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Abstract: Submarine landslides have attracted widespread attention, with the continuous develop-
ment of ocean engineering. Due to the recent developments of in-situ investigation and modelling
techniques of submarine landslides, significant improvements were achieved in the evolution studies
on submarine landslides. The general characteristics of typical submarine landslides in the world are
analyzed. Based on this, three stages of submarine landslide disaster evolution are proposed, namely,
the submarine slope instability evolution stage, the large deformation landslide movement stage,
and the stage of submarine landslide deposition. Given these three stages, the evolution process of
submarine landslide disaster is revealed from the perspectives of in-situ investigation techniques,
physical simulation, and numerical simulation methods, respectively. For long-term investigation
of submarine landslides, an in-situ monitoring system with long-term service and multi-parameter
collaborative observation deserves to be developed. The mechanism of submarine landslide evolu-
tion and the early warning factors need to be further studied by physical modelling experiments.
The whole process of the numerical simulation of submarine landslides, from seabed instability to
large deformation sliding to the impact on marine structures, and economizing the computational
costs of models by advanced techniques such as parallel processing and GPU-accelerators, are the
key development directions in numerical simulation. The current research deficiencies and future
development directions in the subject of submarine landslides are proposed to provide a useful
reference for the prediction and early warning of submarine landslide disasters.

Keywords: submarine landslide; in-situ investigation; physical modelling; numerical simulation

1. Introduction

Submarine landslides are gravity-driven mass movements that occur in a variety of
underwater slope environments around the world [1]. Thousands of cubic kilometers of
sediment can be involved in submarine landslides, many times larger than land-based
landslides [1,2]. A submarine landslide and its sediment density flow are thus important
process for moving sediment from the continental slope to the deep ocean. Submarine
landslides can damage important marine infrastructure such as telecommunication cables
and gas and oil production equipment, and generate destructive tsunamis, with great harm
to people’s safety and economic development [3]. In 1929, for example, the Grand Banks
submarine landslide in Canada reached a maximum velocity of 20 m/s and slipped for
approximately 850 km, damaging 12 submarine pipelines between North America and
Europe [4]. In 2006, 2009, and 2010, submarine landslides destroyed the underwater cables
in the Luzon Strait multiple times, disrupting communications between Southeast Asian
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countries and China for up to 12 h [5]. In 2004, a tsunami induced by a submarine landslide
and earthquake occurred in Sumatra, Indonesia, which killed more than 200,000 people [6].

As coastal populations and development continue to grow, and as subsea energy and
communication transfer become more common, submarine landslides have become an
increasingly important research subject over the past decades. At present, many scholars
have summarized the research on submarine landslides, which are listed in Table 1. Locat
and Lee [7] summarized the causes, classification, characterization, geotechnical investiga-
tion methods, and mechanics of submarine landslides. Harbitz et al. [8] discussed the effect
of submarine landslide volume, initial acceleration, maximum velocity, and possible retro-
gressive behavior on the characteristics of the tsunamis induced by submarine landslides.
De Mol et al. [9] reviewed the relationship between cold-water coral bank development and
submarine landslides. Zhu et al. [10] summarized the classification of submarine landslide
types. Yavari-Ramshe and Ataie-Ashtiani [11] reviewed numerical studies on submarine
landslide-generated waves and proposed further attention aspects for numerical meth-
ods. Jia et al. [12] introduced the characteristics and triggering mechanism of submarine
landslides, and briefly described the typical cases of the in-situ investigation of submarine
landslides and the progress of in-situ observation methods, and analyzed the advantages
and limitations of various methods. Huhn et al. [13] provided a short review of submarine
landslide studies, with some emphasis on the emerging needs in future landslide research,
including the geohazard potential and long-term monitoring of submarine landslides. Nian
et al. [14] summarized the current research deficiencies and future development directions
of the chain disasters of submarine landslides and emphasized the importance of numerical
simulation in the study of the evolution mechanism of submarine landslides.

