(z) = M(z)
Tsz−1

(1− z−1)
(60)

Taking M(z) from Equation (27), Equation (61) becomes

C(z) =
[

Kpc + Kic
z−1Ts

1− z−1 +
Kdc
Ts

(
1− z−1

)] Tsz−1

(1− z−1)
E(z) (61)

Considering that
E(z) = Rref(z)−C(z) (62)

we have that Equation (63) is

C(z) =
[

Kpc + Kic
z−1Ts

1− z−1 +
Kdc
Ts

(
1− z−1

)] Tsz−1

(1− z−1)
[Rref(z)−C(z)]⇔ (63)



J. Mar. Sci. Eng. 2022, 10, 1844 15 of 27

C(z) =

[
Kpc + Kic

z−1Ts
1−z−1 +

Kdc
Ts

(
1− z−1)] Tsz−1

(1−z−1)

1 +
[
Kpc + Kic

z−1Ts
1−z−1 +

Kdc
Ts

(1− z−1)
]

Tsz−1

(1−z−1)

Rref(z) (64)

Equation (65) is the closed loop pulse transfer function from reference input Rref(z) to
output C(z).

The block diagram for the implementation of Equation (64) follows at Figure 16.
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Figure 16. Block diagram for closed loop analysis in discrete time.

Elaborating on Equation (65) we can also find an equation that gives the same result
for cross-checking

C(z) =

[
Kpc + Kic

z−1Ts
1−z−1 +

Kdc
Ts

(
1− z−1)]Tsz−1

(1− z−1) +
[
Kpc + Kic

z−1Ts
1−z−1 +

Kdc
Ts

(1− z−1)
]
Tsz−1

Rref(z)⇔ (65)

C(z) =

(
KpcTs + Kdc

)
z−1 +

(
KicTs

2 −KpcTs − 2Kdc
)
z−2 + Kdcz−3

1 +
(
KpcTs − 2 + Kdc

)
z−1 +

(
1−KpcTs + KicTs2 − 2Kdc

)
z−2 + Kdcz−3 Rref(z)⇒ (66)

c[n] =
(
KpcTs + Kdc

)
Rref[(n− 1)Ts]+

+
(
KicTs

2 −KpcTs − 2Kdc
)
Rref[(n− 2)Ts]+

+KdcRref[(n− 3)Ts]+
−
(
KpcTs − 2 + Kdc

)
c[(n− 1)Ts]+

−
(
1−KpcTs + KicTs

2 − 2Kdc
)
c[(n− 2)Ts]+

−Kdcc[(n− 3)Ts]

(67)

10.3. Analyzing Closed Loop with Velocity Form

The system diagram using velocity form PID becomes as shown in Figure 17. The
diagram also presents the actual positions of the converters in the system, and as discussed
in the previous section the analysis takes as a fact that the converters are fully synchronized.

To analyze in Z, we must replace the system box with our approximation of the
system, which is a Zoh followed by the 1/s function, which gives Equation (60) (see the
respective derivation).
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Repeating Equation (60) here we have:

C(z) = M(z)
Tsz−1

(1− z−1)
⇔ C(z) = z−1[C(z) + TsM(z)] (68)

which translates to the diagram of Figure 18.
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Replacing the “System” box of Figure 17 with its approximation as shown in Figure 18
we have the result of Figure 19.

This diagram is ready to be analyzed in Z.
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Figure 19. Implementation of system with Velocity Form PID ready for analysis in Z.

Starting with velocity form equation and

M(z) = −KpcC(z) + KicTs
[Rref(z)−z−1C(z)]

(1−z−1)
− Kdc

Ts

(
1− z−1)C(z)

C(z) = M(z) Tsz−1

(1−z−1)

⇒ (69)

C(z) =
{
−KpcC(z) + KicTs

[Rref(z)−z−1C(z)]
(1−z−1)

−
Kdc
Ts

(
1− z−1)C(z)

}
Tsz−1

(1−z−1)
⇔

(70)

[
1 +

(
KpcTs − 2 + Kdc

)
z−1 +

(
1−KpcTs + KicTs

2 − 2Kdc
)
z−2

+Kdcz−3]C(z) = KicTs
2z−1Rref(z)⇒

(71)

c[nTs] = KicTs
2Rref[(n− 1)Ts]−(

KpcTs − 2 + Kdc
)
c[(n− 1)Ts]−(

1−KpcTs + KicTs
2 − 2Kdc

)
c[(n− 2)Ts]−

Kdcc[(n− 3)Ts]

(72)

Equation (72) gives the response of the velocity-form controlled system at the sam-
pling instants.

