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Abstract: Offshore or drydock inspection performed by trained surveyors is required within the
integrity management of an in-service marine structure to ensure safety and fitness for purpose.
However, these physical inspection activities can lead to a considerable increase in lifecycle cost
and significant downtime, and they can impose hazards for the surveyors. To this end, the use of a
structural health monitoring (SHM) system could be an effective resolution. One of the key perfor-
mance indicators of an SHM system is its ability to predict the structural response of unmonitored
locations by using monitored data, i.e., an inverse prediction problem. This is highly relevant in
practical engineering, since monitoring can only be performed at limited and discrete locations, and
it is likely that structurally critical areas are inaccessible for the installation of sensors. An accurate
inverse prediction can be achieved, ideally, via a dense sensor network such that more data can be
provided. However, this is usually economically unfeasible due to budget limits. Hence, to improve
the monitoring performance of an SHM system, an optimal sensor placement should be developed.
This paper introduces a framework for optimising the sensor placement scheme to support SHM.
The framework is demonstrated with an illustrative example to optimise the sensor placement of a
cantilever steel plate. The inverse prediction problem is addressed by using a radial basis function
approach, and the optimisation is carried out by means of an evolutionary algorithm. The results
obtained from the demonstration support the proposal.

Keywords: structural health monitoring; optimisation; structural integrity; evolutionary algorithm;
stress concentration

1. Introduction

Ocean energy exploitation and maritime transportation are crucial elements in modern
society. To ensure safe operation across the entire maritime industry, an adequate and
reliable structural system that provides the required working and production spaces for
crew and machinery is indispensable. Marine structures, such as offshore wind supporting
foundations, ship hulls, and oil and gas production platforms, are large-scale and complex
engineering systems [1]. Any failure in these systems can lead to significant loss of revenue
or, potentially, a severe impact on the marine ecosystem [2]. Unfortunately, structural
failures with various severities still occur from time to time in the maritime industry [3].
Catastrophic structural failures are generally the results of either progressive or shock-type
deterioration. In the former, the failures are rooted in the deterioration of structural integrity
over time due to the continuous exposure to a harsh marine environment, which leads to
considerable fatigue crack [4–6], corrosion [7,8], dent [9], and buckling [10,11]. Concern-
ing shock-type deterioration, it is typically due to extreme weather (e.g., storms) and/or
accidental events (e.g., impact of a dropped object, slamming, etc.). These are usually accom-
panied by a sudden loss of the structural stiffness, potentially causing destructive failures.
In this respect, a rapid identification of damage is highly relevant, e.g., eigen-perturbation
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techniques [12,13]. The present study is performed in association with progressive de-
terioration, and in this context, a dedicated structural integrity management scheme is
required [14] to limit the probability of failure below an acceptable level throughout the
entire life span. A structural integrity management program typically consists of data,
an evaluation, a strategy, and a program [15]. Traditionally, structural condition data are
collected through physical inspection, where qualified surveyors are periodically sent
offshore, or when the structure is in drydock. Most inspections rely principally on visual
examination, which is supported by local thickness measurements and non-destructive
evaluation (NDE) techniques in the areas of interest. However, a conventional surveyor
inspection may be subjected to accessibility and the availability issues. The accessibility
of structurally critical details may be highly limited if they are in hard-to-reach areas. In
terms of availability, some structural components may not be available for inspection
due to an on-going production activity. Furthermore, unexpected adverse weather (e.g.,
storms) could cause delays in inspections. All of these issues could potentially cause some
concerning structural damages to be overlooked. In addition, physical inspection requires
the surveyors to work in a hazardous environment, imposing health and safety risks for the
surveyors. Another concern is related to human errors, since this activity depends on the
inspector’s perception and experience to a fairly large extent. Even though the foregoing
matters have been adequately addressed, physical inspection, particularly in drydock, may
result in significant downtime of the assets [16].

