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Abstract: Transportation is one of the major carbon sources in China. Container throughput is
one of the main influencing factors of ports’ carbon emission budget, and accurate prediction of
container throughput is of great significance to the study of carbon emissions. Time series methods
are key techniques and frequently used for container throughput. However, the existing time series
methods treat container throughput data as discrete points and ignore the functional characteristics
of the data. There has recently been interest in developing new statistical methods to predict time
series by taking into account a continuous set of past values as predictors. In addition, to eliminate
the linear constraint in the functional time series prediction approach, we propose a functional
version of a nonparametric model that allows using a continuous path in the past to predict future
values of the process, including functional nonparametric regression and functional conditional
quantile and functional conditional mode models, to forecast the container throughput of Shanghai
Port. For the purpose better forecasting, an experiment was conducted to compare our functional
data analysis approaches with other forecasting methods. The results indicated that nonparametric
functional forecasting methods exhibit more significant performance than other classical models,
including the functional linear regression model, nonparametric regression model, and autoregressive
integrated moving-average model. At the same time, we also compared the prediction accuracy of
the three nonparametric functional methods.

Keywords: container throughput forecasting; functional data analysis; time series; nonparametric models

1. Introduction

The world economy has entered an important period of rapid development and
globalization. As an important transportation hub connecting the sea and land, ports are a
key link for each country to realize global international trade and construct a global logistics
transportation system, international logistics, and supply chains. In view of the current
situation of global economic development, ports play an important role in the development
of the national economy. The operation of the port transport industry is a barometer of the
country’s macroeconomy, and the fluctuation of port throughput reflects the development
of world trade. Due to the high efficiency of container handling, fast turnover, packaging
cost savings, and cargo loss reduction, the container-based transportation system has
gradually become the main way of maritime transportation. The container is an important
index to evaluate the comprehensive capability of a port. Accurate prediction of container
throughput is of great significance to port planning, operation, and decision-making and
regional economic development. On the other hand, container throughput is one of the
important factors affecting port carbon emissions, and accurate prediction of container
throughput plays an important role in studying port carbon emissions.

There are many scholars using a variety of different methods to predict container
throughput. The commonly used prediction methods include traditional models (multiple
regression, exponential smoothing, grey prediction, neural networks, combinatorial and
autoregressive models, etc.) and machine learning techniques (support vector machines,
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random forests, deep learning algorithms, etc.). Although these methods have achieved
certain predictive effects, they also have some limitations. For example, multiple linear
regression models explore the linear relationship between variables based on fixed mathe-
matical models. However, in many practical fields, especially in the economic field, there is
often a nonlinear relationship between variables. The grey prediction model is prone to
a rapid increase and decay and a lack of adaptive ability, so it is suitable for short-term
prediction. The neural network model needs a large number of training samples. The
autoregressive integrated moving-average (ARIMA) model can process linear time series
data, but cannot capture nonlinear time series data. The kernel function selection of the
support vector machine method is subjective. The combined models do not guarantee the
size of the weights. Container throughput has the characteristics of randomness, volatility,
and nonlinearity, which increase the difficulty of prediction. Therefore, it is urgent to find a
simple, effective, and high-precision method to predict container throughput.

In recent years, the technological progress of computing tools and computational
capacity has allowed us to deal with a large number of complex and high-dimensional data,
which come from different practical fields. For example, the monthly data of container
throughput, the daily data of temperature, the hourly data of electricity quantity, and the
minute data of stock prices all have functional characteristics. These data are characterized
as curves, shapes, and images, which are usually called functional data. Ref. [1] proposed
functional data analysis methods based on functional analysis techniques, the topology,
and statistics, which are methods of processing functional data. The main idea is to regard
the data observed once in the observation interval as a whole. Functional data form curves,
surfaces, and images allow fully understanding the changes of the whole data, finding the
change rules, mining the data information, and making data analysis more accurate. At
present, functional data analysis has attracted much attention due to its wide application in
many practical areas, such as biology, medical sciences, geophysics, meteorology, pattern
recognition, and so on.