10.4. Fully Analog PID Loop Equations

An important comparison to test the quality of our implementation and provide the
proof of concept is to compare it to a fully analog loop, as if our system was controlled by
an analog PID controller [14].
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For the derivation of the transfer function for the analog PID controlled system of
“Figure 8” first note that “SYSTEM” block is replaced by 1/s, which gives us the system of
Figure 20 that will follow. For these systems we have:

Grc(s) =
Gp(s)

s

1 + Gp(s)
s

(73)

where Grc(s) is the system transfer function (from input r(t) to output c(t)) and Gp(s) is the
transfer function of PID block, i.e.,

Gp(s) = Kpc + Kic
1
s
+ sKdc (74)

Grc(s) =
Kpc + Kic

1
s + sKdc

s + Kpc + Kic
1
s + sKdc

=
Kpcs + Kic + Kdcs2

(1 + Kdc)s2 + Kpcs + Kic
⇔ (75)

Grc(s) =
Kdc

(1+Kdc)
s2 +

Kpc
(1+Kdc)

s + Kic
(1+Kdc)

s2 +
Kpc

(1+Kdc)
s + Kic

(1+Kdc)

(76)
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Figure 20. Continuous-time analogous to our control system core.

This transfer function refers to a system with the structure shown in Figure 20.
Comparing denominator of Equation (76) to the denominator of standard 2nd order

system, i.e.,
s2 + 2ζωns +ωn

2 (77)

then to get a ζ and ωn close to 1 we select Kpc = 2, Kic = 1. Since we want to avoid the
derivative term, if possible (to decrease the noise it can create), for our example we will use
Kdc = 0. By applying the above gain choices to Equation (77), we get:

Grc(s) =
2s + 1

s2 + 2s + 1
(78)

The step response of the transfer function of Equation (78) is our reference for com-
parison. The digital implementations will use the same gains, since the design process
begins by selecting PID gains at the analog domain and applying them to the digital
implementations described.
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11. Results
11.1. Continuous-Time System Response

The result of simulating the analog system (for step response) is presented in Figure 21.
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Figure 21. Step response of the analog system described by Equation (77).

As can be seen from Figure 21 the analog system is stable with an overshoot reaching
the value of 1.1353.

11.2. Discrete-Time System Response with Positional Form PID

All results for the digital implementations that follow, have been evaluated with a
sampling period Ts = 30 ms.

The result of block implementation of the digital system shown in Figure 16, evaluated
every Ts is shown in figure “Figure 22. Comparison of continuous-time system to digital
implementation”. The response matches the respective of the continuous time system,
following the continuous-time overshoot. The peak value of the overshoot for the system
with digital positional form PID implementation is 1.1395. Figure 22 has also embedded
the response of the continuous-time system in green color, to be used as reference.
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“Figure 23. Comparison of equation implementation to block implementation” com-
pares the step response that resulted by the calculation of every time instant from
Equation (75), compared to calculating every time instant (every Ts) the state of the ele-
ments that diagram of Figure 16 is comprised of. The results are plotted both, to allow
for comparison.
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11.3. Discrete-Time System Response with Velocity Velocity Form PID

Using the same PID gains with the previous subsection, the analysis can be repeated
using the velocity form PID control.

Velocity form implementation is expected to have a more sluggish response, since
there has been a mathematical manipulation that reduces the effect of input change.

The results of analyzing the system based on the block diagram of Figure 19 are
presented in the figure below (Figure 24).
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As expected, the response using velocity form is more sluggish compared to analog
controller, though, in this case, suits the application better since it smooths out the overshoot.
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To verify the implementation of velocity form controller, we also verified the block
diagram output by comparing to the values returned using Equation (71).

The result of the comparison is shown in Figure 25. As apparent from the figure,
the results are an absolute match, which proves the equivalence of the two methods of
result extraction.
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12. Analysis of Results and Discussion

To begin the section and to revise this work, it is noted that our approach for the digital
implementation of a PID controller starts at the continuous-time case. After selection of
controller gains securing acceptable response for the continuous-time system, two discrete-
time implementations were investigated (positional and velocity form implementations),
that used the gains calculated for the continuous-time case. For each of the two approaches
the block diagram structure used to apply them to a system is presented first. These block
diagrams translate directly to software or hardware, since they determine unambiguously
and accurately the connections between memory elements (z−1), multipliers and adders
that are used. To perform alpha verification of both implementations, a simple testbed
is presented consisting of the controller along with an integrator, which stands for the
system to be controlled (open-loop plant). As a beta verification for the testbed, difference
Equations (66) and (71) are employed to validate overall the testbed results.

Using the above as a basis, the results are analyzed starting from Figure 22. The output
of the positional form PID testbed is practically an identical match to the continuous-time
system response. This fact is also evident from the peak values of both responses that are
very close (1.1353 for continuous-time, 1.1395 for the positional form). This result was also
verified twice, using equation Equation (66). Figure 23 shows that the result is an exact
match, as it ought to be, since Equation (66) describes exactly the same behavior that the
block implementation does.