To this end, there has been a broad spectrum of efforts to install various sensing units
on board in order to monitor the structural condition remotely and continuously so that
the interference in the production activities can be minimised [17]. The monitored data
(e.g., stress/strain response) serve as inputs for dedicated condition assessment modules,
such as cumulative fatigue and crack growth assessment modules [18], in order to assess
the health of the structures. This can then assist the management of lifetime structural
integrity and possibly demonstrate the case for life extension, known as in structural health
monitoring [19].

Many approaches are available within SHM, e.g., vibration-based monitoring, strain
monitoring, acoustic emission, etc. [20]. One of the advantages of a key performance
indicator of SHM, strain (or displacement) monitoring, is its ability to predict the structural
response of unmonitored locations by using monitored data, i.e., an inverse prediction
problem [21–23]. This is highly relevant in practical engineering, since monitoring can only
be performed at limited and discrete locations, and it is likely that unmonitored locations
are structurally critical, but unfeasible for installing sensors. This inverse prediction
capability is also pertinent in the development of digital-twin-based monitoring. As
demonstrated by [24], digital-twin-based monitoring can be implemented with the aid of
a selection of structural response measurements and an inverse problem solver so that
holistic structural monitoring can be achieved. In either case, the accuracy of the inverse
prediction is dependent on the number of sensors [25]. It is desirable to install as many
sensors as practically possible so that more data can be provided to the inverse problem
solver, as shown, for instance, in [26]. However, this is often constrained by the available
budget. In the meantime, the amount of data is also a barrier that affects the practicality of
implementing an SHM system (e.g., data storage and data communication from offshore to
onshore). Thus, the locations of the employed sensors should be carefully determined.

In light of this, an optimisation framework is formulated in this paper with the
objective of optimising the sensor installation locations whilst ensuring an acceptable
accuracy of the inverse prediction problem. The proposed framework consists of: (i) a
forward problem to provide input data, (ii) an inverse problem to address the inverse
prediction, and (iii) optimisation to derive the optimal placement solution. The framework
is demonstrated with an illustrative example in which the input data are provided by
experimental measurements, and the inverse problem is addressed with a radial basis
function (RBF) [27]. This is combined with the genetic algorithm [28] to develop the
optimal sensor placement of a strain gauge rosette array for a cantilever steel plate.
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The paper is organised as follows. Section 2 provides a review of related academic
studies and industrial standards, followed by a definition of the generalised framework in
Section 3. Thereafter, an illustrative example is presented in Section 4 to demonstrate the
proposed framework and to discuss the benefits of sensor placement optimisation. Finally,
the main conclusions and recommendations for future research are discussed in Section 5.

2. Literature Review

A literature survey on optimal sensor placement was conducted by [29]. It was indi-
cated that whilst SHM has seen a wide range of applications in various engineering fields,
research and developments related to sensor placement optimisation are limited. Opti-
misation of sensor placement for a cross-stiffened panel subjected to lateral pressure was
presented by [30]. The inverse finite element method was combined with an optimisation
framework that leveraged a genetic-algorithm-based solver. A 70% reduction of the sensor
number was achieved, while the loss in monitoring accuracy was merely 0.6%. The authors
of [31] applied sequential space filling, the genetic algorithm, and the simulated annealing
algorithm to optimise the sensor placement of a steel-frame structure. It was shown that
the simulated annealing algorithm was the most effective for the problem of interest. A
Bayesian optimisation framework for deriving optimal sensor network design for SHM
with the Bayes risk as the objective function was proposed by [32]. This was motivated by
the fact that the prediction of the structural state is associated with cost/risk due to various
known or unknown uncertainties. Using the Bayes risk as the objective function can lead
to the least expected loss/risk as a consequence of making decisions on the structural state.
The optimisation of a multi-axial-displacement sensor placement was investigated by [33].
A tri-axial modal assurance criterion was developed by taking three translational degrees
of freedom into account as a single unit in a Fisher information matrix. The proposed
criterion was combined with a distributed wolf algorithm to determine the optimal sensor
placement of a benchmark frame structure. The artificial bee colony algorithm combined
with the modal assurance criterion was employed by the authors of [34] to develop the
optimal sensor placements of a 27-bar truss bridge, a 21-storey building, and a high tower.
Mallardo et al. [35] studied the sensors’ optimal locations for identifying impacts on com-
posite structures. In this study, piezoelectric sensors were applied to estimate the location
of the impact. In order to reduce the computational effort, the authors adopted an artificial
neural network (ANN) to evaluate the objective function.

