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Abstract: As maritime transportation develops, the pressure of port traffic increases. To improve the
management of ports and the efficiency of their operations, vessel scheduling must be optimized.
The vessel scheduling problem can be divided into channel scheduling and berth allocation. We
considered the complex problem of vessel scheduling in a restricted channel and the berth allocation
problem, and a combined model that considers carbon emissions was developed. This model should
reduce vessel waiting times, improve the quality of the berth loading and unloading service, meet
the requirements of “green” shipping, and improve the overall scheduling efficiency and safety of
ports. An adaptive, double-population, multi-objective genetic algorithm NSGA-II-DP is proposed to
calculate the mathematical model. In the case study, the rationality verification and sensitivity analysis
of the model and algorithm are conducted, and the NSGA-II-DP and NSGA-II were compared. Results
demonstrate that the overall convergence of the NSGA-II-DP algorithm is better than that of NSGA-II,
demonstrating that the NSGA-II-DP algorithm is a useful development of NSGA-II. In terms of
port scheduling, the results of our model and algorithm, compared with the decisions provided by
the traditional First Come First Service (FCFS) strategy, are more in line with the requirements for
efficiency and cost in the actual port management, and more dominant in the port management can
provide better decision support for the decision-makers.

Keywords: vessel scheduling; restricted channel; berth allocation; carbon emissions; NSGA-II-DP

1. Introduction

Ocean transportation has always been the primary transportation mode used for
global trade, accounting for 75% of global transportation. According to the report of the
United Nations Conference on Trade and Development (UNCTAD), global marine trade
in 2021 increased by 4.3%; the average growth rate of seaborne trade in the past two
decades has been 2.9%, and the commercial shipping fleet will increase by 3% in 2020 [1]. In
addition to the vigorous development of maritime trade, the cargo volume and fleet as well
as the number of vessels visiting ports has increased owing to which the traffic pressure is
increasing daily. However, in the short term, it is difficult for ports to employ expensive
and tedious methods to relieve traffic pressure and increase their operating capacity such
as expanding the port, improving their infrastructure, or widening channels. Therefore,
the best approach to effectively solve traffic conflicts and improve the efficiency of port
management and operations is to optimize the scheduling of vessels [2].

For ports with restricted channels, a vessel first enters the restricted channel from
its anchorage. At this time, the vessel is constrained by the complex navigation rules
of the restricted channel. After entering the harbor basin via the restricted channel, the
vessel enters its allocated berth for both loading and unloading. The berth must meet the
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requirements of the vessel length and draft, and its service cargo type must be consistent
with the type of cargo transported by the vessel. The loading and unloading times will be
affected by the working efficiency of the berth. When the vessel has finished loading and
unloading, it leaves the berth and then the port, again via the restricted channel.

To date, in most studies, the channel scheduling problem and the berth allocation
problem have been separately considered. However, because of the complexity of the
navigation rules for restricted channels, for example, allowing two-way navigation in one
section but only one-way navigation in another section because of the narrow channel;
or because of the insufficient depth of the channel, vessels with deep draft require to
consider entering and leaving the port as per the tide [3]. Therefore, when a vessel enters
the restricted channel, it is difficult to predict its impact on other vessels. Moreover, an
unreasonable scheduling sequence in the channel may lead to multiple vessels being
delayed. If a vessel fails to enter the port on schedule, it will affect the berth allocation plan.
The working efficiency of the berth that has been allocated as per the berth allocation plan
affects the berthing time of the vessel, thus affecting the departure time of the vessel and
indirectly affecting the scheduling plan for the restricted channel. Therefore, an optimal
scheduling plan obtained from a separate consideration of the channel scheduling and
berth allocation problems may, in fact, be suboptimal; it is necessary to consider both
problems together to conduct an overall scheduling study. Furthermore, to promote
“green” shipping, terminal operators, shipping companies, and relevant environmental
protection departments are extremely concerned about carbon emissions and pollution
during navigation. Therefore, as part of the overall scheduling, it is necessary to consider
the carbon emissions of vessels and to make reasonable speed arrangements for different
types of vessels within the speed limit of the port. It is thus extremely important to
comprehensively consider multiple factors such that reasonable vessel scheduling and berth
allocation sequences can be devised. However, it is difficult to achieve fast and effective
scheduling using the fixed vessel scheduling sequences produced by the traditional FCFS
strategy used by ports.

Based on the abovementioned considerations, the optimization of channel scheduling
and berth allocation in ports was considered from the overall perspective of the manage-
ment of the port operations in this study.

In this paper, we will consider the complex vessel scheduling problem for a restricted
channel along with the berth allocation problem, a comprehensive model for vessel schedul-
ing in a restricted channel and berth allocation that considers carbon emissions is developed.

Tide times, traffic conflicts, port scheduling resources, and other factors will be consid-
ered in the overall scheduling model to make the model more realistic. Furthermore, the
degree of matching between the berth and vessel is based on the type of cargo served by
the berth and the distance from the yard, thus improving the safety of the cargo handling
and reducing the amount of cargo damage and transportation costs during cargo handling.
The carbon emissions during navigation will be considered in the model, which brings the
research more in line with the real requirements of port management and the general trend
toward sustainable shipping.

To address the defects of the traditional multi-objective genetic algorithm, an adaptive
two-population multi-objective genetic method will be proposed and applied to the model.

The rest of this study is organized as follows. In Section 2, we summarize the relevant
literature on vessel scheduling. In Section 3, we describe and analyze the problems that
were studied and explain the factors to be considered in the proposed model. In Section 4,
the proposed mathematical model for the optimization of vessel scheduling and berth
allocation is described. In Section 5, the adaptive double-population multi-objective genetic
algorithm on which the model is based is described. In Section 6, the rationale for using the
proposed algorithm and model is discussed along with a consideration of their effectiveness
and their superiority to other methods in different cases. In Section 7, the content of the
article is summarized and the prospects for future research are discussed.
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2. Related Literature

A brief introduction to the relevant literature on vessel scheduling in ports is provided
in this section. The purpose of port scheduling operations is to improve the operational
efficiency of the port and to ensure the safety of its operations. Based on considerations
of different optimization methods and research directions, the scheduling problem can be
divided into a channel scheduling problem and a berth allocation problem. The relevant
literature will be summarized from these two perspectives and a detailed comparative
analysis of the relevant literature is provided in Table 1.

Table 1. Details of earlier studies on related topics.

Authors
Research Topic

Channel
Constraint Objective

Function
Algorithm

CSP BAP CSP + BAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Zhang et al.
√

one-way
√ √ √

1 + 2 GA
Zhang et al.

√
one-way

√ √
1 SA + GA

Kasm et al.
√

one-way
√ √ √

3 CHA
Hill et al.

√
two-way

√ √ √
1 CS

Zhang et al.
√

two-way
√ √

1 GA
Lalla-Ruiz

et al.
√

compound
√

1 SA + TSP

Zhang et al.
√

compound
√ √

1 GA
Li et al.

√
restricted

√ √ √ √ √
1 + 2 GA

Abbas et al.
√

-
√ √ √ √ √

4 CS
Correcher et al.

√
-

√ √ √ √
5 CHA

Maxim et al.
√

-
√ √ √

6 AIEA
Eduardo et al.

√
-

√ √ √ √ √
7 GA + CHA

Liu et al.
√

-
√ √ √ √

8 SWA + CHA
Sami et al.

√
-

√ √ √
7 O-MaSE

Hu et al.
√

-
√ √ √ √

9 + 10 ε
Guo et al.

√
-

√ √ √ √
11 + 12 PSO

Wu et al.
√

-
√ √ √ √

13 CHA
Guo et al.

√
-

√ √ √ √ √
14 GA

Zhang et al.
√

one-way
√ √ √ √ √

1 SA + GA
Liu et al.

√
one-way

√ √ √ √ √ √ √
15 CHA

Liu et al.
√

two-way
√ √ √ √ √ √ √

16 CG
Present study

√
restricted

√ √ √ √ √ √ √ √ √ √ √ √
1 + 10 + 17 GA

Constraints: 1: safety interval (distance/time); 2: tidal time window; 3: speed; 4: traffic conflict; 5: dispatch
resources (tugs, etc.); 6: number of berths; 7: berthing time and location; 8: berth allocation; 9: berth physical
environment; 10: berth matching degree; 11: carbon emissions; 12: time buffer; 13: weather conditions; 14: distance
between berth and storage space in yard. Research topics: CSP: channel scheduling problem; BAP: berth allocation
problem. Objective functions: 1: minimization of the total waiting time; 2: minimization of the total dispatch time;
3: minimization of the maximum waiting time; 4: minimization of the vessel flow time; 5: minimization of the
waiting and delay costs; 6: minimization of the total weighted service cost; 7: minimization of the total service time;
8: minimization of the basic planning cost and the expected recovery cost in all possible cases; 9: minimization of
the delay length; 10: minimization of the carbon emissions from navigation and berthing; 11: minimization of
delay penalties; 12: minimization of the crane service costs; 13: minimization of the total outbound vessel delay;
14: minimization of the total distance traveled by trucks; 15: minimization of the total weighted vessel dwell time;
16: minimization of the weighted sum of the completion time of the shift operations for inbound and outbound
vessels; 17: maximization of the berth matching. Algorithms: SA: simulated annealing algorithm; GA: genetic
algorithm; SWA: sliding-window method; CHA: self-built heuristic algorithm; CS: commercial software; AIEA:
adaptive island evolutionary algorithm; O-MaSE: multi-agent systems engineering; ε: ε-constraint method; PSO:
particle swarm optimization; CG: column vector generation.