Container throughput data are a kind of nonlinear time series dataset. In order to
achieve the purpose of prediction, the time series methods are very suitable. Time series
are an active field in current statistical research because of their wide application in various
practical fields. There are many time series methods, such as autoregressive, moving aver-
age, grey prediction, ARIMA, seasonal ARIMA models, and so on. However, no research
results consider the functional characteristics of container throughput time series data.
Recent research has attacked the functional time series problem by proposing either para-
metric (mainly linear) or nonparametric modeling. In order to overcome the constraint of
the linear relationship between variables, in this paper, we propose nonparametric methods
with more flexibility and applicability. In 1942, Wolfowitz first used the term nonparametric
statistics, which mainly expanded the content of a parametric test so that the traditional
test process could be applied to small samples and data of different distribution types.
Nonparametric statistics is dedicated to solving the estimation and testing problems of
unknown theoretical distributions and dealing with distribution-independent problems.
Compared with parametric methods, nonparametric methods have wide applicability and
robustness. The nonparametric approaches do not assume specific population distribu-
tions; they are applicable to data from any unknown population distribution and can
describe more problems. Nonparametric methods have relatively few restrictions on the
population distribution.

In order to take a high number of historical data into the time series model, functional
data analysis is a reasonable method. The original time series was composed of 15 curves’
data, which are the measurements of container throughput in Shanghai Port during 15 years
raging from 2007 to 2021. Hence, the time series can be viewed as a list of 12 functional
data. We can use a single functional variable to forecast container throughput rather
than 12 observed points. Hence, the prediction problem can be addressed through a
nonparametric method with dependent functional time series. The aim of this paper was to
develop several prediction models that combine the advantages of nonparametric methods
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with the merits of the functional idea to achieve the purpose of forecasting the yearly
container throughput to compare the prediction accuracy with other classical methods. The
results showed that the nonparametric functional data analysis methods outperformed
other benchmark models.

2. Literature Review

Undoubtedly, an accurate port data analysis can improve a port’s operations and is
helpful for the economic development of the port’s cities and the global economy. The
investigations of container throughput forecasting have continued to deepen and provide
a theoretical basis for the future development of ports. Classical regression models have
traditionally been applied to forecast container throughput and can yield reasonably
acceptable forecasting results. For example, Ref. [2] considered the seasonal ARIMA model
to forecast the monthly container throughput of the top 20 international container ports,
and the results suggested that the seasonal ARIMA model can produce accurate and reliable
throughput forecasting at major international ports. Ref. [3] developed the grey model
(GM) to forecast the port’s throughput, which generated more accurate results. Ref. [4]
applied the Fourier series to modify the GM to predict the cargo throughput of Kaohsing
Port. Ref. [5] collected the foreign trade data from 1996 to 2008 and constructed a back
propagation-artificial neural network (BP-ANN) model to predict container throughput.
Ref. [6] proposed a hybrid method by combining projection pursuit regression and the
genetic programming algorithm to forecast the container throughput of Qingdao Port. The
results showed that the hybrid method significantly outperformed the ANN, seasonal
ARIMA, and projection pursuit regression models. Ref. [7] established the GM, triple
exponential smoothing model, multiple linear regression model, and back propagation
neural network models to forecast the container throughput of both Shanghai Port and
Lianyungang Port. Ref. [8] gave a comparison among some time series methods for
forecasting container throughput. Ref. [9] showed some univariate models to predict the
container throughput of major ports in Asia.

Recently, machine learning approaches have allowed extracting hidden relationships
from the real data and have become more and more important for economics data analysis.
Many studies have been conducted to improve forecasting accuracy by using machine learn-
ing techniques. For example, Ref. [10] proposed the support vector regression (SVR) model
to consider potential influencing prediction to forecast container throughput. Ref. [11]
conducted several hybrid approaches by combining SVR with other methods to forecast
container throughput. The results indicated that a good prediction depends on the seasonal
nature and nonlinear characteristics of the historical data. Ref. [12] employed a deep learn-
ing method to forecast the container throughput of Los Angeles Port. Ref. [13] provided
practical methods for forecasting the container throughout through the random forest
and multilayer perception models. The results implied that the random forest model is a
reasonable choice by comparison with seven competing models. Ref. [14] considered a long
short-term memory (LSTM) deep learning method and seasonal ARIMA model to forecast
the comprehensive and route-based Shanghai Containerized Freight Index. The findings
showed that the LSTM deep learning model outperformed the seasonal ARIMA model.