Standards and recommended practices are issued by various maritime authorities with
regard to the specification of monitoring systems, e.g., DNV [36], ABS [37], ClassNK [38],
and GL [39]. The specifications include the sensor type, sampling rate, acceptable uncer-
tainty tolerance, and installation methods. Except for the minimum number of required
sensors, it appears that no recommendations have been provided in connection with the
optimisation of sensor placement.

3. Sensor Optimisation Framework

A sensor optimisation framework for optimising sensor placement is defined in this
paper. The principle of the proposed framework is elucidated via the flowchart shown in
Figure 1. Three key elements are considered: (i) a forward problem, (ii) an inverse problem,
and (iii) optimisation. It is generally applicable to the determination of the optimal sensor
placement for structures of which the structural states are known or can be simulated.

The forward problem refers to the prediction of the structural response to external
environmental actions, such as wind, waves, and currents. It is relevant in the present
context as a means of providing input (training and testing data) for the inverse problem
and optimisation. The responses can be collected with physical measurements or through
an equivalent simulation in which virtual measurements can be taken.

As briefly mentioned in the previous section, the inverse problem addresses the
prediction of a selected number of training data, e.g., the prediction of the unmonitored
response by using a monitored response with reference to SHM applications. A data-driven
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or physics-based algorithm can be employed [40]. The accuracy of the inverse prediction
is assessed in comparison with the testing data (i.e., the predicted testing data versus the
actual testing data), where the inverse problem solver provides the predicted testing data.

An appropriate optimisation algorithm is applied in order to derive an optimal set of
training data, i.e., the optimal sensor placement, which minimises the error of the inverse
prediction.

Forward
problem

Response
dataset

Validation

Training
data

Testing
data

Optimal?

Inverse
problem Optimisation

Optimal
Placement

True

False

Figure 1. Proposed generalised methodology for optimising the sensor placement.

4. Illustrative Example

To demonstrate, in a tractable manner, the fundamental concept of the methodology
described in Section 3, an elementary optimisation problem is considered, and it aims
to seek the best placement of a strain gauge array for measuring the stress field near a
stress concentration area. This illustrative example is a practical engineering problem that
is relevant for the structural health monitoring of local structural details with an abrupt
change in the geometry and, consequently, stress concentrations, e.g., in plate-stiffener
intersections or tubular joints of offshore structures. Hence, the obtained results would
have a direct impact in terms of guiding the design and specifications of a monitoring
system for local hotspots.

4.1. Problem Statement

Structural details with an abrupt change in their geometry are usually associated with
a considerable stress gradient [1]. Therefore, using a monitoring array formed by multiple
strain gauges would be more suitable than using a single strain gauge [41]. Moreover,
the strain gauge array benefits the overall monitoring system by adding redundancy, so the
robustness of the system against sensor malfunction can be enhanced [42].

A structural test was performed on a 1 m × 1 m perforated steel plate instrumented
with a fibre Bragg grating (FBG) strain gauge array (Figure 2). The FBG strain gauge array
has several benefits. It is immune to electromagnetic interference and intrinsically passive,
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i.e., no electrical power is necessary; therefore, it can be positioned in areas with a high
voltage and potentially explosive atmosphere. Moreover, it has multiplexing capabilities.
More than 20 FBGs can be located in a single fibre.

60mm 60mm 60mm 60mm
45

m
m

45mm

Figure 2. A strain gauge array formed of five fibre Bragg grating rosettes.