In contrast to positional form implementation, the response of the velocity-form,
discrete-time implementation of the controller is not that close to that of the continuous-
time system. As can be clearly seen from Figure 24, the response of such a controller
implementation functions as a filter that smoothens the response. Although this may
seem like an undesired behavior, in practice it provides more degrees of freedom for the
control system designer. This means that by choosing between positional and velocity form
implementations, we can expand the possibilities for the same range of gain selections.

Following the verification methodology for the positional form testbed outcome, the
results of the velocity form testbed were also verified twice, by the use of Equation (71).
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Figure 25 verifies the identity of the two results (block element evaluation versus verifica-
tion equation).

13. Conclusions

In this work the discrete-time implementation of the controller for the electric propul-
sion powertrain of a small boat intended to be an integral part of a heterogenous swarm
consisting of autonomous surface watercraft as well as underwater vehicles and aircraft.

Per the analysis and investigations conducted, the conclusion is that the discrete-time
implementation of a continuous-time PID controller can be a very good approximation
especially if the positional form implementation is used. The velocity form implementa-
tion on the other side provides more conservative approximations, resulting in a more
sluggish response.

For each of the discrete-time implementations, simple yet effective tools were procured
to verify the developed methods and techniques for debugging purposes. A testbed with
an integrator as the system to be controlled and an equation to verify mathematically the
testbed response were also generated.

As a final note, it is pointed out that one should always check the relative positions of
the poles to the unit circle on the z plane, in order to get an insight of the expected response.
As a reminder, all the poles of the digital implementation must lie within the unit circle,
which corresponds to the left half of the s-plane in the continuous-time case.
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Appendix A. Electric Propulsion System for Unmanned Craft

The controller systems developed in this work are intended for distributed, decentral-
ized control of the powertrain of small, low-cost boats to be used as part of autonomous
watercraft swarms. In the case examined in this text, investigation of an electric propulsion
control system is presented. The system at hand consists of a PMDC (Permanent Magnet
Direct Current) motor [15–17], driving a waterjet. This, in turn, can be the propulsion
device for a variety of small, unmanned boats, including one modeled after landing craft.
The final objective is to build a number of unmanned, small-scale, low-cost boats, which
can be used in the development of actual operational scenarios involving various command
and control strategies, including remotely controlled operation, semi-autonomy and full
autonomous deployment, task execution and recovery. The landing craft paradigm is
useful since such watercraft comes with plenty space and cargo capacity for payload which
may include extra energy storage, sensors, rotorcraft, etc. Using the electric motors for
powering and the waterjet for propulsion offers significant advantages in maneuverability
at low speeds and thrust vectoring capabilities. To best employ these capabilities though ac-
curate and efficient real-time control is needed which is nowadays generally implemented
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using microcontroller/microprocessor-based, embedded, digital hardware onboard which
discrete-time control laws are executing.

For the system at hand, experimental investigation of the propulsion system was
based on a specifically built testbed, as shown in Figure A1a, that allowed for identification
of all system components. The testbed consisted of a waterproof, wheeled wagon (car-
riage) where the motor and the propulsion device, i.e., the waterjet, were mounted. Their
arrangement was such that thrust could be developed to the wagon by the waterjet. The
wagon was placed in a tank with appropriate dimensions. At the bottom of the tank rail
guides were attached. These rails served a dual purpose. They supported the wagon when
the tank is empty. Furthermore, they maintained the heading of the wagon when lateral
disturbance forces were present. In order to eliminate static friction, however, special care
was taken that the displacement of the wagon, when the tank was filled with water up
to the operational level, was adequate to develop a lift force equal to the wagon weight.
Therefore, in the case that lateral disturbances did arise, the rails maintained heading
whilst static friction was suppressed due to elimination of vertical forces. At one end of the
tank, a structure was built that could absorb the thrust of the propulsion device; therefore,
the wagon could be kept still, as the propulsion system was ran at full load conditions.
Then, thrust absorption was performed by a load cell intermitted between the structure’s
receiving point and the wagon’s face of attack, the thrust of the propulsion system was
measured when the hull (wagon in the testbed) was still; i.e., the static thrust of the system.

An analysis of the waterjet operation is presented next. In order to determine the
thrust-rpm curve of the propulsor which in this case is a waterjet. With reference to the
schematic in Figure A1a, the thrust, Ψ, developed by the waterjet in the testbed setup is
given by

Ψ =
d
dt

(m ·V)⇒ Ψ = ∆M1∼7 =
.

m · (V7 −V1) (A1)

In the above, Mj is the water momentum at the j¬-th point with respect to Figure A1a,
Vj is the mean water velocity on the j-th cross section and m is the mass flow rate through
the waterjet’s duct. Since the wagon (carriage) is stationary the water velocity at the
inlet (point 1) can be assumed to be zero. Hence, the developed thrust can be expressed
as follows.