In the past two decades, functional data analysis has received considerable attention
due to expressing each individual datum in repeatedly measured data as a smooth and
continuous time processes and drawing information from functional data. There are a
significant amount of works devoted to functional data analysis, especially in the fields of
medicine, the environment, sports, economics, and so on. For example, Ref. [15] treated
the data related to the intraocular pressure of patients with right eye glaucoma by func-
tional analysis and prediction based on smoothed functional principal component analysis
(FPCA). Ref. [16] proposed the ranking of functional data by several ranking methods
and applied worldwide PM10 data to generate ranks. Ref. [17] employed regularized
optimization and functional principal component analysisfor prediction and estimation
of sparse functional data and forecasting the behavior of basketball players. Ref. [18]
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introduced several ordinal classification methods for multiargument and multivariate func-
tional data. Their performance was analyzed on four real datasets of the 3D brain structure.
Ref. [19] explored the problems of detecting outliers in German electricity supply functions
and classification of medical imaging data by partially observed functional data with an
integrated functional depth.

Much statistical literature has focused on functional time series by proposing para-
metric and nonparametric modeling. Ref. [20] considered the estimation and prediction
of linear processes in the functional space. In order to reduce modeling biases caused
by the misspecifying parametric models, there has been an upsurge in interest and effort
in nonparametric modeling, which is helpful to explore hidden structures and reducing
modeling biases. Nonparametric functional models have been investigated intensively in
real data analysis. For example, Ref. [21] studied the theoretical results of some kernel esti-
mators of the model and how the procedure was well adapted to some spectrometric data.
Ref. [22] used the reproducing kernel Hilbert spaces framework to consider the functional
nonparametric regression model. Ref. [23] considered Gaussian processes methods for a
nonparametric functional regression model and applied Leeds renal anemia data to confirm
the usefulness of the method. The results showed that the proposed method outperformed
the kernel method, functional additive model, penalized function-on-function regression,
and functional linear model.

In order to import a large number of past values into a nonparametric time series
model by applying the functional data idea, we need to cut the observed time series into
one sample of trajectories and bring in the model one single past and continuous trajectory
rather than many single past values. The literature on functional time series is quite
extensive. For instance, Ref. [24] estimated the conditional mode by maximizing a kernel
estimator of conditional density for the response and almost achieved the convergence
of the proposed estimator under α-mixing assumption. Ref. [25] considered a semi-
functional partial linear model for time series prediction. Ref. [26] established the almost
complete convergence and asymptotic normality of a nonparametric conditional mode
estimator and illustrated the proposed method by using functional El Niño time series
data. Ref. [27] used a nonparametric learning approach based on the support vector
machines technique to estimate functional quantiles and applied it to El Niño time series
prediction. Ref. [28] investigated k-nearest-neighbor (kNN) estimation for a strong mixing
functional time series model and established the uniform almost complete convergence
rate of the proposed estimator. The finite sample performance and the usefulness of the
kNN method were illustrated by an empirical application to a real data analysis of sea
surface temperature. Ref. [29] discussed kernel regression estimation for time series data
with functional response and covariates. Ref. [30] addressed the problem of nonparametric
trend estimation for functional time series and applied the proposed method to annual
mortality rates in France.

By summarizing the literature on forecasting container throughput, it can be found
that the current research works are mainly concentrated on discrete time series and a
linear assumption. There are few analyses of the functional characteristics of the time
series dataset and a flexible structure. Therefore, the main contributions of this paper
include two aspects: (1) We consider functional data analysis methods for the container
throughput of Shanghai Port as continuous trajectoryof a single point, which finds more
information from the functional time series dataset and produces more accurate predictions
than nonfunctional methods. (2) Our research establishes a more flexible relationship
between variables via nonparametric approaches to eliminate the linear constraint, which
yields more accurate predictions and more extensive applications than parametric methods.
Thanks to the advantages of functional data and nonparametric methods, we propose
nonparametric functional data analysis approaches, namely the functional regression
model, functional conditional quantiles model, and functional conditional mode model, to
forecast the container throughput time series.
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The remainder of this paper is organized as follows. We describe and preprocess
the container throughput time series data of Shanghai Port from 2007 to 2021 in Section 3.
Three nonparametric functional data analysis methods and the corresponding kernel es-
timations are presented in Section 4. Section 5 compares the prediction accuracy of the
nonparametric functional models with other benchmark models. Section 6 gives the con-
cluding comments and future research ideas.