In their research into the channel scheduling problem, Zhang et al. [4] considered
the constraints related to berths, safety intervals, and one-way channel navigation rules.
Although the berth factor was considered, the berth was assumed to have been allocated in
advance in this study, and the only consideration was whether the vessel was in conflict
when berthing. A mixed-integer linear program (MILP) model that had the minimum
total scheduling time and vessel waiting time as its aim was constructed, and the non-
dominated sorting genetic algorithm (NSGA) was used to calculate and verify the reliability
of the model. Zhang et al. [5] established a mathematical model that was based on a
comprehensive consideration of constraints such as the tide and the navigation rules for
a one-way channel and that had the shortest total waiting time for vessels as its goal. In
the study by Abou Kasm [6], the aim was to minimize the maximum delay of vessels,
considering the one-way channel navigation rules and the constraints of port resources.
An MIP model was then built, and a combination of a heuristic algorithm and a relaxation
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strategy was used to solve the model. Hill [7] considered the constraints caused by the
channel, the tidal time window, and two-way channel navigation rules and developed a
linear integer model with the aim of minimizing the total vessel waiting time to solve the
vessel scheduling problem for channels at ports. With the aim of reducing the total vessel
waiting time, Zhang et al. [8] developed a vessel scheduling model for a two-way channel
that considers tides, safety intervals, and other constraints and uses a genetic algorithm
to solve the model. Lalla-Ruiz et al. [9] considered multiple constraints and developed a
vessel scheduling model for composite channels. To reduce the vessel waiting times, this
model assigned different channels to different vessels during scheduling and combined
greedy and simulated annealing algorithms to calculate the model. Based on the actual
layout of Tianjin port, Zhang et al. [10] considered the minimum total waiting time of
vessels as the objective function and developed a mathematical model for vessel scheduling
in a composite channel; this model was based on a genetic algorithm. Li et al. [3] based
their model on the physical layout of Huanghua port and considered the minimum total
scheduling time and the minimum total waiting time of vessels as the objectives. A vessel
adjustment model for a restricted channel that was based on the NSGA-II algorithm was
then developed.

In a study of berth allocation, al Refaie [11] comprehensively considered constraints
such as the physical environment of the berth, the vessel safety interval, and the satisfaction
of the service provider while aiming to avoid vessel berthing conflicts. INLP models
for berth allocation were then developed for normal conditions and for the case of an
emergency arrival and solved with commercial software. Correcher et al. [12] aimed to
minimize the addition of the cost of waiting before berthing and the cost of delays for
each vessel; this work was based on an irregular berth layout after considering constraints
such as the physical environment of the berth and the aim of avoiding vessel berthing
conflicts. An MILP model for the berth allocation was developed, and an iterative local
search heuristic algorithm was built to solve it. To solve the berth allocation problem,
Dulebenets [13] proposed a new adaptive island evolutionary algorithm. The aim of this
study was to minimize the total weighted service cost for vessels; the vessel berthing time
and location were considered constraints in the model. Bacalhau et al. [14] established
a berth allocation model with the aim of minimizing the total vessel service time. This
model included a comprehensive consideration of constraints such as the vessel safety
interval, the physical environment of the berth, and vessel berthing conflicts. A genetic
algorithm and a domain search algorithm built by the authors were used to solve the model.
Liu [15] examined the berth allocation problem for uncertain conditions. With the aim
of minimizing the basic planning cost and the expected recovery cost under all possible
circumstances, constraints such as vessel berthing conflicts and the physical environment
of the berth were considered. An MILP model was constructed, and the model was solved
using commercial software and the sliding-window method. Mnasri [16] established a
single-objective berth allocation LP model with the aim of minimizing the service time,
including the waiting time, for all vessels. Furthermore, the aim was to avoid vessel
berthing conflicts, and multi-agent systems engineering was used to identify the solution.
Hu [17] established a multi-objective berth allocation model with the aim of minimizing the
delay time and the carbon emissions from navigation and berthing. This model considered
possible berthing conflicts and vessel carbon emissions ε-constraint method. To examine
the berth allocation problem where the loading and unloading times are uncertain because
of the weather, Guo [18] first built a model for vessel loading and unloading times under
different weather conditions that consider the weather, the number of cranes, the vessel
capacity, and other factors. The relationship between the weather and the loading and
unloading times was then investigated using machine learning; constraints such as avoiding
vessel berthing conflicts, minimizing the cost of using cranes, and penalties for delays
to vessels were considered, and a berth allocation model for situations where the vessel
loading and unloading times are uncertain was developed for different weather conditions.
The model was solved using a particle swarm optimization algorithm. Wu [19] established
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a mixed-integer program (MIP) model for berth allocation with the aim of minimizing the
total vessel departure delay. In this case, the constraints that were considered included
berthing conflicts and the continuity of berth service; a time buffer was included in the
berth allocation plan to ensure that the overall berth allocation plan would not be affected
in the event of a short delay to the arrival of a vessel. A self-built search algorithm was
used to solve this model. To examine the joint allocation of berths and yards, Guo [20]
considered such constraints as the vessel loading workload, physical environment of berths,
number of allocated yards, number of containers in the yards, and vessels’ berthing times
and locations. An IP model was then built to minimize the total distance traveled by trucks;
a genetic algorithm was used for the calculations.

In a study of the overall problem of channel scheduling and berth allocation, Zhang [21]
set the minimum total waiting time as the aim and built an MILP model for one-way chan-
nel scheduling and berth allocation. This model considered constraints such as the safe
time interval, the physical environment of the berths, and the vessel berthing time, in
addition to the avoidance of berthing conflicts; a simulated annealing algorithm and a
genetic algorithm were used to identify the solution. Liu [22] comprehensively consid-
ered constraints such as navigation safety intervals, navigation rules, tides, the physical
environment of berths, and vessel berthing conflicts and considered the minimization
of the weighted total dwell time for all vessels as the aim. An MILP model for overall
one-way channel scheduling was constructed, which was solved by a self-built adaptive
large neighborhood search algorithm. On the basis of the 2020 study, the following year,
Liu [23] considered two-way channel constraints and built an MILP model for the overall
scheduling of vessels in a two-way channel. In this study, the aim was to minimize the
weighted sum of the completion time of the shift operations for inbound and outbound
vessels; a column generation algorithm was used to solve the problem.

From the abovementioned analysis and the information presented in Table 1, a number
of researchers have considered the problems of channel scheduling and berth allocation
separately in their research to date. However, few studies have considered the channel
vessel scheduling problem and the berth allocation problem in combination.

There have been certain preliminary studies on the overall scheduling problem that
have combined considerations of channel vessel scheduling and berth allocation. However,
in these studies, one- and two-way channels with relatively simple constraints have gener-
ally been considered, and there is a lack of research on restricted channels with complex
navigation environments and rules. There has been little consideration of the factors that
actually affect scheduling such as tide times, traffic conflicts, and port scheduling resources.
During the process of berth allocation, only the physical environment of berths and vessels’
berthing times and locations have been considered, without considering the degree of
matching between berths and berthing vessels. Currently, in order to promote environmen-
tally sustainable shipping, terminal operators, shipping companies, and environmental
protection departments are very concerned about reducing carbon emissions and pollution
from shipping. However, the carbon emissions related to the overall scheduling of vessels
is rarely considered. In order to address these issues, in this study, we improve on the
existing research by proposing a model for vessel scheduling in restricted channels as well
as berth allocation that takes carbon emissions into account. Compared with previous
studies, we consider the channel and berth scheduling problem at the same time, avoiding
the sub-optimal results of separate optimization, and add constraints more in line with
the actual situation of port scheduling in the model for the above problems, so that the
model is more practical, and the results are more effective. The specific improvements are
as follows.

By combining the complex restricted channel vessel scheduling problem with the
berth allocation problem, this paper constructs the overall scheduling model of vessel
scheduling in the restricted channel and berth allocation considering carbon emission,
expands the model of this research direction, and provides basic theoretical support for
further expanding this research direction.
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Tide time, traffic conflict, port scheduling resources, and other factors are considered
in the overall scheduling model to make the model more realistic. At the same time, the
matching degree between the berth and the vessel is constructed according to the type of
cargo served by the berth and the distance from the stockyard space in the yard and is
considered in the model, so as to improve the safety of cargo handling in the scheduling and
reduce the cargo damage and transportation cost during cargo handling. In addition, the
carbon emission during navigation is considered in the model, which makes the research
more in line with the actual management needs and the general trend of green shipping.

3. Problem Description

Based on an analysis of the layout of the coal port at the port of Huanghua, we
constructed a port layout that included restricted channels and harbor basin berths, as
illustrated in Figures 1 and 2. Our analysis and description of the vessel channel scheduling
and berth allocation problems were based on this layout.
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In terms of vessel scheduling, in the above layout, the restricted channel can be
considered to be composed of a two-way navigable channel and two one-way navigable
channels. The harbor basin is connected to the outlet of the restricted channel. After being
allowed to enter the port, an incoming vessel that has been waiting at the anchorage arrives
at the entrance of the restricted channel then proceeds into the channel from the entrance
and enters the harbor basin. In particular, as the vessel enters the port, the pilot vessel
first carries a pilot on board, and then the pilot assists the vessel to enter the port. Once
the vessel enters the restricted channel, it begins to use the channel resources. Then, when
the vessel enters the harbor basin, a tug is used to assist the pilot to bring the vessel into
the berth. Finally, the vessel is moored in its berth. During the departure operation, the
vessel is first unberthed, the pilot vessel embarks, and a tug assists the vessel to reach the
outlet of the harbor basin. The vessel then leaves the port via the restricted channel. During
these operations, to ensure the safety of navigation, it is prohibited to overtake in the same
direction during the internal navigation of the restricted channel and harbor basin. The
length of time that each resource is used depends on the speed of the vessel; the speed
limits that apply to the vessel in the harbor basin and within the channel will be different.
Moreover, because a vessel’s carbon emissions are related to its fuel consumption and
because the speed directly affects the fuel consumption and indirectly affects the carbon
emission cost, it is necessary to set reasonable speeds for the different types of vessels
entering and leaving the port, within the speed limits specified by the port. Generally,
pilots are assigned by the pilot terminal after the vessel scheduling plan has been formulated
and submitted to the pilot station. Therefore, pilot resources were not considered in this
study. During vessel scheduling, it is necessary to comply with the navigation rules of the
restricted channel. At the same time, due to the impact of environmental factors related to
the restricted channel, it is necessary to consider the safe distance between vessels and the
tide-riding factors of large vessels.