Table 1. Summary of existing reviews regarding submarine landslides in recent years.

References Research Content Key Conclusions Highlights of the Review

Locat and Lee [7]

Summarized the causes,
classification, characterization,
geotechnical investigation methods,
and mechanics of
submarine landslides.

A major challenge is the integration
of submarine landslide movement
mechanics in an appropriate
evaluation of the hazard.

A comprehensive review
of submarine landslides.

Harbitz et al. [8]
Analyzed the mechanisms of
tsunami generation by
submarine landslides.

Submarine landslide volume, initial
acceleration, maximum velocity,
and possible retrogressive behavior
are important to the characteristics
of the resulting tsunami.

The focus is on tsunamis
induced by submarine
landslides.

De Mol et al. [9]
Analyzed the relation between
cold-water coral bank development
and submarine landslides.

No general and direct relationship
exists between submarine
landslides and cold-water
coral banks

This paper focuses on the
trigger factors of
submarine landslides.

Zhu et al. [10] Summarized the classification of
submarine landslide types

The classifications of submarine
landslides are becoming more and
more deep, detailed,
and generalized.

This paper focuses on the
classification of submarine
landslide types.

Yavari-Ramshe and
Ataie-Ashtiani [11]

Reviewed numerical studies
on submarine
landslide-generated waves.

The conceptual, mathematical, and
numerical structures of submarine
landslide-generated waves are
comprehensive analyses.

The focus is on the
numerical methods for
simulation the tsunamis
induced by
submarine landslides.

Jia et al. [12] Reviewed the in-situ observation
methods of submarine landslides.

The research on in-situ testing
method of submarine landslide is
still in its early stage and needs to
be further studied.

This paper focuses on field
investigation and in-situ
observation methods for
submarine landslides.

Huhn et al. [13]
Reviewed triggering mechanisms,
monitoring methods, and hazards
and risks of submarine landslides.

In-depth study of submarine
landslides requires more
interdisciplinary approaches.

This paper’s emphasis is
on the emerging needs in
future landslide research.

Nian et al. [14] Reviewed the advances in the chain
disasters of submarine landslides.

The physical and numerical
simulation techniques of submarine
landslide movement evolution still
need further study.

This paper focuses on the
simulation methods of
chain disasters of
submarine landslides.
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In recent years, the studies of submarine landslides have become a hot spot with the
continuous development of ocean engineering, such as safe the exploitation of offshore oil
and gas resources and safe construction of offshore wind power projects. However, there is
a lack of systematic reviews of in-situ investigation techniques, physical simulation, and
numerical simulation methods of submarine landslides. The present review of submarine
landslides mainly focuses on analyzing the trigger factors, characteristics, and mechanisms
of submarine landslides from field investigations. However, there are few reviews on
the comprehensive analysis of submarine landslide evolution from the perspective of
research methodology. In view of this, we present the technological and methodological
advances that have occurred in submarine landslide research in recent years. On the basis
of previous studies, this paper summarizes the research status of the evolution process
of submarine landslides and its disaster effect from three different perspectives: in-situ
investigation methods, physical experiment methods, and numerical simulation methods.
Meanwhile, the current research deficiencies and future development directions on the
subject of submarine landslides are proposed to provide a useful reference for the prediction
and early warning of submarine landslide disasters.