3. Data

Shanghai Port is located in Shanghai, China; see Figure 1 for the details. Shanghai Port
gives full play to its advantages, supports the economic development of Shanghai, and
realizes the positive interaction between the port and its cities. The container throughput
of Shanghai Port reached 47 million TEUs on 1 January 2022, ranking first in the world
for 12 consecutive years. This section focuses on an economic time series datasets. The
Shanghai Port monthly container throughput covering a period from January 2007 to
December 2021 (180 months) is plotted in Figure 2. It can be seen that the container
throughput has been seriously affected and fell sharply at the beginning of 2020 due to the
outbreak of COVID-19.

Figure 1. The location of Shanghai Port in China.
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Figure 2. The monthly container throughput of Shanghai Port.
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It is obviously seen that the time series exhibits a linear trend and heterogeneity in the
variance structure from Figure 2. In order to eliminate these effects, we took a new time
series by differentiating the log data. The transformed time series is displayed in Figure 3.

Figure 3. The monthly differentiated log container throughput of Shanghai Port.

In order to predict the future container throughput, the classical statistical methods
take a finite number of historical data into account. It is reasonable to consider the contin-
uous time series over some period as the explanatory variables. Hence, the explanatory
variables were composed of 15 yearly continuous time series. The functional data are given
in Figure 4.

Figure 4. The yearly differentiated log container throughput of Shanghai Port.

The first eigenspace both of the variables and units is given in Figure 5. It is clear that
the structure is visible, which confirms that the historical time series cannot be summarized
by a small number of parameters. That is to say, it would be accurate if the whole of past
years were used to predict the future values.

The descriptive statistic results are listed in Table 1. Because the range of the original
data is huge and has a clear linear trend, for the ease of calculation and correcting the
non-normal distribution problem, as well as effectively eliminating the trend, we reduced
the absolute value of the original data by using the natural differentiated logarithmic value.
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Figure 5. The standard FPCA of the container throughput of Shanghai Port.

Table 1. The descriptive statistic results of container throughput in Shanghai Port.

Data Mean Max Min Std. Dev. Skewness Kurtosis J-B Test

Original data 295.17 432 152.8 59.68 0.08 −0.81 109.06 ***
Log data 5.67 6.07 5.03 0.21 −0.31 −0.56 95.05 ***

Differentiated log data 0 0.4 −0.45 0.12 −0.05 3.42 1.398 ***
Notes: (1) J-B test is the Jarque–Bera normal distribution test statistic. (2) *** stands for the statistical value being
significant at 0.01.

The functional approach to time series forecasting consists of taking the historical
explanatory data as a whole continuous path of the process. Without loss of generality,
we assumed that N = nτ for some n ∈ N∗ and τ > 0. To clarify this, in the container
throughput, we have N = 180, n = 15, and τ = 12. The observed time series can be cut
into n continuous paths of length τ. Hence, we can build a new sample size of n− 1 in the
following way:

Xi = {Zt, (i− 1)τ < t ≤ iτ} and Yi = Z(iτ + s), i = 1, · · · , n− 1, (1)

where {Zt, t ∈ [0,+∞)} is a real-valued time series, which has been observed N equispaced
times. s is the horizon of prediction. The forecasting problem turns into a prediction
question of the scalar response Yi given functional variable Xi.
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4. Methodology

The functional approach to time series can be extended to a more general response
values of following form:

Xi = {Zt, (i− 1)τ < t ≤ iτ} and Yi = g(Xi+1), i = 1, · · · , n− 1, (2)

where g(·) is a known function with a real value. The forecasting question turns into
predicting some characteristic of the future response Yi = g(Xi+1) for some fixed and
real value g(·) from the information obtained in the last period {Xi, i = 1, · · · , n− 1}. In
this paper, we developed standard tools such as nonparametric functional regression and
functional conditional quantile and functional conditional mode models to analyze the
container throughput time series data, which were summarized in [31].