As shown in Figure 2, the berths in the layout that was constructed were discrete, and
the physical conditions such as the draft and length of the berths were fixed. Additionally,
according to the type of service provided, berths can be divided into universal berths
and appropriated berths. Different types of berths are equipped with different types of
specialized equipment and facilities for dealing with different types of cargo. The use
of specialized equipment and facilities can reduce the difficulty of operations, improve
safety during loading and unloading, and reduce the loss of cargo during loading and
unloading [24]. Therefore, when allocating berths, in addition to considering whether
the physical conditions of the vessel and the berth match, it is also necessary to consider
the degree of matching between the type of cargo to be loaded or unloaded and the type
of cargo served by the berth. After the cargo has been unloaded at the berth, it will be
transported from the berth to the yard for storage. The horizontal distance between the
berth and the stockyard spaces in the yard is also an important factor affecting the overall
operational efficiency and running costs of the port. Therefore, the horizontal transportation
distance between the berth and the vessel’s allocated space in the stockyard should also be
considered during the allocation of berths, so as to reduce costs [25] (also see [20,26,27]).
As shown in the two-dimensional Gantt chart of the berth allocation (Figure 3), in the case
of vessels served by the same berth, later vessels can enter the berth only after the servicing
of the previous vessel is complete: the berth service times of two vessels cannot overlap.

To sum up, in this study, the joint problems of vessel scheduling and berth allocation
in a restricted channel were considered while taking carbon emissions into account. The
following factors were considered when constructing a model of the problem.

1. The resources required for inbound and outbound operations: channels, tugs, and berths
2. The requirement for a reasonable vessel service sequence
3. The port’s navigation rules
4. The safe time intervals needed to ensure the safety of navigation
5. The tidal time windows for large vessels
6. The physical factors and service types of the berth
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7. The distance between berths and the stockyard space in the yard
8. The service times of different vessels using the same berth
9. The carbon emissions of vessels (in relation to reasonable speed arrangements)
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4. Mathematical Model and Formulas
4.1. Model Assumptions

Based on the considerations described in Section 3, in this section, the construction of
the vessel scheduling and berth allocation model will be described.

In order to facilitate the construction of the model, the following assumptions were made.

1. It is assumed that the time for all tugs to arrive at the inbound and outbound vessels
is the same, and the distance from all berths to the entrance of the harbor basin is the
same. This is based on the reasonable assumption that the distances within the harbor
basin are small and have little impact on the overall scheduling.

2. In order to highlight the research focus, the yard and reclaimer allocation and schedul-
ing are not considered at this stage. Therefore, it is assumed that there will be sufficient
yard and reclaimer resources in the port to meet the needs of loading and unloading.
As shown in Figure 2, the stockyard spaces in the yard are discrete. Each vessel is
allocated stockyard spaces before entering the port to avoid any conflict.

3. It is assumed that there are sufficient pilots at the pilot station and sufficient resources
for wharf loading and unloading. The weather and visibility are assumed to be good
and the pilot and captain to be experienced. It is also assumed that no accidents occur
during navigation.

4.2. Mathematical Model

The overall planning cycle is discrete, and the start and end times of all operations are
represented by discrete time.

Sets:
I: the set of all vessels; vessels are indexed using i.
Icj: the set of vessels that need to enter the port by tide.
Icc: the set of vessels that need to leave the port by tide.
I1: the set of inbound vessels that can conduct two-way navigation according to the

navigation rules.
I2: the set of outbound vessels that can conduct two-way navigation according to the

navigation rules.
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I1t: the set of inbound vessels that need one-way navigation according to the naviga-
tion rules.

I2t: the set of outbound vessels that need one-way navigation according to the naviga-
tion rules.

T: the length of the planning cycle, indexed using t.
K: the set of inbound and outbound vessel types.
Ds: the set of distances between the stockyard space, s, in the yard and all of the berths

in the port, indexed by parameter dsb.
B: the set of all berths, indexed by b.
Si: the set of stockyard spaces in the yard allocated to vessel i.
Parameters:
ai1: time of vessel i applying for inbound operations.
ai2: time of vessel i applying for outbound operations.
tsi: the time that the nearest tidal window for vessel i starts.
tei: the time that the nearest tidal window for vessel i ends.
t1i: the time that inbound vessel enters the channel from the anchorage.
t2i: the length of time for inbound and outbound vessels to pass through area A

(see Figure 1).
t3i: the length of time for inbound and outbound vessels to pass through area B

(see Figure 1).
t4i: the length of time for inbound and outbound vessels to pass through area C

(see Figure 1).
t5i: within area C, the time required for the inbound vessel i to reach its berth from the

entrance of the harbor basin, or the time required for the outbound vessel i to reach the
entrance of the harbor basin from its berth.

t6i: within area C, the time that the inbound vessel i reaches the entrance of the harbor
basin from the exit of the two-way navigable channel, or the time that the outbound vessel
i reaches the exit of the two-way navigable channel from the entrance of the harbor basin.

tsa f e: the safe time interval.
twi: the berthing time of the inbound vessel i or the unberthing time of the out-

bound vessel i.
D1: the distance from the anchorage to the channel entrance.
D2: the distance from the channel entrance to the entrance of the two-way naviga-

ble channel.
D3: the distance from the entrance to the exit of the two-way navigable channel.
D6: the distance from the exit of the two-way navigable channel to the entrance of the

harbor basin.
D5: the distance from the entrance of the harbor basin to the berth.
v1i: the speed of vessel i before it enters the entrance of the harbor basin.
v2i: the speed of vessel i after it enters the entrance of the harbor basin.
vt: the tug speed.
v1max: the maximum speed of the vessel before entering the harbor basin, as stipulated

by the navigation rules.
v1min: the minimum speed of the vessel before entering the harbor basin, as stipulated

by the navigation rules.
W: the total number of tugs.
Wi: the number of tugs required for vessel i.
Ti1: the total time required for vessel i to complete the inbound operation.
Ti2: the total time required for vessel i to complete the outbound operation.
Ssb: the degree of matching between berth b and stockyard space s (as a percentage).
dsb: the horizontal distance between stockyard space s and berth b.
Rb: the matching degree of the service type provided at berth b.
Rsb: the degree of matching between berth b and stockyard space s.
gi: the fuel consumption rate of the main engine of vessel i.
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di: the distance sailed by vessel i.
Di: the drainage volume of vessel i during navigation.
C: the admiralty coefficient.
Li: the length of vessel i.
Lb: the berth length.
dpi: the vessel draft.
dpb: the depth of water in the berth.
Wih: the weight of cargo loaded and unloaded by vessel i.
vb: the loading and unloading speed at berth b.
Ki: the vessel type for vessel i.
NSi: the number of stockyard spaces in set Si.
Decision variables:
ti1: the actual inbound time of vessel i.
ti2: the actual outbound time of vessel i.
Ts: the total scheduling time.
vk: the inbound or outbound speed of a vessel of type k.
Qi: the fuel consumption of vessel i when entering or leaving the port.
Rbi: the degree of matching between berth b and vessel i.
IOijb: has a value of 1 if vessel j is assigned to enter berth b after vessel i; otherwise, 0.
IOib: has a value of 1 if berth b is allocated to vessel i; otherwise, 0.
IOihb: has a value of 1 if berth b can service cargo h of vessel i; otherwise, 0.
IOit: has a value of 1 if vessel i starts its inbound or outbound operations at time

t; otherwise, 0.
In this model, the main objective is to minimize the total scheduling time, which is the

sum of the differences between the time a vessel applies for the inbound operations and
the time when it completes the outbound operations:

min Ts = ∑
i∈I

(Ti2 − ai1) (1)

In addition, in order to improve the overall operational efficiency of the port and
reduce the cost of operations, and in line with the general trend toward reducing carbon
emissions related to the global shipping industry, in this study, the degree of matching
between berths and vessels and the carbon emissions of inbound and outbound vessels
were considered and taken as secondary targets in the model.

Bulk cargo ports are different from container ports. As cargo vessels carry a wide range
of cargo, bulk cargo ports are equipped with both universal berths and cargo-appropriate
berths. Cargo-appropriate berths are equipped with different types of specialized equip-
ment and facilities for servicing different types of cargo. Although a cargo vessel can berth
at a special berth for cargo, it can also berth at a universal berth. However, it is certain that
the match degree is higher if a vessel is serviced at a special berth for cargo; this will reduce
the difficulty of the loading and unloading operations and the loss of cargo during these
processes. The distance that cargo is transported between the berth and the stockyard space
is another important factor that affects the overall operational efficiency of a port and the
cost of its operations. Therefore, we assigned a rank to the berths according to these two
factors to reflect the degree to which a particular berth matched the cargo. For convenience,
cargo-special berths were assigned a rank, denoted by Rb, of 3, universal berths that can
service two different types of cargo were assigned a rank of 2, and universal berths that
can service three different types of cargo were assigned a rank of 1. As well as this, the
Manhattan distance between the central point of the stockyard space and the center of the
berth was used to define the horizontal distance over which the cargo was transported
between each stockyard space and the berth. This was then used to calculate the degree of
matching, Ssb, between berth b and stockyard space s:
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Ssb =
max(Ds)− dsb

max(Ds)−min(Ds)
, ∀dsb ∈ Ds (2)

The value of Ssb is expressed as a percentage. When Ssb is greater than 0.8, the degree
of matching, Rsb, between berth b and stockyard space s is 5. When Ssb is less than 0.8
and greater than 0.6, Rsb is 4, and so on, until Rsb is 1. The overall degree of matching, Rbi,
between berth b and vessel i is given by

Rbi = Rb +

∑
s∈Si

Rsb

NSi
, ∀i ∈ I, b ∈ B (3)

As a result of recent developments in the shipping industry, more attention is being
paid to reducing the carbon emissions of vessels by the international community [28].
Vessels emit a large amount of carbon dioxide (CO2) when entering and leaving port. The
amount of CO2 emitted is generally calculated using the formula: carbon emitted = carbon
emission factor × vessel fuel consumption. The carbon emission factor is a fixed parameter,
so reducing the carbon emissions of vessels entering and leaving port requires reducing
their fuel consumption. The amount of fuel consumed by a ship i as the ship enters and
leaves the port, Qi, is given by the formula

Qi = 0.7355× gi × di × Di
2/3 × vi

2

C
× 10−6 (4)

where vi is the speed at which the vessel is sailing. It can be seen from this equation that
when the distance traveled by the vessel and the vessel’s draft are fixed, the vessel’s fuel
consumption is related to the vessel’s speed, which means that the vessel’s carbon emissions
are also related to its inbound and outbound speed. Therefore, in order to reduce the carbon
emissions of vessels, reasonable speed arrangements need to be made for different types of
vessels within the port’s speed limit.