2. Characteristics of Submarine Landslides
2.1. General Characteristics

There are submarine landslides on virtually all ocean slopes throughout the world [15],
such as the Norwegian sea, the Mediterranean sea, the Gulf sea, the Japan sea, and the
South China sea. There is a wide variety of locations where submarine landslides can
occur, from passive to active continental margins, river-fed pro-deltas, submarine fans, on
volcanic island flanks, and glaciated areas and sediment-starved margins (as shown in
Figure 1). Submarine landslides may cover more than 10,000 km2 of seafloor and involve
more than 1 million cubic meters of sediment. Examples of extremely large and well-known
slides include the Storegga Slide [16], the Trænadjupet Slide [17], the Hinlopen Slide [18],
and the Sahara Slide Complex [19].
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Figure 1. Regional distribution of main areas for submarine landslides. Modified from [15].
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Turbidity currents derived from submarine landslides can travel even further distances,
and their deposits can cover large areas within ocean basins. Consequently, submarine
landslides are capable of moving hundreds of kilometers downslope. Even more curiously,
submarine landslides may occur on slopes as low as 1◦, which on land are almost always
stable [13]. The U.S. Atlantic continental slope shows examples of submarine landslides
with increasing slope angles; as shown in Figure 2a, more than 50% of submarine landslides
have slope angles of less than 4◦.
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Figure 2. Characteristics of submarine landslides. (a) Slope angles of submarine landslides; (b) Trigger
factors of submarine landslides.

According to the statistics and inducing mechanism analysis of 1065 submarine
landslide cases worldwide, the trigger factors of submarine landslides can be classified
into 15 factors (as shown in Figure 2b). The trigger factors include anthropic (AN),
differential compaction (DC), diapirism (DI), earthquake (EQ), erosion (ER), fluid flow
(FF), gas (GA), gas hydrates (GH), high sedimentation rates (HS), pore pressure (PP),
steepening (ST), sea level (SL), tectonic steepening (TS), volcano development (VD),
volcano uplift (VU). Among the above trigger factors, EQ, HS, and DI are the most
common triggers for submarine landslides, accounting for 33.5%, 17.6%, and 12.1%, of
the total, respectively.

2.2. Submarine Landslide Classification

Submarine landslides have been classified by many researchers, with many fruit-
ful achievements. The various types of submarine landslides that can be involved are
summarized by Locat and Lee [7]. They [7] classified the submarine landslides into five
categories, including slides, topples, spreads, falls, and flows. Weimert et al. [20] used
mass transport complexes (MTCs) to describe the deep-water sediment transport mech-
anism. Moscardelli and Wood [21] classified MTCs into plate transport complex and
turbidity current, and further divided MTCs into slip, slump, and debris flow. Generally,
submarine landslides evolve in three stages, as shown in Figure 3. In the initial stages of a
submarine landslide (Phase 1), the submarine slope is unstable, the seabed collapses, and
the landslide slumps and slides. In the middle stage of a submarine landslide (Phase 2),
due to complex water–soil exchanges and long-distance migration, landslides gradu-
ally evolve into homogeneous debris flows. In the later stage of a submarine landslide
(Phase 3), the water content of the landslide continues to increase. Debris flows and
mudflows become turbidity currents and, eventually, heavy water flows as a result of the
increased water content.
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3. Recent Advances in Submarine Landslide In-Situ Investigations

Compared with conventional land engineering monitoring, marine engineering geo-
logical environment monitoring has its unique features, mainly in that the seabed is covered
by seawater, which cannot be directly observed, and that it can only be conducted through
indirect technical means, which increases the difficulty of research. The dynamic action
of seawater is continuous and strong, and the strong action of waves, currents, tides and
storm surges brings about various engineering geological problems. The weak sediment
makes sampling and observation difficult. Therefore, the offshore engineering geological
survey is highly dependent on marine geophysical exploration methods, especially the
combination of multiple detection techniques. The submarine landslide in-situ investiga-
tion methods include geotechnical monitoring, repeated seafloor surveys, water column
imaging, acoustic doppler current profilers (ADCP), mobile sensors, sub-surface timelapse,
seismological networks, cabled systems, etc. (as shown in Figure 4).
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The deformation monitoring of the sloping seabed is the most direct indicator to reflect
the seabed instability. On the one hand, it can provide a reliable basis for the study of
the early instability process of landslides (such as sliding velocity, sliding mode, sliding
distance, etc.). On the other hand, it can provide an effective early warning for seabed
instability caused by offshore oil and gas exploitation. Therefore, geotechnical engineering
monitoring of offshore sites is becoming more and more common, such as using in-situ
pressure gauges and inclinometers to understand in-situ-specific slope stability issues [23].
In addition, multi-session seafloor surveys using high-resolution multibeam systems reveal
the magnitude and frequency of seafloor landslides in multiple systems around the world,
such as in deep-water (200–300 m) submarine canyons [23–26], at active pro-deltas [27,28],
in areas with shallow water, and in large displacement conditions [29].