4.1. Nonparametric Functional Regression Model

Assume that a sample of identically distributed pairs {(Xi, Yi), i = 1, · · · , n}. The
functional nonparametric functional regression is defined as follows:

Yi = γ(Xi) + εi, i = 1, · · · , n, (3)

where Xi is functional covariate defined on the interval I. Yi is a real scalar response.
The observed explanatory variable Xi is a functional covariable value in a semi-metric
d(·, ·). γ(·) is an nonlinear operator. εi is an error random variable with E(εi|Xi) = 0 and
Var(εi) = σ2. The model has wide applicability and flexibility and is free from the linear
constraints. In addition, the functional linear model Y =

∫
I X (t)β(t)dt + ε is a special case

of the model.
In application practice, the operator γ(·) is unknown. In order to estimate the nonlinear

operator γ(·), the Nadaraya–Watson kernel method was introduced to estimate γ(·), which
is defined by

γ̂n(X ) =
∑n

i=1 YiK(h−1d(X ,Xi))

∑n
i=1 K(h−1d(X ,Xi))

,

where K is an asymmetrical kernel function and 0 < h = hn → 0 is a sequence of smoothing
parameters as n→ ∞.

4.2. Functional Condition Quantiles Model

In this subsection, we attack the prediction problem of the scalar response Y given
the functional predictor X by functional conditional quantiles. The nonlinear conditional
cumulative distribution operator is defined by

F(X , y) = P(Y ≤ y|X ), y ∈ R.

Hence, for α ∈ (0, 1), the functional conditional quantile is defined by

tα(X ) = inf{F(X , y) ≥ α}, y ∈ R. (4)

We can define a kernel estimator of the functional conditional quantiles tα(X )
as follows:

t̂α(X ) = inf{F̂(X , y) ≥ α}, y ∈ R

where the kernel estimator of F(·, ·) is given by

F̂(Xi, y) = ∑n
i=1 YiK(h−1d(X ,Xi))H(b−1(y−Yi))

∑n
i=1 K(h−1d(X ,Xi))
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with an integrated kernel function H and a sequence of smoothing parameters 0 < b =
bn → 0.

4.3. Functional Conditional Mode Model

In this subsection, we attack the prediction problem of the scalar response Y given
the functional predictor X by the functional conditional mode. Under differentiability
assumption, the nonlinear conditional density operator is defined by

f (X , y) =
∂

∂y
F(X , y).

The functional conditional mode is defined as follows:

θ(X ) = arg sup
y∈S

f (X , y), S ⊂ R. (5)

The kernel estimators of f (·, ·) and θ(·) are, respectively, defined by

f̂ (X , y) =
b−1 ∑n

i=1 YiK(h−1d(X ,Xi))G(b−1(y−Yi))

∑n
i=1 K(h−1d(X ,Xi))

and
θ̂(X ) = arg sup

y∈S
f̂ (X , y), S ⊂ R,

where G is another kernel function.

5. Empirical Analysis
5.1. Data Description

This section focuses on an application to economic time series coming from the con-
tainer throughput of Shanghai Port described in Figure 2. We downloaded the monthly
container throughput covering a period from January 2007 to December 2021 (180 months)
from the official web page (https://www.portshanghai.com.cn/tjsj/index.jhtml) (accessed
on 15 January 2022) of Shanghai International Port Group. The differentiated log data were
recorded as a sequence of real numbers, which are composed of N = 180 real data. To
better use the functional methodology, we cut the original time series into a set of functional
data. Hence, we chose τ = 12. The data were put into a new matrix file of size 15× 12,
which is organized in Table 2. For the purpose of prediction, we used the means of the data
corresponding to the 14 previous data to predict the 15th year.

Table 2. The yearly container throughput expressed by a functional dataset.

Number Month 1 Month 2 · · · Month j · · · Month 11 Month 12

Year 1 z1 z2 · · · zj · · · z11 z12
Year 2 z13 z14 · · · zj · · · z23 z24

...
Year i z1+12(i−1) z2+12(i−1) · · · zj+12(i−1) · · · z11+12(i−1) z12+12(i−1)

...
Year 14 z217 z158 · · · zj+156 · · · z167 z168
Year 15 z169 z170 · · · zj+12(i−1) · · · z179 z180

5.2. Evaluation Criteria

In order to measure the performance of each prediction method, we considered the
following three evaluation criteria, i.e., mean-squared error, mean average error, and mean
average percent error. Given 12 pairs of the observed value yi and the predicted value ŷi,
the three evaluation criteria are the measure of accuracy of ŷi simulating yi and are defined

https://www.portshanghai.com.cn/tjsj/index.jhtml
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as follows:

(1) Mean-squared error (MSE):

MSE =
1
12

12

∑
i=1

(
yi − ŷi

)2, i = 1, · · · , 12.