As schematically illustrated in Figure 3, the test specimen (perforated plate) is fixed
to the horizontal rigid support via three angle brackets. The opposite end is subjected to
a pressure load imparted by the incoming waves. This configuration effectively results
in a cantilever plate condition. A 0.2 m × 0.2 m hole is introduced at the centre of the
plate to simulate the stress concentration. A finite element analysis indicates that a hotspot
occurs at the upper corner of the square hole, and thus, the strain gauge array is installed
in this area. The strain gauge array adopted in the present test is formed of five rosettes, as
reported in Figure 2.

Figure 3. Structural test of perforated plate instrumented with FBG.

Each strain gauge rosette is of a delta shape, with three individual sensors oriented at
0◦, 60◦, and 120◦. The footprint of an individual rosette is approximately 45 mm × 45 mm.
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The centre-to-centre distance between the adjacent rosettes is 60 mm, and the distance
between the first rosette and the square hole corner is 35 mm. Under the lateral pressure
load induced by an incoming wave with a frequency of 0.8 Hz and amplitude of 75 mm,
the distribution of the maximum von Mises stress is shown in Figure 4.

Figure 4. Test data.

The primary aim of the present study is to optimise the proposed strain gauge array by
reducing the number of rosettes from five to three and determining the optimal installation
locations that minimise the prediction error of the inverse prediction model. In this study,
the prediction error is assessed with a comparison between the predicted stresses and the
experimentally measured stresses for the five locations in which physical measurements
are conducted. This can be easily remapped into a classic single-objective optimisation
problem. Thus, three variables are involved in the optimisation, namely, the coordinate of
rosette No. 1 (xa), the coordinate of rosette No. 2 (xb), and the coordinate of rosette No.3
(xc), as reported in Table 1. As a comparison, the optimal sensor placement of a four-rosette
strain gauge array is also considered (i.e., an additional variable: coordinate of rosette No.
4—xd). The optimisation problem is similar, and thus, for the sake of brevity, its formulation
is not elaborated here. Note that the coordinate refers to the centroid of each rosette.

Table 1. Summary of variables to be optimised.

Variable Symbol Unit

Centroid of rosette a xa mm
Centroid of rosette b xb mm
Centroid of rosette c xc mm

Within the optimisation, if candidate solutions (i.e., the locations of the rosettes) are
determined, the responses of these locations will be evaluated through the interpolation
(based on the test data) of the two adjacent measurement locations. An inverse prediction
will then be performed to provide response predictions for all five actual measurement
locations (σ̃) where test data are available (σ). In the present paper, an RBF-based approach
is employed for the inverse prediction. For each prediction, its difference from the test data
gives a prediction error (e). The five prediction errors give an error vector (e). The sum of the
second norm and the infinite norm of the error vector provides a measure of the prediction
performance [43] and is the objective of the present optimisation, i.e., minimisation. The
second norm emphasises the overall performance of the prediction, and the infinite norm
targets the maximum error to ensure that no significant outlier would exist. The relative
importance of the second norm and infinite norm can also be formulated in the objective
function by using a weighting factor. An alternative definition of the objective function
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is possible; e.g., the reader is referred to [44], where the use of the f -divergence as the
objective function was investigated for optimal sensor placement.

Two groups of constraints are considered in the optimisation. Firstly, each rosette must
be located within the current footprint of the entire array. To this end, the optimal value
of each variable can only be searched within a constrained interval. The lower and upper
bounds of each variable are summarised in Table 2.

Table 2. Summary of the lower and upper bounds of the variables.

Variable Lower Bound Upper Bound Unit
Symbol Value Symbol Value

Centroid of
rosette a xl

a 0 xu
a 240 mm

Centroid of
rosette b xl

b 0 xu
b 240 mm

Centroid of
rosette c xl

c 0 xu
c 240 mm

Secondly, no overlapping of rosettes is allowed. Since each rosette has a physical size
(45 mm × 45 mm in the present case), the centroid-to-centroid distance should be specified
to avoid any overlapping. In the installation of the present test, the centroid-to-centroid
distance was determined to be 60 mm. Considering the physical size of the deployed
rosettes and the extra space for the waterproofing treatment, this appeared to be smallest
practical distance after consultation with an installation technician.