Given the above, the two secondary objectives of the model were

max ∑
i∈I

Rbi (5)

and
min ∑

i∈I
Qi (6)

The complete mathematical model for the optimization of vessel scheduling is de-
scribed below.

Main objective: (1).
Secondary objectives: (5), (6).
St: (2)–(4).

Rsb =


5, Ssb ≥ 0.8
4, 0.6 ≤ Ssb < 0.8
3, 0.4 ≤ Ssb < 0.6
2, 0.2 ≤ Ssb < 0.4
1, 0 ≤ Ssb < 0.2

(7)

g(x) = max{x, 0} (8)

Time window constraint:
ai1 ≤ ti1 ∀i ∈ I1 ∪ I1t (9)

ai2 ≤ ti2 ∀i ∈ I2 ∪ I2t (10)
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Tidal time window constraint:

n = {0, 1, 2 · · · , n− 1, n}
tsi + n · 720 ≤ ti1 ∀i ∈ Icj

tsi + n · 720 ≤ ti2 ∀i ∈ Icc

tei + n · 720 ≥ ti1 + t1i + t2i + t3i + t4i + twi ∀i ∈ Icj

tei + n · 720 ≥ ti2 + twi + t4i + t3i + t2i ∀i ∈ Icc

(11)

Safe time interval constraint:
Same direction:

|I1+I1t |
∑

j∈I1∪I1t ,j=1,j 6=i

g(ti1+t1i+tsa f e−tmin−t1j)

∑
t=g(ti1+t1i−t1j)

IOjt ≤ 0 ∀i ∈ I1 ∪ I1t

|I1+I1t |
∑

j∈I1∪I1t ,j=1,j 6=i

g((ti1+t1i+t2i+t3i+t4i+twi)−(t1j+t2j+t3j+t4j+twj)+tsa f e−tmin)

∑
t=g((ti1+t1i+t2i+t3i+t4i+twi)−(t1j+t2j+t3j+t4j+twj))

IOjt ≤ 0 ∀i ∈ I1 ∪ I1t{
Ti1 > Tj1, ti1 + t1i > tj1 + t1j

Ti1 < Tj1, ti1 + t1i < tj1 + t1j
∀i, j ∈ I1 ∪ I1t, j 6= i

(12)



|I2+I2t |
∑

j∈I2∪I2t ,j=1,j 6=i

g(ti2+tsa f e−tmin)

∑
t=g(ti2)

IOjt ≤ 0 ∀i ∈ I2 ∪ I2t

|I2+I2t |
∑

j∈I2∪I2t ,j=1,j 6=i

g((ti2+twi+t2i+t3i+t4i)−(twj+t2j+t3j+t4j)+tsa f e−tmin)

∑
t=g((ti2+twi+t2i+t3i+t4i)−(twj+t2j+t3j+t4j))

IOjt ≤ 0 ∀i ∈ I2 ∪ I2t{
Ti2 > Tj2, ti2 > tj2

Ti2 < Tj2, ti2 < tj2
∀i, j ∈ I2 ∪ I2t, j 6= i

(13)

Different direction:

|I1+I1t |

∑
j∈I1∪I1t ,j=1

g(ti2+twi+t2i+t3i+t4i+tsafe−tmin−t1j)

∑
t=g(ti2+twi+t2i+t3i+t4i−t1j)

IOjt ≤ 0 ∀i ∈ I2 ∪ I2t (14)

|I2+I2t |

∑
j∈I2∪I2t ,j=1

g(ti1+t1i+t2i+t3i+t4i+twi−tmin)

∑
t=g(ti1+t1i+t2i+t3i+t4i)

IOjt ≤ 0 ∀i ∈ I1 ∪ I1t (15)

Channel constraint:

|I1|

∑
i∈I1,i=1

g(t−t1i)

∑
t′=g(t−t2i−t1i+tmin)

IOit′ ·
|I2|

∑
j∈I2,j=1

g(t−t3j−t4j−twj)

∑
t′=g(t−t2j−t3j−t4j−twj)

IOjt′ ≤ 0 ∀t ∈ T (16)

|I1|

∑
i∈I1,i=1

g(t−t3i−t2i−t1i)

∑
t′=g(t−t4i−t3i−t2i−t1i−twi+tmin)

IOit′ ·
|I2|

∑
j∈I2,j=1

g(t)

∑
t′=g(t−t4j−twj+tmin)

IOjt′ ≤ 0 ∀t ∈ T (17)

|I1t |

∑
i∈I1t ,i=1

g(t−t1i)

∑
t′=g(t−t4i−t3i−t2i−t1i−twi+tmin)

IOit′ ·
|I2+I2t |

∑
j∈I2∪I2t ,j=1

g(t)

∑
t′=g(t−twj−t4j−t3j−t2j)

IOjt′ ≤ 0 ∀t ∈ T (18)

|I1+I1t |

∑
i∈I1∪I1t ,i=1

g(t−t1i)

∑
t′=g(t−t4i−t3i−t2i−t1i−twi+tmin)

IOit′ ·
|I2t |

∑
j∈I2t ,j=1

g(t)

∑
t′=g(t−twj−t4j−t3j−t2j)

IOjt′ ≤ 0 ∀t ∈ T (19)

Tug constraint:
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|I1+I1t |

∑
i∈I1∪I1t ,i=1

g(t−t6i−t3i−t2i−t1i+tt)

∑
t′=g(t−t4i−t3i−t2i−t1i−twi+tmin)

IOit′ ·Wi +
|I2+I2t |

∑
j∈I2∪I2t ,j=1

g(t+tt)

∑
t′=g(t−twj−t5i+tmin)

IOjt′ ·Wj ≤W ∀t ∈ T (20)

Berth constraints:
Li < Lb, ∀i ∈ I, b ∈ B, IOib = 1 (21)

dpi < dpb, ∀i ∈ I, b ∈ B, IOib = 1 (22)

Tj1 < ti2, ∀i ∈ I, j ∈ I, IOijb = 1 (23)

∑
b∈B

IOib ∗ IOihb = 1, ∀i ∈ I (24)

Time calculation:

Ti1 = ti1 + t1i + t2i + t3i + t4i + twi ∀i ∈ I1t ∪ I1 (25)

Ti2 = ti2 + t2i + t3i + t4i + twi ∀i ∈ I2t ∪ I2 (26)

ai2 = Ti1 +
Wih
vb
∀i ∈ I (27)

t4i = t5i + t6i ∀i ∈ I (28)

t1i = D1 ÷ v1i ∀i ∈ I1t ∪ I1 (29)

t2i = D2 ÷ v1i ∀i ∈ I (30)

t3i = D3 ÷ v1i ∀i ∈ I (31)

t6i = D6 ÷ v1i ∀i ∈ I (32)

t5i = D5 ÷ v2i ∀i ∈ I (33)

Speed constraint:
v1i = vk, ∀i ∈ I, k ∈ K, Ki = k (34)

v1i =


v1min, v1min > v1i
v1i, v1min < v1i < v1max
v1max, v1max < v1i

∀i ∈ I (35)

v2i = vt ∀i ∈ I (36)

Binary requirements for variables:

IOit =

{
1, ti1 = t ‖ ti2 = t
0, otherwise

∀i ∈ I, t ∈ T (37)

Objective Function (1) is used to minimize the total scheduling time. Objective Func-
tion (5) is used to maximize the degree of matching between the berth, the vessel, and the
cargo. Objective Function (6) is used to minimize the fuel consumption of vessels entering
and leaving the port; that is, to minimize carbon emissions. Constraints (2), (3), (4), and (7)
are used to calculate the decision variables. Constraint (8) ensures that the calculated time
result does not have a negative value. Constraints (9) and (10) ensure that the actual start
time of a vessel’s inbound and outbound operations is later than the start time applied for.
Constraint (11) ensures that the actual start and end times of the inbound and outbound
operations of large vessels that need to sail according to the tide are within the appropriate
tidal time windows. During the inbound and outbound operations, constraints (12) and
(13) ensure that there is always an appropriate safe time interval between two consecutive
inbound vessels or two consecutive outbound vessels after they enter the channel; these
constraints also ensure that the vessels will not overtake one another. Constraint (14)
ensures that there is an appropriate safe time interval between the time that an outbound
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vessel leaves the channel and the time that an inbound vessel enters the channel, so as to
prevent conflict. Constraint (15) ensures that after an inbound vessel arrives at the berth,
no vessel will carry out its outbound operations before the inbound vessel has completed
mooring. Constraints (16) and (17) ensure that there will be no two-way navigation of
vessels in the one-way section of the restricted channel (see Figure 1). Constraints (18) and
(19) ensure that inbound and outbound vessels that can only conduct one-way navigation
according to the navigation rules will adopt one-way navigation throughout their voyage.
Constraint (20) ensures that the number of tugs used does not exceed the total number of
tugs available at the port. Constraints (21) and (22) ensure that a vessel meets the physical
constraints of the berth allocated to it. Constraint (23) ensures that the servicing times of
vessels allocated to the same berth do not conflict. Constraint (24) ensures that each vessel
is served by at least one berth and that the cargo carried by each vessel conforms to the
type of cargo that can be serviced by the berth. Constraints (25)–(33) are used to calculate
time and ensure time continuity. Constraints (34)–(36) ensure that the speed arrangements
for each vessel meet the speed constraints of the port. Constraint (37) is the requirement of
zero one variable of the model.