In addition to using the above-mentioned equipment to measure changes in seabed
topography, instruments such as ocean bottom seismometers (OBS) can also be used for
monitoring, providing information on the timing and nature of slope failure. Mayotte
Island, north of the Mozambique Channel, and the Indian Ocean, OBS, were used to
monitor the submarine earthquakes [30]. The attenuation of the light waves and electro-
magnetic waves is serious, and the propagation distance is very limited. Therefore, it is
difficult to meet the needs of ocean exploration. In contrast, the propagation performance
of sound waves in water is much higher. The acoustic detection equipment developed
based on marine acoustic technology has become the “ear” of human beings to detect
the underwater world and has become the mainstream of marine detection equipment.
For example, multiple moored hydrophones were tried to monitor earthquakes, volcanic
activities, various types of tremors, signals related to lava extrusion, and landslides on
the seafloor [31]. Shore-based monitoring can provide insight into submarine landslide
activity as well. For example, Lin et al. [32] used terrestrial broadband seismic networks
to detect offshore landslides in the Kaoping Canyon, offshore Taiwan.

Other major recent advances have been made by the direct measurement of turbidity
currents [33,34]. However, monitoring turbidity flows remains somewhat challenging to
date because of the logistical challenges of deploying instruments on the deep seafloor, the
fact that flows may occur infrequently, and the powerful nature of flows that can damage
instruments used for measurements. These challenges mean that turbidity currents have
only been measured in a few relatively shallow waters (<2 km) in the world.

Designing a stable monitoring platform and improving the anti-interference ability
of sensors will be the problems to solve in the next step of the turbidity flow monitoring
of deeper sea areas [35]. However, monitoring large submarine landslides can be more
challenging than monitoring turbidity currents because it is not clear where the next land-
slide will occur, and some landslides have recurrence intervals (>100–1000 s years) [23],
which are difficult for most study projects (<5 years). Therefore, even though submarine
landslide investigations still face many problems, such as environments and remote set-
tings, positioning accuracy, data resolution, communications, frequency and accuracy of
measurement equipment, and measurement equipment recyclability, the most difficult
problem to solve is knowing where the next submarine landslide will occur.

4. Recent Advances in Physical Simulation Methods of Submarine Landslides

Submarine landslides occur in complex geological environments. It is almost impos-
sible to capture the whole process of slope failure, slide, slump, debris flow, turbidity
current, and the accompanying redeposition of the turbidity current through in-situ investi-
gation. Therefore, laboratory-scale physical simulation experiments are used to discover
characteristic physical phenomena and provide valuable experimental data for numeri-
cal simulations [36,37].