4.2. Formulation and Solution Scheme for Optimisation

In accordance with the descriptive problem statement given in the previous section,
the scope of the present optimisation is to minimise the weighted sum of the second norm
(‖e‖`2) and the infinite norm (‖e‖`∞ ) of the error vector, i.e., e = {e1, e2, e3, e4, e5}. The
weighting factor is denoted as α. The error vector consists of the prediction errors of five
tested locations (see Figure 2). Each error entry is evaluated as the difference between the
predicted response (σ̃i) and the experimentally measured response (σi), i.e., ei = σ̃i − σi,
where i = 1, 2, 3, 4, 5.

More formally, a mathematical formulation of the optimisation problem (three-rosette
array) can be written as follows:

min
xa ,xb ,xc∈R

α‖e‖`2 + (1− α)‖e‖`∞ (1)

subject to



xl
a ≤ xa ≤ xu

a

xl
b ≤ xb ≤ xu

b
xl

c ≤ xc ≤ xu
c

|xa − xb| ≥ ∆xmin

|xa − xc| ≥ ∆xmin

|xb − xc| ≥ ∆xmin

The lower and upper bounds of each variable are provided in Table 2. The predicted
response is derived by solving the inverse problem by using an RBF approach with the
responses σa, σb, and σc at three candidate rosette locations xa, xb, and xc as the input:

σ̃i = fRBF(xa, xb, xc, xi) (2)

The RBF is able to perform interpolation based on an irregular grid; therefore, it is
suitable for the problem of interest in this paper, since the rosettes are likely to be distributed
in an irregular manner (i.e., with a varying spacing). Meanwhile, the measurements are
retained in the developed predictive algorithm, i.e., the predictions for the monitored
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locations will be the same as the actual measurements. In fact, the application of other data-
driven algorithms is possible, and according to the No Free Lunch Theorem for Machine
Learning, which states that the performance of all algorithms is equally good, several
classes of algorithms should be tested [45]. An RBF is centrally symmetric with respect to a
specific point. In the present context, these specific points refer to xa, xb, and xc. The RBF
value at any other location can be represented as follows:

ϕ(x) = ϕ(‖x− x0‖) (3)

where ‖x − x0‖ effectively refers to the distance between the point of interest x and the
fixed point x0. As reported by Equation (4), a Gaussian function is a typical RBF.

ϕ(x) = exp(−‖x− x0‖2

2σ2 ) (4)

The parameter σ controls the smoothness of the interpolated function. It can be
estimated as the average distance between any two points in an irregular grid. The RBF-
based interpolated function can then be formulated as the weighted sum of a series of RBFs,
each of which centres around one of the training data points:

fRBF(x) =
m

∑
j=1

wj ϕ(‖x− xj‖) (5)

where xj is the spatial coordinate of the data point and m is the number of data points. The
weight coefficients wj are determined by imposing the requirement that the interpolated
value at the training data point is identical to the corresponding actual value, and thus,

fRBF(xj) = factual(xj) (6)

In the present context, m = 3 because three rosettes (at xa, xb, and xc, respectively) are
considered, and accordingly, the actual values at these locations are σa, σb, and σc. Thus,
by applying Equations (5) and (6) to the present problem of interest, a system of linear
equations with three unknowns can be developed:ϕ(‖xa − xa‖) ϕ(‖xa − xb‖) ϕ(‖xa − xc‖)

ϕ(‖xb − xa‖) ϕ(‖xb − xb‖) ϕ(‖xb − xc‖)
ϕ(‖xc − xa‖) ϕ(‖xc − xb‖) ϕ(‖xc − xc‖)


wa
wb
wc

 =


σa
σb
σc

 (7)