5. Algorithm Design

It can be seen from the above description that the vessel scheduling and berth alloca-
tion model is complex and includes many constraints. When the number of vessels and
the feasible solution set are both large, it is difficult to obtain the optimal solution by using
traditional methods that give exact solutions [8]. However, heuristic algorithms, such as
the simulated annealing algorithm, genetic algorithm, and particle swarm optimization
algorithm, can search within the range of feasible solutions to compare optimal solutions
and thus obtain relatively optimal solutions. The proposed model is a multi-objective opti-
mization model. At present, the mainstream solution methods that can be applied to such
models can be divided into multiple criteria decision-making approaches in which multiple
objectives are combined into one objective using weighting [29], and multi-objective evolu-
tionary algorithms (MOEAs) based on Pareto optimization [30]. Using the former type of
method, human factors have a great influence on the results, which are cruder. Therefore,
the nondominated sorting genetic algorithm (NSGA-II), which is a widely used MOEA,
was selected as the solution method in this study. The NSGA algorithm was proposed by
Deb in 1995 [31]. In 2000, the same author optimized the algorithm complexity and added
the elite retention strategy to the original algorithm to produce the NSGA-II algorithm. In
contrast to traditional multi-objective algorithms, the NSGA-II algorithm does not need to
consider the target weight. Other features of the algorithm include a low complexity of
the process, high computational efficiency, and a well-distributed Pareto solution set. The
algorithm also uses its own elite strategy and has high convergence efficiency; it can better
approach the Pareto front and has many advantages in terms of solving multi-objective
problems. NSGA-II algorithm has the disadvantage that individuals in the population tend
to the same state and stop evolving, which then leads to the decline of population diversity,
and the solution falls into the local optimum. In order to deal with this defect, in this study,
we combined the NSGA-II algorithm with the double-population strategy. By referring to
the relevant literature on adaptive probability, we then developed an adaptive algorithm
that we named NSGA-II-DP. The proposed algorithm is described in detail below.

5.1. Gene Coding and Population Initialization

In the proposed model, the set of all vessels is labeled I, and 1-I represents each
incoming and outgoing vessel. Vessel types, which constitute the set K, are numbered
1 . . . K. Set B is the set of berths, which are numbered 1 . . . B. As shown in Figure 4,
the chromosome is coded using multiple coding information, which is used to encode
information in the inbound and outbound stages of the vessel. The chromosome is divided
into three layers. The first 1-I codes in the first layer correspond to 1-I inbound vessels.
These 1-I codes are copied from coding positions I + 1 to I + I to represent the outbound
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stage of the same vessels. The codes from I + I + 1 to I + I + K are fixed vessel-type numbers.
The first 1-2I codes in the second layer correspond to the overall service sequence of all
vessels entering and leaving the port (entry and exit are considered together), and the codes
2I + 1 to 2I + K correspond to the speeds arranged for vessels of different types. The first
1-I codes in the third layer correspond to the numbers of the berths where vessels stop
after entering the port. These 1-I codes are copied to the coding positions I + 1 to I + I to
represent the berth numbers where vessels are located before they leave the port. Codes
I + I + 1 to I + I + K have no meaning and are set to 0. The above steps are repeated in
a similar fashion to generate a specified number of populated chromosomes to form the
initial population (the first line of the NSGA-II-DP algorithm).
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5.2. Fitness, Selection, Crossover, and Mutation

The fitness value is determined by the value of the model’s objective function. Because
the objective is to find the maximum value of the berth matching degree, its negative value
is taken when calculating the fitness, which will calculate the minimum value like the
other two fitness values. The chromosomes are decoded, and the value of the objective
function is calculated to determine the fitness value (lines 7 and 18 in the NSGA-II-DP
algorithm). In decoding, the chromosomes may correspond to an unreasonable service
order. In the chromosome code, the sequence number of the service sequence of the same
vessel at the outbound stage must be greater than at the inbound stage, and the positions in
this sequence of different vessels at the same berth must also meet the priority relationship
to ensure that the outbound time of the previous vessel has already been arranged when
the next vessel arranges its inbound time. Therefore, the chromosome needs to be modified
to ensure that it is reasonable (lines 6 and 17 in the algorithm).

The tournament selection method was used for the chromosome selection (line 14 in
the algorithm). Two chromosomes were selected each time, and the dominant one was
selected as the parent. If the two chromosomes were the same, one of them was randomly
selected to be the parent for subsequent reproduction. If neither chromosome was dominant
and the chromosomes were not the same, the selection operation was performed again.

As shown in Figure 5, because the coding logic is different for the service sequence,
berths, and vessel speeds, different methods are used for the cross-operation in each case
(line 15 in the algorithm). Take out the service sequence code, berth code, and speed code
of the two parent generations, respectively, for the cross-operation. For the coding of the
service sequence, the sequence crossing method is used.

1. After the crossover operation has been determined based on the crossover probability,
two numbers between 0 and 2I are randomly generated as the crossover points, and
the genes between the service sequence encoding crossover points of two parents are
taken as the selected genes.

2. Child 1 is generated with the same gene and location as the selected gene of parent 1.
3. The position of the selected gene of parent 1 in parent 2 is found; the remaining genes

of parent 2 are added to child 1 in order.
4. Similarly, the selected gene of parent 2 is used to generate child 2.

This step avoids the generation of unfeasible service sequence codes and reduces the
number of correction operations.
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The two-point crossing method is used for the berth coding, as follows.

1. After the crossover operation has been determined by the crossover probability, two
numbers between 0 and I are randomly generated, and the genes between the berth
coding intersections of the two parents are selected as the selected genes.

2. The selected genes of the berth codes of the two parents are exchanged.
3. The 1-I genes of child 1 are copied to gene positions I + 1 to I + I; the same operation

is then performed on child 2 to generate two new berth codes for the offspring.

The two-point crossing method is also used for the speed coding as follows.

1. After the crossover operation has been determined by the crossover probability, two
numbers between 0 and K are randomly generated as the intersection points, and
the genes between the intersection points of the speed codes of the two parents are
selected as the genes.

2. The selected genes of the speed codes of the two parents are exchanged to generate
two new speed codes for the offspring.

Two new child chromosomes are then generated by integrating the progeny codes
generated by the three crossover operations described above.
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After determining the mutation operation to be performed based on the mutation
probability, for the service sequence encoding, two numbers between 0 and 2I are randomly
generated as the mutation points, and the genes of the two mutation points are exchanged in
the chromosome. For the berth encoding, a number between 0 and I is randomly generated
as the mutation point, and a berth is randomly selected from the assignable berths based
on the vessel’s position; the number of this berth is then used to replace the mutation point
gene. For the speed encoding, a number between 0 and K is randomly generated as the
mutation point; the speed is then randomly generated within the specified speed range and
used to replace the mutation point gene. After the mutation operation has been performed
on all of the chromosomes (line 16 in the algorithm), the correction operation (line 17) is
carried out to generate the offspring population.
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5.3. Elite Retention Policy

The NSGA-II algorithm has its own elite retention policy. First, the parent population
and the offspring population are merged to give a new joint population. Using fast
nondominated sorting, the nondominated set Li is obtained. The smaller the i, the better an
individual in the nondominated set. First, the individuals of set L1 are added to the new
population; the nondominated sets L2, L3, . . . Li are then also added to the new population
in order. When putting set Li into the new population, if the new population exceeds the
upper population limit, the degree of crowding for each individual in Li is calculated and
these are compared. The individuals in set Li are then arranged in descending order of the
degree of crowding, and the individuals that meet the upper limit of the size of the new
population are selected from the set in the same descending order and added to the new
population (lines 23 and 24 of the algorithm). This ensures that the outstanding individuals
from each generation will enter the next generation.

5.4. Adaptive Probability and Double-Population Strategy

The NSGA-II algorithm generally selects a fixed crossover probability and mutation
probability within a given probability interval; however, a small probability will lead to
the algorithm falling into the local optimum, whereas a large probability will destroy the
heredity of the algorithm and affect the convergence. Therefore, after referring to the
relevant literature, we chose to use the following crossover and mutation probabilities,
which can be adjusted adaptively according to the population algebra [24]:{

Pc = Pcmin + (Pcmax − Pcmin) ∗ iter
numiter

Pm = Pmmin + (Pmmax − Pmmin) ∗ iter
numiter

(38)

Here, Pc and Pm are, respectively, the crossover and mutation probabilities of each
generation in the iteration; Pcmax and Pcmin are the maximum and minimum values of
the crossover probability, respectively; Pmmax and Pmmin are the maximum and minimum
values of the mutation probability, respectively; iter is the number of current iterations;
and numiter is the upper limit on the number of iterations. When the number of iterations
is small, large crossover and mutation probabilities are obtained, which means that the
algorithm can search over a large range to prevent it falling into a local optimum. When the
number of iterations is large, the probability of crossover and mutation becomes smaller;
this causes the algorithm to search close to the current optimal solution so that the loss of
the optimal solution due to the destruction of heredity can be avoided.

As previously mentioned, when applying the NSGA-II algorithm, there is the prob-
lem of population individuals tending toward the same state and ceasing to evolve; the
population diversity then decreases, and the algorithm falls into the local optimum. To
address this problem, we adopted a double-population strategy and integrated this into
the NSGA-II algorithm. The details of this strategy are as follows.

First, two initial populations are generated according to the population parameters
and are selected, crossed, and mutated, and the elite individuals are retained. Next, the
two populations will form their own nondominated set L1, and both replace the worst
individuals in their populations with each other’s nondominated set L1, thereby forming
two new populations for the next iteration. If the number of the worst individuals in
both populations, m, is less than the number of individuals from LI in the nondominated
set of the other population, denoted n, then m individuals from LI that have a higher
crowding degree will be used to replace the worst individuals so as to prevent the number
of individuals in the new population from exceeding the upper limit (line 25 in Algorithm
1 NSGA-II-DP). Using this strategy, not only do the two populations evolve separately,
which enhances the search ability of the algorithm, but each generation also introduces the
optimal individuals of both sides into the other population. This prevents individuals from
reaching the same state and ceasing to evolve, ensures the diversity of the population of
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each generation, reduces the possibility of the solution falling into local optimum, increases
the heredity of the optimal individuals, and improves the convergence of the algorithm.

According to the above strategy, the NSGA-II-DP algorithm, which was intended to
address the shortcomings of the NSGA-II algorithm, was constructed. This new algorithm
was then used for the model calculations.