Flume experiments were conducted to determine the force exerted by a clay-rich
submarine landslide on two pipelines by Zakeri et al. [38]. Their experimental results led
them to propose a method to estimate drag forces normally directed at a pipeline axis. In
order to investigate mudflow flow-front structures, Haza et al. [39] prepared mud models
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derived from mixtures of 10–35% kaolin and water. Yamada et al. [40] performed a series of
sandbox experiments to investigate the mechanical processes involved in the development
of submarine landslides. Two types of submarine landslide failure modes were classified
in their study, namely, small but frequent slides, and large but less frequent failures of the
entire slope. Wang et al. [41] developed a system for simulating a submarine landslide and
the relative motion between the submarine landslide and undersea cable. The main part
of the test device is a ring water tank made of iron and steel material. The outer diameter
of the water tank is 0.9 m, the inner diameter is 0.6 m, and the width is 0.4 m. The impact
of the mixture of sediment and water on the cable during the rotation of the tank can
be observed through the front transparent plexiglass. Based on the rotating flume test,
Deng et al. [42] reproduced the low friction angle motion of underwater debris flow and
further analysis revealed that the hydrodynamic pressure generated by the submarine
sliding mass impacting the seabed may be the reason for the low friction angle motion of
the submarine sliding mass. Based on physical simulations, Liu et al. [43] evaluated the
stability of a hydrated seabed and discussed how different geological conditions affect
it. By applying pressurized gas to the low-permeability silt layer, they simulated the
excess pore pressure caused by the decomposition of hydrate and the physical appearance
process of the overlying seabed damage. A study by Wang et al. [44] investigates the
impact of submarine telecommunications cables shifting on the seabed. To investigate
submarine slope failure caused by overpressure fluid due to gas hydrate dissociation,
Nian et al. [45] designed a laboratory-scale device, as shown in Figure 5a. The influences of
the thickness of the clay layer and sand layer, undrained strength of clay and injection rate
on the submarine landslide failure models are discussed in their study. Based on this, the
method of calculating the safety factor of submarine slopes under hydrate decomposition
conditions was established, as shown in Figure 5b. Fan et al. [46] designed a flume testing
system to simulate the mass transfer process at soil–water interfaces during submarine
landslide motions at different velocities. The results show that soil–water interface mass
transfer is primarily dependent on soil properties (shear strength, apparent viscosity) and
velocity. The influence of sand/clay content on the depositional mechanism of submarine
debris flows was investigated by Liu et al. [47] using a submersed flume model. According
to the results, swirled-wedge front heads generate high-viscosity slurry flows with greater
aspect ratios and rotation radii.
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The above experiments were carried out under conventional gravity conditions. The
model is often a reduced-scale version of the prototype; as a result, the experimental model
has some scaling effects and cannot reflect the real stress environment of the research ob-
ject [48,49]. As centrifuge models and prototypes have equal stresses, centrifuge modeling
is useful for gravitational effects and large-scale modeling in geotechnical materials [50,51].
Boylan et al. [52] carried out geotechnical centrifuge experiments to investigate submarine
landslide runout. For observing submarine landslide movement in geotechnical centrifuge
model experiments, Gaudin et al. [53] developed a wireless high-speed data-acquisition sys-
tem. Zakeri et al. [54] investigated the impact forces of submarine landslides on pipelines
with uniform velocities by carrying out centrifuge experiments with a centrifugal force of
30 times the Earth’s gravity. Zhang et al. [55] conducted a series of centrifuge experiments
to study the evolution of submarine landslides induced by hydrate dissociation. Through
their centrifuge experiments, the expansion of cracks, settling zone and the slippage be-
tween the over layer and hydrate layer were observed, and the mechanism of submarine
landslides induced by hydrate dissociation was revealed. Zhang et al. [56] analyzed the
triggering mechanism of submarine landslides using centrifuge modeling experiments.
They proposed two mechanisms: accumulation of high pore pressure and associated tensile
failure and fracturing in clay and associated shear failure. Zhang et al. [57] developed a
newly static liquefaction-triggering actuator to be used in enhanced gravity conditions
in a geotechnical centrifuge, investigating the tilting rate effects on submarine landslide
processes at various slope steepening rates. They found that as a result of local shear defor-
mations, pore pressure builds up, causing submarine slope instabilities to occur. Among
the most important issues in submarine landslide investigation is scaling for the centrifuge
modeling of static liquefaction initiation and propagation. Zhang et al. [58] discussed
this issue and suggested that an N0.5-fluid should be applied for simulating the onset
of static liquefaction of underwater slopes triggered by monotonic loads and that a pore
fluid, with a viscosity N times that of water, is required to simulate flow-slide dynamic
behavior in a centrifuge, where N is the geometrical scaling factor in centrifuge modelling.
Takahashi et al. [59] examined the submarine landslide of sand and silty sand induced
by earthquake and liquefaction. They concluded that the debris induced by submarine
landslides flowed not with a simple shear but as a clod of soil similar to a fluid, which
encouraged high-speed flow.