Once Equation (7) is solved and the weight coefficients are derived, the estimated
response at the testing location (i.e., σi with i = 1, 2, 3, 4, 5) can be obtained, as shown by
Equation (2). The experimentally measured response is denoted as

σi = fExp(xi) (8)

The entry of the error vector (i.e., e in Equation (1)) can then be expressed as

ei = σ̃i − σi = fRBF(xa, xb, xc, xi)− fExp(xi) (9)

With respect to the optimisation solver, a genetic algorithm [28] implemented in
the Matlab environment is adopted. This is a well-suited approach for nonlinear and
non-convex objectives, as given by Equation (1). In principal, the algorithm involves the
following evolutionary process: elitism, selection, crossover, and mutation. A population
of possible solutions to the problem of interest is randomly initialised to form the first
generation. The number of possible solutions defines the size of the generated population.
An individual solution within the population is executed by the inverse problem solver to
evaluate the corresponding objective function. When this evaluation is completed for all
individuals, the objective functions are ranked to identify the best fit. Note that the best-fit
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solution is propagated to the next generation because of elitism. Once the evaluation and
ranking of objective functions are completed, a tournament selection is applied to select
the “parents”. The tournament operation selects k individuals from the population with
k > 2 as “parents”. The repeating of the tournament selection is terminated when a desired
number of “parents” are available. The paired parents will carry out a crossover operation,
which simulates genetic recombination, as in human reproduction. Following the crossover
operation, each offspring is submitted to a mutation operation, which is a small random
tweak in the chromosome to obtain a new solution. This is used to maintain and introduce
diversity in the genetic population. The specifications of the applied genetic algorithm are
summarised in Table 3.

Table 3. Summary of the settings of the genetic algorithm’s specifications.

Specification Setting

Population 1000
Elite count 50

4.3. Results

The optimal sensor placements of a strain gauge array with three and four rosettes are
illustrated in Figure 5.

60mm 60mm 60mm 60mm

76mm 81mm 83mm

80mm 213mm

Figure 5. Comparison between the initial five-rosette strain gauge array and the optimised four-
rosette and three-rosette arrays.

These results were obtained by assuming an equal importance between the second
norm and the infinite norm of the error vector, i.e., α = 0.5. In comparison with the initial
placement, the optimised array shows a varying spacing, in which a smaller spacing is
used if the rosette is placed closer to the hotspot. This reflects the underlying structural
response well, since a higher stress gradient occurs in proximity to the hotspot, whereas the
stress response would converge as it becomes further away from the stress concentration
area. As illustrated in Figures 6 and 7, the interpolations based on the optimised array with
three or four rosettes are comparable with the actual measurements.
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Figure 6. Comparison between the experimental measurements and interpolated results based on an
optimised rosette placement.

Figure 7. Comparison between the experimental measurements and interpolated results based on an
optimised rosette placement.

To investigate the effect of the weighting factor α, two additional cases with α = 0.3
and α = 0.7 are considered. The first case emphasises the importance of the infinite norm,
and the second case emphasises the second norm. The results are compared in Table 4. It
can be seen that the weighting factor has a negligible influence on this one-dimensional
problem, where the inverse prediction shows a high accuracy and, thus, the difference
between the second norm and the infinite norm is marginal. However, a greater influence
is expected when the problem is extended to two or three dimensions. This will become
the subject of future studies.

The results reported above demonstrate the promising application of an optimisation
algorithm for the development of optimal sensor placements, such that comparable per-
formance can be achieved with respect to a dense sensor network. Although the present
illustrative example is a one-dimensional problem in which the location of each sensor is de-
scribed only by a coordinate in one dimension, it demonstrates, in a tractable manner, how
an optimisation of sensor placement can be performed and its value in practical engineering.
Additionally, this capability is of great significance in the design and offshore application of
FBG strain gauge arrays comprising multiple sensors. Thanks to the multiplexing feature,
all sensors in an FBG array can share the same fibre. The signals can then be streamed
to the interrogator via one channel. However, there is a limit with regard to the number
of signals (i.e., the number of sensors) with which each channel can cope. For instance,
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the initial five-rosette array can be problematic, since the signals (3× 5 = 15 signals in
total) may need to be clustered to the interrogator through more than one channel. This
somewhat counteracts the benefit of multiplexing and has an impact on the number of
monitoring locations that a single interrogator can manage. In addition, the extra wiring
and relevant protection measures give rise to an increase in the fitting cost and difficulty.
The increase in cost can be considerable for a large-scale offshore structure. In terms of
limitations, the measurement noise, uncertainty, and bias are not taken into account, but
this is recommended for future studies.