Algorithm 1: NSGA-II-DP

Algorithm parameters: chromosome (p), chromosome number (popsize), current algebra generation, upper limit on
number of iterations (maxgeneration), maximum crossover probability (pcmax), minimum crossover probability (pcmin),
maximum mutation probability (pmmax), minimum mutation probability (pmmin), best set of nondominated solutions of
each generation (L1), objective function of Pareto solution (bestD), Pareto optimal solution set (bestpop)
1: initial population [pop1, pop2] = {p1, p2, ppopsize−1, ppopsize}
2: globalD←Inf
3: generation←1
4: while (generation < maxgeneration) do
5: if (generation = 1) then
6: [pop1, pop2]←correction(pop1, pop2)
7: [D1, D2]←calculate fitness(pop1, pop2)
8: go to line 14
9: else
10: [pop1, pop2]←[nnewpop1, nnewpop2]
11: [D1, D2]←[newD1, newD2]
12: go to line 14
13: end if
14: [pops1, pops2]←selection(pop1, pop2)
15: [popc1, popc2]←crossover(pops1, pops2, pcmax, pcmin)
16: [popm1, popm2]←mutation(popc1, popc2, pmmax, pmmin)
17: [popo1, popo2]←correction(popm1, popm2)
18: [Do1, Do2]←calculate fitness(popo1, popo2)
19: combinepop1←{pop1, popo1}
20: combineD1←{D1, Do1}
21: combinepop2←{pop2, popo2}
22: combineD2←{D2, Do2}
23: [newpop1, L11]←elite retention(combineD1, combinepop1)
24: [newpop2, L12]←elite retention(combineD2, combinepop2)
25: [nnewpop1, nnewpop2]←Dual Population(newpop1, L11, newpop2, L12)
26: [newD1, newD2]←calculate fitness(nnewpop1, nnewpop2)
27: combinepop←{nnewpop1, nnewpop2}
28: combineD←{newD1, newD2}
29: L1←elite retention(combineD, combinepop)
30: bestpop←L1
31: bestD←calculate fitness(L1)
32: generation←generation + 1
33: end while
34: output: bestpop, bestD

6. Case Study
6.1. Case Study

In this section, a simulation that was performed using the model described in Section 4
will be discussed. This simulation involved the dispatch of 15 vessels and was based on the
port layout described in Section 3. Details of the types of vessels and the berths used in the
simulation are given in Tables 2 and 3, respectively. Due to the limitations of the channel
width, 75000 DWT bulk carriers required one-way navigation throughout the simulation.
Due to the limitations of the water depth in the channel, if fully loaded, the same class of
carriers needed to enter and leave the port by the tide. The port has semi-diurnal tides, and
the first tidal time window is at time [120, 480]. The distance data for the simulation are
given in Table 4. The berthing time, twi, of inbound vessels was generally 40 min, and the
unberthing time, twi, of outbound vessels was 15 min. The safe time interval, tsa f e, was set
as 15 min, the unit time of discretization time was 1 min, the number of tugs in the port
was 10, and the speed of the tugs was 5 knots. The speed limit range in the port channel
was [8, 10] knots, and the speed of the vessels in the harbor basin had to match the speed of
the tugs. Specific data for the 15 vessels used in the simulation are listed in Table 5; these
include details of the tonnage, type of operation (loading or unloading), cargo type, serial
number of the stockyard space allocated to the vessel, coordinates of the center of this
space, time of the vessel applying for inbound operations, and number of tugs required.
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Table 2. Specifications of the different types of vessels used in the simulation.

Type of Vessel 35000 DWT
Bulk Carrier

35000 DWT
Bulk Carrier

35000 DWT
Bulk Carrier

Dead weight (t) 16,000 13,000 12,000

Net load weight (t) 35,000 50,000 75,000

Vessel length (m) 190 200 225

Vessel draft (m) 10 12 14

Fuel consumption rate (g/kWh) 167 130 127

Table 3. Berth details.

Berth
Number

Water
Depth (m) Length (m) Types of

Cargo Serviced
Center Point
Coordinates

Loading and
Unloading
Speed (t/h)

Berth 1 230 15 ore, steel, coal (20, 2212) 4200

Berth 2 210 13 coal (20, 1942) 4600

Berth 3 210 13 coal, ore (20, 1682) 4900

Berth 4 195 11 ore (20, 1429.5) 5200

Berth 5 210 13 steel (205, 1282) 4600

Berth 6 210 13 coal, grain, ore (465, 1282) 4300

Berth 7 210 13 steel, coal (725, 1282) 5300

Berth 8 195 11 steel, ore (910, 1429.5) 3900

Berth 9 195 11 grain, coal (910, 1674.5) 5400

Berth 10 210 13 grain (910, 1927) 4600

Berth 11 230 15 grain, ore (910, 2197) 3600

Table 4. Distance data.

Parameter Distance (nautical miles)

D1 4.4

D2 4.1

D3 4.2

D5 1.25

D6 1.85

We used a computer with a 2.59 GHz CPU and 16 GB RAM, together with MAT-
LAB2017b software to run the NSGA-II-DP algorithm and solve the model. For the NSGA-
II-DP algorithm, the parameter is set to: the population size was 300, and the upper limit
on the number of iterations was 300. For the genetic algorithm, the crossover probability is
generally between 0.5 and 1.0 and the mutation probability is usually between 0.001 and
0.5 [32]. Therefore, we set the maximum value of the crossover probability as 1.0 and the
minimum value as 0.5; the maximum value of the mutation probability was set to 0.5 and
the minimum value to 0.001.

The final results of applying the NSGA-II-DP algorithm to our model consisted of
Pareto solution sets containing optimization solutions for different target weights. These
results could be used by port decision-makers according to the specific demands of the
management of their own ports. The target values for each Pareto solution are listed
in Table 6, and the Pareto frontier diagram is illustrated in Figure 6. The convergence
curve and average value curve for each generation of the optimal values—F1, F2, and
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F3—of the three targets of the total scheduling time, berth matching degree, and fuel
consumption are shown in Figures 7–9, respectively. As explained in Section 4, fuel
consumption can be used to represent carbon emissions: the lower the fuel consumption,
the lower the carbon emissions, and the greater the fuel consumption, the greater the carbon
emissions. From Table 6 and Figure 6, it can be seen that the values of the two secondary
targets (berth matching degree and fuel consumption) will affect the values of the primary
target (total scheduling time). For a given berth matching degree, the smaller the fuel
consumption—that is, the lower the carbon emissions—the longer the total scheduling
time because the smaller the fuel consumption, the slower the speed of the ship, which will
increase the sailing time. For a given fuel consumption—that is a given amount of carbon
emissions—the greater the berth matching degree, the greater the total scheduling time. If
vessels of the same type carrying the same cargo choose the same berth because it has a
high matching degree, this will increase the waiting time of vessels in the queue. If an idle
berth with a low matching degree is selected under these circumstances, the waiting time
will be reduced but the matching will be too. The optimal solution for the total scheduling
time from the Pareto solution set was then selected for verification of the model. The results
of this are shown in Table 7.

Table 5. Details of the 15 vessels used in the simulation.

Vessel
Number

Loading or
Unloading

Tonnage
(t)

Types of
Cargo

Serial Number of
Stockyard Space

Allocated to the Vessel

Coordinates of
Central Point of
Stockyard Space

Time of Vessel
Applying for Inbound

Operation (min)

Number of
Tugs Required

1 Unloading 50,000 Ore 14, 49, 8 (240, 939), (90, 177),
(240, 1066) 0 2

2 Loading 50,000 Ore 44, 34, 37 (240, 304), (540, 558),
(90, 431) 11 2

3 Unloading 75,000 Steel 30, 20, 42, 59 (840, 685), (240, 812),
(840, 431), (690, 50) 35 2

4 Unloading 35,000 Coal 5, 45 (690, 1193), (390, 304) 120 2
5 Loading 35,000 Coal 41, 4 (690, 431), (540, 1193) 126 2
6 Unloading 35,000 Steel 1, 2 (90, 1193), (240, 1193) 145 2

7 Unloading 50,000 Grain 12, 26, 54 (840, 1066), (240, 685),
(840, 177) 170 2

8 Loading 50,000 Grain 7, 22, 23 (90, 1066), (540, 812),
(690, 812) 179 2

9 Loading 35,000 Ore 58, 53 (540, 50), (690, 177) 240 2

10 Unloading 50,000 Coal 36, 28, 33 (840, 558), (540, 685),
(390, 558) 300 2

11 Loading 75,000 Ore 60, 52, 6, 29 (840, 50), (540, 177),
(840, 1193), (690, 685) 332 2

12 Loading 50,000 Grain 10, 19, 40 (540, 1066), (90, 812),
(540, 413) 476 2

13 Unloading 50,000 Steel 35, 17, 25 (690, 558), (690, 939),
(90, 685) 540 2

14 Loading 50,000 Steel 11, 39, 43 (690, 1066), (390, 431),
(90, 304) 641 2

15 Unloading 75,000 Coal 46, 18, 47, 31 (540, 304), (840, 939)
(690, 304), (90, 558) 645 2

Table 6. Target values of solutions in the Pareto solution set.

Total Scheduling Time (min) Berth Matching Degree Fuel Consumption (t)

12,542 82.33 10.05

12,544 82.33 9.52

12,567 82.33 9.13

12,922 82.67 9.40

12,987 83.83 9.37

12,994 85.33 9.13
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Table 6. Cont.

Total Scheduling Time (min) Berth Matching Degree Fuel Consumption (t)

13,365 86 9.13

13,476 86.33 9.13

13,911 87 9.22

13,913 87 9.13

13,959 87.33 9.13

14,040 88.33 9.13

14,897 89 9.13

Optimal
value

F1 F2 F3

12,542 89 9.13
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6.2. Rationality Verification

This section will test the rationality of the model according to the optimal solution
with the optimal total scheduling time in the Pareto solution set given in Table 7 and the
requirements of navigation rules and port resource constraints.

As shown in Table 7, the actual start times of the individual vessels are not earlier
than the start times that were applied for the inbound time. Additionally, the start and end
times of vessels 3 and 15, which need to enter the port by the tide and of vessel 11, which
needs to leave the port by the tide, are within the relevant tide time windows. The times
that each vessel enters and leaves areas A, B, and C (see Figure 1) are listed in Table 8. A
Gantt chart for the channel and berths is shown in Figure 10.
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Table 7. Optimal solutions with the optimal total scheduling time in the Pareto solution set.