There has been no model experiment able to simulate and clarify the conditions
required for submarine landslides, their gravity flow transition, and sedimentation. Further
large-scale flume experiments or drum centrifugal model experiments for simulating
submarine landslides are very necessary.

5. Recent Advances in Numerical Simulation Methods of Submarine Landslides

In recent years, numerical simulation methods of submarine landslides have made
many advances in the stability analysis of submarine slopes, based on random-field, large-
deformation finite-element modelling techniques in submarine landslides, fluid–solid
coupling analysis, and marine disaster analysis induced by submarine landslides. Figure 6
shows the current numerical simulation methods for the investigation of the submarine
landslide disaster chain.

The uncertainty in input values, such as seismic parameters, soil properties, and
hydraulic conditions, may make traditional deterministic methods unreliable for assessing
submarine slope stability. Therefore, the enhanced Newmark method [60], Gaussian process
regression [61], the Monte Carlo simulation [62] were used to analyze the submarine slope
stability. According to Zhu et al. [63], a 3D stochastic finite element model was developed
to study the random wave-induced response in a spatially heterogeneous seabed. Based on
linear wave theory and Biot’s theory, Zhu et al. [64] analyzed the response of the poroelastic
sloping seabed by considering changes in wave length and height when propagated from
relatively shallower to deep sea conditions. The above research is mainly aimed at analyzing
the stability of submarine slope rather than the evolution process after instability. Dey
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et al. [65] presented a large-deformation finite-element (LDFE) modelling technique, which
incorporated a strain-softening model for the undrained shear strength of marine clay, to
model submarine landslides. This technique simulates the development of plastic shear
bands and their propagation with displacements of soil mass. Zhang et al. [66] simulated
the complete evolution of a submarine landslide from shear band initiation, propagation,
and slab failure, and the arrest of shear band propagation is observed through LDFE
modelling. To overcome the large computational costs of the LDFE modelling technique,
Buss et al. [67] established the energy-balance kinematic method of plasticity theory.
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Although the LDFE modelling technique can simulate the large deformation of a
submarine landslide, it cannot reflect the motion-evolution process of a submarine land-
slide [68]. Some numerical studies have focused mainly on replicating run-out charac-
teristics, such as travel distance and velocity. For example, Gauer et al. [69] used the
Bingham model to reproduce one of the world’s largest well-known submarine landslides,
the Storegga slide. Dong et al. [70] investigated a real case history of a submarine landslide,
reproducing the runout of the slides from steep slopes to moderate bases, by using the
material point method (MPM). Dong et al. [71] enhanced the conventional depth-averaged
method (DAM) algorithm, which is specialized for no-slip bases, to reproduce the phe-
nomenon of block sliding on frictional bases. They assessed the feasibility of the DAM
for slides with different sliding modes in terms of runout distances and morphologies.
Zhang and Randolph [72] simulated submarine landslides using the smoothed-particle
hydrodynamics (SPH) method. Jiang et al. [73] simulated a submarine landslide induced
by seismic loading in a methane hydrate-rich zone using coupled computational fluid dy-
namics (CFD) and the discrete element method (DEM). However, the study only simulated
the trigger initiation phase of the submarine landslide. However, almost all the above
numerical methods need input information regarding the initial velocity and volume of
the failed submarine landslide mass. To overcome this problem, Zhang and Puzrin [74]
established a numerical scheme in consideration of the drag force from the ambient wa-
ter for time-efficient modelling of the entire submarine landslide evolution, covering the
pre-failure shear band propagation, slab failure, and post-failure dynamics.