Ψ =
.

m ·V7 = ρ ·Q ·V7 = ρ ·Q · Q
A7

= ρ · Q2

A7
⇒ Q =

√
A7 ·Ψ

ρ
(A2)

In the above, Q is the volumetric flow rate through the waterjet, A7 is the cross-section
of the waterjet at point 7 and ρ the water density which is set to 1000 kg/m3 since fresh
water is used for the experiments.

The per-unit-mass energy, Ej, at the j-th point with respect to Figure A1a, is given by
the Bernoulli equation.

Ej =
1
2
·V2

j +
pj

ρ
+ g · hj ⇒

{
Eout = E7 = 1

2 ·V
2
7 +

p7
ρ + g · h7

Ein = E1 =
p1
ρ + g · h1

(A3)

In the above the fact that V1 is approx. zero has been taken into account. Additionally,
pj stands for the static pressure at point j of the waterjet. Taking into account the proximity
of points 1 and 7 and the fact that point 7 is located slightly higher than 1, one can easily
conclude the following for the per-unit-mass energy increase.

p7
ρ

+ g · h7 '
p1
ρ

+ g · h1 ⇒ ∆E = Eout − Ein =
1
2
·V2

7 (A4)

The outlet water velocity, V7, is proportional to the volumetric flow rate, Q, through
the waterjet.
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V7 =
Q
A7
⇒ ∆E =

1
2
·
(

Q
A7

)2
(A5)

The per-unit-mass energy increase of the water is also connected to the mechanical
brake power, Pbrake, delivered to the waterjet’s rotor by the propulsion powertrain as
shown below.

Pbrake =
.

m · ∆E =
ρQ3

2A2
7

(A6)

Taking into account the above, the following relation between waterjet thrust and
mechanical power is finally derived.

Pbrake =
ρ

2A2
7
·
[√

A7 ·Ψ
ρ

]3

=
Ψ

3
2

2
√

ρA7
⇔ (A7)

Ψ = 3
√

4ρA7P2
brake (A8)

Since the testbed is equipped with a load cell as shown in Figure A1a, that allows
measuring the static thrust developed by the waterjet, the first of the above relationships
can be used in order to validate the powertrain model used in this work. Specifically, the
mechanical brake power absorbed by the waterjet is determined by shaft rpm and the load
torque given in equation.
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Figure A1. The boat electric propulsion system testbed: principle of operation (a), powertrain with
speed sensor (b), testbed in action in pictures (c,d).

On the other hand, the experiments were performed under steady-state conditions,
minimizing any disturbance to the system. To verify this hypothesis two series of exper-
iments were performed; an open-loop one, where the control signal was manipulated
directly and one with PI speed regulation applied where the rpm setpoint was provided
instead. In both cases, the broadest possible operational range was spanned. In both cases
the thrust value obtained by the load cell at each operating point was obtained. Based on
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the thrust value a brake power estimate was calculated on the basis of equation previously.
The brake power values calculated from of the thrust measurements were then compared
to the brake power values calculated on the basis the propulsion system model. In specific,

Pbrake = TL ·ω
dω
dT

∣∣∣
d=0

= 0⇒ TL = TM(ω, v)− Tf(ω)

}
⇒ (A9)

Pbrake = [TM(ω, v)− Tf(ω)] ·ω (A10)

In the above, T_M (ω,v) a stands for motor torque and T_f (ω) for friction torque.
The experimental results obtained in the two cases are shown in Figure A2 for the

open-loop experiment and in Figure A3 for the closed-loop one. Note that the results for
thrust are given in kgf (i.e., kp). The typical quadratic and cubic dependence of propulsor
thrust and propulsion power on rpm, respectively, is verified satisfactorily in both cases.

Another important observation during the experiments was the effect of the relatively
short length of the tank. At high rpm and load values the length was evidently not adequate
to attenuate the perturbation introduced to the free surface by the operation of the waterjet.
In effect, a stationary wave regime was established. This is manifested by the fact that at
high load/rpm values in both experiments the thrust and power recordings were rather
a cloud of points around the nominal value with non-negligible variance. This effect is
specifically prominent at rpm values above 15,000 rpm.
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Figure A3. Closed-loop thrust (a) and brake power (b) experimental results. 
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Finally, it was found that the brake power values calculated on the basis of waterjet
thrust measurements were in satisfactory agreement. Consequently, the propulsion power-
train model developed was safely used for further design, control and integration studies.
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