Vessel
Number

Start Time of
Inbound Operations

That Was Applied
for (min)

Actual Start
Time of
Inbound

Journey (min)

Start Time of
Outbound

Operations That Was
Applied for (min)

Actual Start Time
of Outbound

Operations (min)

Allocated
Berth

Vessel Speed (Knots)

Channel Harbor Basin

1 0 0 613 629 3 8 5

2 11 15 713 806 6 8 5

3 35 152 1224 1230 1 8.9 5

4 120 120 509 509 9 8.7 5

5 126 135 532 532 7 8.7 5

6 145 193 650 650 5 8.7 5

7 170 170 823 823 10 8 5

8 179 771 1424 1424 10 8 5

9 240 240 644 665 4 8.7 5

10 300 300 953 953 2 8 5

11 332 332 1582 1582 11 8.9 5

12 476 786 1484 1484 6 8 5

13 540 615 1268 1268 5 8 5

14 641 641 1208 1208 7 8 5

15 645 1667 2739 2739 1 8.9 5

Total vessel scheduling time (min)
Berth

matching
degree

Fuel consumption (t)

12,542 82.33 10.05

Table 8. Time data for vessels entering and leaving areas A, B, and C.

Vessel
Number

Time of Entry to Area
A (min)

Time Leaving Area
A (min)

Time of Entry to Area
B (min)

Time Leaving Area
B (min)

Time of Entry to Area
C (min)

Time Leaving Area
C (min)

Inbound Outbound Inbound Outbound Inbound Outbound Inbound Outbound Inbound Outbound Inbound Outbound

1 33 705 64 736 64 673 96 705 96 629 165 673

2 48 882 79 913 79 850 111 882 111 806 180 850

3 182 1302 210 1330 210 1273 239 1302 239 1230 327 1273

4 151 581 180 610 180 552 209 581 209 509 277 552

5 166 604 195 633 195 575 224 604 224 532 292 575

6 224 722 253 751 253 693 282 722 282 650 350 693

7 203 899 234 930 234 867 266 899 266 823 335 867

8 804 1500 835 1531 835 1468 867 1500 867 1424 936 1468

9 271 737 300 766 300 708 329 737 329 665 397 708

10 333 1029 364 1060 364 997 396 1029 396 953 465 997

11 362 1654 390 1682 390 1625 419 1654 419 1582 487 1625

12 819 1560 850 1591 850 1528 882 1560 882 1484 951 1528

13 648 1344 679 1375 679 1312 711 1344 711 1268 780 1312

14 674 1284 705 1315 705 1252 737 1284 737 1208 806 1252

15 1697 2811 1725 2839 1725 2782 1754 2811 1754 2739 1822 2782

According to the information in Table 8 and Figure 10, within the one-way navigation
area, there is no time overlap between the inbound and outbound vessels. It can also
be seen from Figure 10 that the inbound and outbound vessels that are not allowed to
undertake two-way navigation (vessels 3, 11, and 15) remain in one-way navigation mode
throughout the process of entering and leaving the port. In addition, according to these
results, an appropriate safe time interval is maintained between successive inbound and
outbound vessels. Therefore, it can be concluded that the results obtained by using the
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NSGA-II-DP algorithm to solve the proposed model conform to the navigation rules, which
indicates that, in terms of time and navigation rules, the model constraints are reasonable.
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As for the berth constraints, it can be seen from the Gantt chart in Figure 10 that there
is no conflict between the berthing time and the berth space when the vessels are berthing
and no time conflict between the vessels continuously berthing at the same berth. Therefore,
again, the berth constraints in the model can be said to be reasonable.

The number of use of tugs scheduled for use at different times throughout the planning
period is shown in Figure 11. It can be seen that the maximum number of tugs in use at the
same time does not exceed the number of tugs in the port. This shows that the resource
constraints in the model are also reasonable.
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The speed allocated by the model to each vessel type in the case study conforms to
the speed constraints of the port, indicating that the model effectively accounts for the
speed constraints.

It can be concluded that, based on the results presented in Table 8 and Figure 10, the
model produces reasonable results.

6.3. Sensitivity Analysis

In the previous two sections, the proposed model was verified by analyzing the results
of the case study involving 15 vessels. In this section, the results for cases with different
numbers of tugs and different numbers of vessels will be analyzed. The results obtained
using our model and the NSGA-II-DP algorithm will then be compared with the results
obtained using the traditional FCFS strategy used by ports. This will allow the reliability of
the model and the robustness of the algorithm, as well as their advantages, compared to
the traditional FCFS strategy, to be tested.

Cases involving small, medium, and large vessels were generated. For these different
cases, the results of applying the NSGA-II-DP algorithm and traditional FCFS strategy
will be compared in this section. Because the traditional FCFS strategy arranges vessels
according to the order of the time of vessel applying for inbound and outbound operations,
the order for servicing vessels is fixed. However, there are no detailed regulations on berth
allocation. Therefore, for this analysis, we followed the principle of the FCFS strategy to
allocate the berths as follows. The vessels that arrived earliest were allocated berths in
order of the berth matching degrees (from high to low). For berths with the same matching
degree, one of these berths was randomly selected. If all berths suitable for vessels have
been allocated at this time, the berth with the earliest service end time was allocated to the
vessel. If multiple berths were idle at the same time during the subsequent allocation, the
berth with the highest matching degree was preferred for allocation. If several berths had
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the same matching degree, the random selection of berths could produce several different
berth allocation plans, which could affect the results. Since the goal of using the FCFS
strategy is to reasonably arrange the total vessel scheduling time, we selected the optimal
result for the total scheduling time for comparison with the optimal solution with the
optimal total scheduling time in the Pareto solution set obtained using the NSGA-II-DP
algorithm. Table 9 shows the optimal values, F1, F2, and F3, for different targets calculated
by the NSGA-II-DP algorithm for different numbers of vessels (5, 10, 15, 20, 25, and 30).
It can be seen from the table that, for different numbers of vessels, Pareto solution sets
containing optimized solutions with different objective weights can still be obtained using
our model and the NSGA-II-DP algorithm. This illustrates the reliability of the model and
the robustness of the NSGA-II-DP algorithm.

Table 9. Results of applying the NSGA-II-DP algorithm to cases with different numbers of vessels.

Number of Vessels

NSGA-II-DP

Optimal Value of Total
Scheduling Time in Pareto

Solution Set, F1 (min)

Optimal Value of Berth
Matching Degree in Pareto

Solution Set, F2

Optimal Value of Fuel
Consumption in Pareto

Solution Set, F3 (t)

5 3285 28.25 3.1202

10 6316 61.25 6.1631

15 13,146 89 9.126

20 20,696 120 12.1289

25 30,649 148.25 15.1318

30 40,213 173.25 18.252

Table 10 and Figure 12 show a comparison under different numbers of vessels between
the results for the optimal vessel scheduling time that were obtained using the traditional
FCFS strategy and optimal solution with the optimal total scheduling time in the Pareto
solution set obtained using the NSGA-II-DP algorithm; here, F1 is the optimal scheduling
time and F2 is the berth matching degree. Since vessel speeds cannot be set using the
FCFS strategy, the speed from the NSGA-II-DP solution was used in this case. As a result,
the fuel consumption and carbon emissions for the two sets of results were the same
and no comparison between these was made. According to the analysis in Section 6.1, if
different vessels of the same type carrying the same cargo choose the same berth with a
high matching degree, the overall matching degree of the solution will increase; however,
this will also increase the total scheduling time. If instead, one of these vessels chooses an
idle berth with a low matching degree, the vessel’s waiting time will be reduced; however,
the overall matching degree will also be lower. In the cases with 5 and 10 vessels described
above, based on the settings of the vessel and berth parameters, the number of berths in
the port can meet the requirements of all vessels even if they enter the port at the same
time. Therefore, according to the previous analysis, the optimal solution for the total vessel
scheduling time selected from the Pareto solution set is a solution obtained by optimizing
the total vessel dispatch time and the berth matching degree at the same time under the
conditions that the same berth is not reused and the total scheduling time accounts for a
large target weight. According to the above analysis, under the condition that berths are
not reused, the berth allocation of the FCFS strategy is equivalent to taking the optimization
of the berth matching degree as the goal, and because it does not need to consider the
optimization of the total scheduling time, the FCFS strategy will obtain a better matching
degree of berths similar to the former. Because in the case of 5 and 10 vessels, we set only
one one-way navigable vessel, which is in the front of the fixed vessel service sequence of
FCFS strategy, and it also needs priority scheduling in the optimization results given by
our model and algorithm, and their service sequence has little impact on the scheduling
time. Therefore, the fixed vessel service sequence used by the FCFS strategy is similar to
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the optimized vessel service sequence given by our model and algorithm and can produce
good results in terms of the total scheduling time. Therefore, in these two special cases
related to the parameter settings, the FCFS strategy will produce a solution similar to
the optimal solution for optimal total scheduling time obtained using our model and the
NSGA-II-DP algorithm. In the 5- and 10-vessel cases, the solutions obtained using the two
methods each have their own advantages, but there is not much difference between them.
However, as the total number of vessels increases, the number of one-way vessels increases;
the fixed vessel service sequence of the FCFS then has difficulty in obtaining a better total
scheduling time. In addition, the advantages related to berth resources become fewer, and
the complexity of the berth allocation increases. It is difficult to provide a berth allocation
scheme with a good berth matching degree based on the principle of first come first serve.
Compared with the FCFS strategy, the use of our model together with the NSGA-II-DP
algorithm can produce better solutions that meet the needs of multi-objective optimization.
In this comparison, we choose the solution with the best total scheduling time in the Pareto
solution set; compared with other solutions in the set, the berth matching degree for the
optimal solution was relatively low. In contrast, the berth allocation method we used for
the FCFS strategy tends to give priority to berths with a high matching degree. Therefore,
compared with the results obtained using the FCFS strategy, the ability of the proposed
method to optimize the total scheduling time is more obvious; the berth matching degree is
also improved, and these advantages become greater as the number of vessels increases. In
addition, the use of the proposed model with the NSGA-II-DP algorithm produces Pareto
solution sets containing optimized solutions with different objective weights. The solution
sets also contain other solutions in which the results for all objectives are better than the
results obtained using the FCFS strategy when the number of vessels is small (this does not
include the solution with the optimal total scheduling time in the solution set). Decision
makers can be chosen by themselves according to management needs. Therefore, our model
and NSGA-II-DP algorithm have more advantages in assisting port decision management.

Table 10. Results of applying the traditional FCFS strategy and the NSGA-II-DP algorithm to different
numbers of vessels.