As one of the most destructive marine geological disasters, a submarine landslide often
causes the destruction of underwater infrastructures and even catastrophic tsunamis. In
recent years, the numerical simulation of submarine landslide impact on underwater pipe
and cable systems has achieved rich research results. Dong et al. [75] employed the material
point method (MPM) with an enhanced contact algorithm to simulate the submarine
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landslide impact of a fixed partially embedded pipeline for the first time. Zhang et al. [76]
investigated the impact forces exerted by a submarine landslide on laid-on or suspended
pipelines at various impact angles θ, based on the Herschel–Bulkley model, using the CFD
approach. Nian et al. [77] considered the effect of the low-temperature environment of the
seabed on the behavior of marine clay and then investigated the impact of the marine clay
on suspended pipelines. According to their findings, 26.0% and 70.3% more force is applied
to pipelines at 0.5 ◦C than at 22 ◦C when a mudflow impacts them. Li et al. [78] analyzed
the interaction between monopile and submarine landslides at different flow heights using
a three-dimensional biphasic numerical model. Two modes of interactional forces acting on
the monopile (namely, interaction) force with peak value and interaction force without peak
value were proposed by their study. Fan et al. [79] designed pipelines with a streamlined
contour and investigated the interaction between submarine landslides and streamlined
pipelines. Compared with a conventional circular pipeline, streamlined pipelines can
reduce the lift and drag force of landslide–pipeline interaction with a maximum lessening
percentage of 40% and 66%, respectively. Dutta and Hawlader [80] simulated the lateral
penetration of a pipe in a clay block by a CFD approach by incorporating strain-rate and
strain-softening dependent models for the undrained shear strength of clay sediment. Guo
et al. systematically studied the impact of submarine landslides on pipelines, including the
effect of opening and wall boundaries on CFD modeling [81], the effect of pipeline surface
roughness on the interaction between pipelines and submarine mudflows [82–84], the
instantaneous impact of submarine slumps with the shear rate effect on fixed suspended
pipelines [85], and the influence of pipeline suspension height on the impact force of
submarine landslides on pipelines [86,87]. Tsunamis induced by submarine landslides
are also among the marine hazards that have stimulated the attention and concern of
researchers during the past decades. However, related research mainly focuses on the
evolution of tsunamis, and the simulation of submarine landslides is often simplified. More
than 85% of numerical models apply depth-averaged equations to predict the submarine
flow behavior through its motion [11]. The influence of more submarine landslide models
on surges deserves further study.

6. Discussions on Future Research Directions

The evolution process of submarine landslides has achieved many results. From
the perspectives of in-situ investigation techniques, physical simulation, and numerical
simulation methods, future research directions of submarine landslides are proposed.
Figure 7 summarizes the main points, and the details are discussed in this section.