Table 4. Optimal sensor placement: three-rosette array.

Weighting Factor Rosette Position Value Unit

xa 0 mm
α = 0.5 xb 80 mm

xc 213 mm

xa 0 mm
α = 0.3 xb 80 mm

xc 214 mm

xa 0 mm
α = 0.7 xb 80 mm

xc 213 mm

5. Conclusions

A dedicated structural integrity management program is a crucial element in ensuring
the safety of offshore structures that operate in a hostile marine environment. One of
the fundamental aspects of structural integrity management is the collection of structural
condition data, which enable the assessment of the health of in-service structures in order
to determine their fitness for purpose and whether intervention is needed. The traditional
surveyor inspection approach is challenged by a number of technical obstacles: inspection
accessibility and availability, health and safety of surveyors, human error, and infrastructure
downtime. To this end, a structural health monitoring (SHM) system can be employed. By
installing sensors on board, an SHM system enables remote and continuous monitoring
of the integrity of an in-service structure. Apart from eliminating the drawbacks related
to surveyor inspections, SHM also has the potential to be incorporated into a digital-
twin-based monitoring framework. One of the key capabilities of the SHM system is the
prediction of the responses of unmonitored locations by using monitored data. An ideal
scenario would be to collect as much data as practically possible so that a good amount of
data can be provided to address the inverse problem. However, a limited budget appears
to be the constraint of SHM system design. Thus, to support SHM systems, an optimisation
of the sensor placement is required to provide optimal performance.

In light of this, a sensor placement optimisation framework was developed in this
paper. A radial basis function was employed to address the inverse prediction, while the
genetic algorithm was adopted for optimisation. An illustrative example of the design of
an FBG strain gauge array was provided to demonstrate the methodology. Two scenarios
were considered, where the number of rosettes was reduced from five to three or four.
The results showed that the reduced set of rosettes with the optimised placement was
comparable with the initial dense network. The proposed framework can contribute to the
initial development of sensor packages for a monitoring system (i.e., the specification of
sensor locations and numbers). Additionally, it has the potential to be integrated into a
monitoring system to dynamically inform users about the optimal set of sensor data. In
other words, sensors that provide a less critical data stream for a specific scenario can be
temporarily turned off. Consequently, the amount of data can be dramatically reduced,
and this will be hugely beneficial in terms of data storage and data communication from
offshore to onshore.
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The present preliminary study opens a number of opportunities for future research.
The illustrative example reported in this paper is a one-dimensional problem with respect
to the variable, i.e., sensor location. Future research can be carried out to extend the
dimensionality of the variables, such that the effectiveness of the proposed optimisation
can be further evaluated. To improve the effectiveness of the proposed optimisation for
a multi-dimensional problem, advanced algorithms for addressing inverse prediction
are needed. For instance, modal decomposition and expansion theory appears to be a
capable method for SHM that has been a subject of great interest in recent years. However,
the combination of this theory and an optimisation algorithm for the development of
optimal sensor placement has not yet been detailed; hence, this is recommended as future
research. Moreover, the consideration of missing data streams may deserve future study.
A plausible approach is that of refining the objective function by taking account of the
prediction accuracy based on a partial data stream. An appropriate weighting factor may
be required to reflect the differences in the likelihood of each malfunctioning event. Future
work can be performed to investigate the feasibility of this idea. Further, measurement
noise or bias was not accounted for in the illustrative example, and it should be addressed
in future research.
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