Number of Vessels
FCFS NSGA-II-DP

Gap (%)
F1 (min) F2 F1 (min) F2

5 3293 26.75 3285 26.75 −0.24 0

10 6334 54.42 6292 53.92 −0.66 −0.92

15 14,231 80.83 12,542 82.33 −11.87 1.86

20 23,549 108.17 18,651 109.83 −20.80 1.53

25 38,058 130.08 26,910 138.92 −29.88 6.80

30 62,134 156.42 36,154 161.75 −41.81 3.41

A case study in which the number of tugs was varied was also performed, with the
case of 15 vessels in Section 6.1 as the basic case, and the number of tugs was changed to
generate different cases. Table 11 and Figure 13 show a comparison between the results
obtained using our model together with the NSGA-II-DP algorithm and those obtained
using the traditional FCFS strategy. As before, since the vessel speed could not be set
using the FCFS strategy, the speed from the NSGA-II-DP solution was used, which again
meant that the fuel consumption and carbon emissions for the two sets of results were
the same and no comparison was made. From the results, it can be seen that, for both
sets of results, changing the number of tugs has little effect on the berth matching degree.
In terms of the total vessel scheduling time, there is little change for the total scheduling
time obtained through our model and the NSGA-II-DP algorithm when the upper limit
on the number of tugs is 4, 6, 8, or 10; when the upper limit on this number is changed
to two, the total vessel scheduling time obtained through our method increases slightly,
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whereas, for the FCFS strategy, the total vessel scheduling time increases significantly once
the upper limit on the number of tugs falls below six. Because the FCFS strategy provides a
fixed vessel service sequence, it cannot produce a better scheduling result if the number
of tugs is changed, so the number of tugs has a great impact on the total scheduling time.
However, our model and the NSGA-II-DP algorithm can always give an optimized vessel
service sequence through optimization in cases of different upper limits of the number of
tugs. This leads to better vessel scheduling results and reduces the impact of the change
in the number of tugs on the results, which proves the reliability of our model and the
robustness of the NSGA-II-DP algorithm. Overall, if the number of tugs is changed, the
use of our model and the NSGA-II-DP algorithm always gives a better solution in terms of
the multiple objectives of port scheduling than the FCFS strategy. In cases with different
numbers of tugs, the results of our model and NSGA-II-DP algorithm are always better
than the traditional FCFS strategy, and have obvious advantages in total scheduling time,
which is in line with the previous analysis.
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Table 11. Comparison between the results of the total vessel scheduling time obtained using the
traditional FCFS strategy and those obtained using the NSGA-II-DP algorithm for different numbers
of tugs.

Number of Tugs
FCFS NSGA-II-DP

Gap (%)
F1 (min) F2 F1 (min) F2

2 19,572 79.25 13,532 83.33 −30.86 5.15

4 15,169 81.5 12,561 82.33 −17.20 1.01

6 14,857 81.5 12,543 83.17 −11.87 2.04

8 14,208 80.83 12,539 82.83 −11.74 2.49

10 14,231 80.83 12,542 82.33 −11.87 1.86
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In this section, the reliability of the proposed optimization model and the robustness of
the NSGA-II-DP algorithm were verified, as was the superiority of the proposed model and
NSGA-II-DP algorithm over the traditional FCFS strategy used by ports in terms of meeting
the multiple objectives of vessel scheduling. In port management, it is necessary to consider
not only the total vessel scheduling time, but also other objectives. The FCFS strategy
cannot be used to optimize the fuel consumption of vessels, and, as the number of vessels
increases, the results for the total scheduling time and berth matching degree become
poorer. However, by applying the proposed model and the NSGA-II-DP algorithm, better
solutions for the multiple objectives can be obtained, and the advantages of the proposed
method become clearer as the number of vessels increases. Using the traditional FCFS
strategy, changing the number of tugs does not lead to better scheduling results because of
the fixed vessel service sequence used. Additionally, as the number of tugs is reduced, the
total scheduling time increases significantly. Using the proposed model together with the
NSGA-II-DP algorithm, the vessel service sequence can always be optimized. This leads
to better results for vessel scheduling and reduces the impact of changing the number of
tugs on the results. The results obtained using our model and the NSGA-II-DP algorithm
are better than those obtained using the traditional FCFS strategy for any number of tugs.
In addition, using the proposed model with the NSGA-II-DP algorithm produces a Pareto
solution set, which can be used by decision-makers to select the solutions appropriate to
their requirements and preferences. The results obtained using this model and NSGA-II-DP
algorithm thus conform better to port management needs and can provide better assistance
for decision-makers.

6.4. Sensitivity Analysis

In this section, a comparison between the results of applying the NSGA-II algorithm
and NSGA-II-DP algorithm to different numbers of vessels will be used to demonstrate
the superiority of the NSGA-II-DP algorithm. In order to ensure a fair comparison, the
algorithms were both run 10 times in each case. Each calculation produces a Pareto solution
set and optimal values for three objectives (total dispatch time, berth matching degree, and
fuel consumption). The worst, best, and average values of the optimal values of each target
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in 10 calculations are shown in Table 12. The average values of these optimal values for
different numbers of vessels over the 10 calculations are shown in Figures 14–16.

Table 12. The optimal values of the three targets calculated for different numbers of vessels. The
results are based on running the algorithms 10 times in each case.

Number of Vessels 5 10 15 20 25 30

F1: optimal value of total
scheduling time (min)

NSGA-II

Worst value in
10 calculations 3285 6358 12,962 19,896 29,506 40,393

Best value in
10 calculations 3285 6305 12,564 18,468 27,341 36,450

Average of
10 calculations 3285 6331.6 12,807.1 19,211.6 28,298.1 38,475.3

NSGA-II-DP

Worst value in
10 calculations 3285 6353 12,913 19,566 28,211 38,913

Best value in
10 calculations 3285 6292 12,542 18,651 26,910 36,154

Average value of
10 calculations 3285 6315.8 12,723.8 19,188.4 27,665.3 37,188.9

F2: optimal value of berth
matching degree

NSGA-II

Worst value in
10 calculations 28.25 61.25 87.67 116.5 146.42 170.08

Best value in
10 calculations 28.25 61.25 89 120 149.58 175.75

Average value of
10 calculations 28.25 61.25 88.47 118.6 148.13 172.85

NSGA-II-DP

Worst value in
10 calculations 28.25 61.25 87.67 120 147.92 175.08

Best value in
10 calculations 28.25 61.25 89 120 150.92 178.92

Average value of
10 calculations 28.25 61.25 88.87 120 150.42 177.60

F3: optimal value of fuel
consumption (t)

NSGA-II

Worst value in
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

Best value in
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

Average value of
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

NSGA-II-DP

Worst value in
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

Best value in
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

Average value of
10 calculations 3.12 6.16 9.13 12.13 15.13 18.25

From Table 12 and Figures 14–16, it can be seen that because the range of speeds is
small, the feasible solution range for the fuel consumption is also small. Therefore, the
NSGA-II and NSGA-II-DP algorithms give the same optimal value as each other for fuel
consumption in cases of different numbers of vessels. For the total scheduling time and
berth allocation, when the number of vessels is small (five vessels in the case of the total
scheduling time and five or ten vessels in the case of the berth allocation), the feasible
solution range is again small and the two algorithms converge to the same optimal values.
However, as the number of vessels increases, the range of feasible solutions increases.
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Although in the case of 20 vessels, the best value of the optimal value of total scheduling
time obtained using the NSGA-II algorithm over 10 calculations is slightly better than that
obtained using the NSGA-II-DP algorithm, the overall results and average values of the
10 calculations show that the NSGA-II-DP algorithm performs better than the NSGA-II
algorithm. This shows that the NSGA-II-DP algorithm converges more strongly than the
NSGA-II algorithm and can effectively avoid falling into the trap of local optimization and
premature convergence. The proposed NSGA-II-DP algorithm is an effective improvement
on the original NSGA-II algorithm.
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7. Conclusions

Based on a port layout that included a restricted channel and harbor basin berths, in
this paper, the problem of the scheduling of vessels in a restricted channel in conjunction
with berth allocation was analyzed and described. The factors and target requirements
to be considered were analyzed, and a multi-objective overall scheduling model for the
vessel scheduling and berth allocation that took carbon emissions into account was then
constructed. A newly developed algorithm, the NSGA-II-DP algorithm, was used for the
calculations. The main contributions are as follows:

(1) By considering both the complex vessel scheduling problem for a restricted channel
along with the berth allocation problem, a comprehensive model for vessel schedul-
ing in a restricted channel and berth allocation that considers carbon emissions is
developed. avoiding the sub-optimal results of separate optimization.

(2) Tide times, traffic conflicts, port scheduling resources, and other factors are considered
in the overall scheduling model to make the model more realistic. Furthermore, the
model also considers the matching degree between the berth and the ship and the
carbon emissions during navigation, which brings the research more in line with
the real requirements of port management and the general trend toward sustainable
shipping. Through the experimental results, we explained the relationship between
the three objectives, verified the rationality of the model results, and proved the
superiority of our model and algorithm compared with the traditional FCFS strategy
of port dispatching in different situations.

(3) In order to solve the problem that the population diversity of the NSGA-II algorithm
decreases and the solution falls into the local optimum, we have constructed the
algorithm NSGA-II-DP. We compared the results of applying the original NSGA-II
algorithm and the NSGA-II-DP algorithm to cases with different numbers of vessels.
The results showed that the overall convergence of the NSGA-II-DP algorithm is
better than that of the NSGA-II algorithm and thus that the proposed NSGA-II-DP
algorithm is a successful improvement on the NSGA-II algorithm.

In this study, the problem of vessel scheduling in a restricted channel was considered
together with berth allocation while considering carbon emissions. The research included
the further development of an existing model and algorithm and provides basic theoretical
support for the further development of this research direction. The results have practi-
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cal significance as they can be used to support the decisions of port managers who can
select solutions appropriate to their requirements. The proposed mathematical model is
universally applicable and can be modified according to the actual needs of individual
ports. However, there are still some additional problems that remain to be considered such
as vessel delays, inner anchorages, pilot scheduling, and yard allocation. We will expand
our research to include considerations of these problems in future studies.
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