Due to the uncertainty of the occurrence time of submarine landslides and the high
cost of underwater monitoring, the current research on the movement process of subma-
rine landslide is still focused on the tracking of the movement traces and accumulation
characteristics after submarine landslides using geophysical exploration technology, while
the real-time monitoring of the movement evolution process of submarine landslides is
still blank. Therefore, it is urgent to develop an in-situ monitoring system for submarine
landslides with long-term service and multi-parameter collaborative observation, so as to
realize the long-term observation of various indicators of seabed sediments. In particu-
lar, the technique of space-sky-earth-sea can be used to establish a regional network for
submarine landslide monitoring and early warning [88]. In addition, advanced methods
such as machine learning and big data fusion technology can be fully utilized to conduct
an in-depth analysis of the acquired multi-source heterogeneous data [89], which provides
technical support for monitoring the kinematic and morphological characteristics of sub-
marine landslides as well as accurate prediction and early warning. As the results obtained
by geophysical methods are often multi-solution, while using various acoustic detection
methods to identify the geological hazards, the methods of high-quality geological sam-
pling and drilling should be combined to achieve the purpose of correctly identifying the
submarine landslide hazards. The comprehensive analysis of geophysical survey data and
soil drilling data can greatly enhance the accuracy of engineering geological evaluation.
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Under ideal conditions, geophysical survey data can provide the extension and thickness
of the sedimentary layer, and borehole sampling can provide the physical and mechanical
properties of the sediment.
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The small-scale flume test is a common method to simulate the evolution of submarine
landslides. Although it can simulate the motion of submarine landslides, it is limited by
the test situation and cannot reproduce long-distance motion-evolution scenarios, which
is far from the real submarine landslide motion. Compared with the flume test, the drum
centrifugal test and the rotating water tank test can eliminate the limitations of the test
situation and can be used as an important means to study the evolution process of large-
scale submarine landslides [90]. However, the water–soil coupling mechanism in the
evolution of submarine landslide movement is extremely complex and changeable [91],
and the current test method has not quantified the deformation and rupture behavior of the
landslide mass caused by the intrusion of environmental water. It is suggested to develop
soil–water interface monitoring technology to achieve a quantitative analysis of material
exchange and front-end hydroplaning at the water–soil interface during the evolution of
submarine landslides. In addition, in view of the lack of in-situ monitoring technology for
submarine landslides, it is recommended to reveal the early warning factors of disasters in
the evolution of submarine landslides through experiments, such as vibration response,
soil pore pressure, and ocean water turbidity.

In terms of numerical simulation methods, the computational fluid dynamics method
can be used to simulate large-scale submarine landslide motions. However, this method
regards the landslide motion as a single fluid state motion, and it is difficult to con-
sider the microscopic evolution in the process of submarine landslide motion [14,92].
Compared with the CFD method, LDFE, MPM, SPH, and other methods that consider
the soil mechanical properties of a submarine landslide, can reproduce the evolution
process of a submarine slope from instability to progressive sliding failure [93]. How-
ever, the methods are mainly used in the early instability deformation simulation of
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small-scale submarine landslides due to their high calculation cost. It is worth noting
that the above numerical methods are mainly employed in the motion simulation of
submarine landslides at the macro level, and they ignore the deformation characteristics
of particles inside a submarine landslide mass at the micro level. Therefore, in future
numerical simulation research, the macro–micro interconnection effect in the evolution
process of submarine landslide motion should be considered, and multi-scale coupled
numerical calculation methods, such as CFD-DEM, should be developed to realize the
fine simulation of the evolution process of submarine landslide motion. Meanwhile, in
order to improve the computational efficiency of multi-scale coupling algorithms, parallel
computing architecture or GPU acceleration techniques can be employed to solve this
large-scale computational problem [94].

7. Conclusions

We present the technological and methodological advances that have occurred in
submarine landslide research in recent years. The following conclusions could be drawn
from this study:

According to the in-situ investigation, more than 50% of submarine landslides have
slope angles of less than 4◦. Earthquakes, high sedimentation rates, and diapirism are the
most common triggers for submarine landslides, accounting for 33.5%, 17.6%, and 12.1%,
of the total, respectively.

It is urgent to develop an in-situ monitoring system and integrated space-sky-earth-sea
technique for submarine landslides, with long-term service and multi-parameter collabora-
tive observation, so as to realize the long-term observation of various indicators of seabed
sediments. High-quality geological sampling and drilling should be developed to achieve
the purpose of correctly identifying the submarine landslide hazards.

The mechanism of submarine landslide evolution, especially in the water–soil cou-
pling mechanism, needs to be further studied by physical modelling experiments. We
recommend revealing the early warning factors of disasters in the evolution of subma-
rine landslides, such as vibration response, soil pore pressure, and ocean water turbid-
ity, through experiments.

Multi-scale coupled numerical calculation methods should be integrated with parallel
computing architecture or GPU acceleration techniques to realize the fine simulation of the
whole evolution process of a submarine landslide motion.
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