(2) Mean average error (MAE):

MAE =
1

12

12

∑
i=1

∣∣yi − ŷi
∣∣, i = 1, · · · , 12.

(3) Mean average percent error (MAPE):

MAPE =
1

12

12

∑
i=1

|yi − ŷi|
yi

, i = 1, · · · , 12.

5.3. Parameters Setting

Before the simulation analysis, some parameters need to be determined. In the non-
parametric functional model, the semi-metric, kernel functions, and bandwidths have to
be predefined. In terms of the smoothness of the simulation curves, we used the FPCA
semi-metric, which has the following form

dFPCA
q (X ,Xi) =

{ q

∑
i=1

( ∫ [
X (t)−Xi(t)

]
vk(t)dt

)2}1/2
, k = 1, 2, · · · ,

where v1, v2, · · · are the orthonormal eigenfunctions of the covariance operator E[X (t)X (s)].
q is a tuning parameter, which allows us to obtain the best empirical mean-squared errors;
here, we took q = 2. In following simulations, we took the kernel functions to be the
quadratic kernel, which is defined as follows:

K(x) = H(x) = G(x) =
3
4
(1− x2)I[0,1](x).

In addition, motivated in Ferraty and Vieu (2002), the optimal bandwidths hopt and
bopt were obtained by the cross-validation procedure.

5.4. Comparison of Different Models

To demonstrate the usefulness of the proposed models, the statistical models used to
compare the different predictions are given in Table 3. We first compared the FNR model
against NR model to illustrate the advantages of the functional data. Subsequently, we
compared the FNR model to the FLR model to show that the non-parametric method is
superior to the parametric method. After that, to demonstrate the overall advantage of
the functional time series over classical time series, the FNR, FCQ, and FCM models were
compared to the ARIMA model, because the monthly container throughput data show
regular fluctuations. Finally, in order to select the best nonparametric functional method, we
further compared the performance of the FNR, FCR, and FCM models. In this simulation,
we applied the MSE, MAE, and MAPE to measure the accuracy of the forecasting models.
The comparison results are presented in Tables 4–6 using the R software.
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Table 3. The different prediction models.

Models Definition Notations

Functional nonparametric regression model Y = γ(X ) + ε FNR
Functional conditional quantile tα(X ) = inf{F(X , y) ≥ α} FCQ

Functional conditional mode θ(X ) = arg supy∈S f (X , y) FCM
Functional linear regression model Y =

∫
X (t)β(t)dt + ε FLR

Nonparametric regression model Y = γ(X) + ε NR
Classical time series models ARIMA(0, 0, 1) ARIMA

(1) Comparison between different nonparametric regression models:
Figure 6 describes the curves of the FNR and NR models. Table 4 compares their

performance in terms of the MSE, MAE, and MAPE. From Figure 6 and Table 4, we can
draw the conclusion that the FNR model had smaller errors than the NR model, which
implies that functional data produce more accurate predictions. The reason may be that
the classical nonparametric regression model treats the original time series as single points
regardless of the continuity of the dataset.
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Figure 6. The curves of the true value, FNR model and NR model.

Table 4. The results of forecasting errors for different models.

Models MSE MAE MAPE

FNR 0.0097 0.0848 0.9076
NR 0.0110 0.0896 0.9609

(2) Comparison between different functional regression models:
Figure 7 describes the curves of the FNR and FLR models. Table 5 compares their

performance in terms of prediction errors. From Figure 7 and Table 5, it can be seen
that the FNR model achieved smaller errors than the FLR model, which implies that the
nonparametric estimation method yields more accurate predictions. The cause might be
that the FLR model assumes that the relationship between historical data and current data
is linear, ignoring the nonlinear fluctuations of the time series dataset.
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Figure 7. The curves of the true value, FNR model and FLR model.

Table 5. The results of forecasting errors for different models.

Models MSE MAE MAPE

FNR 0.0097 0.0848 0.9076
FLR 0.0109 0.0887 1.0793

(3) Comparison among different time series models:
In this simulation, we selected the optimal model ARIMA(0,0,1) by the AIC and

BIC. In Figure 8, plots of the three functional nonparametric forecasting methods and
the ARIMA model are presented. Table 6 gives the prediction errors to compare their
performance. Figure 8 and Table 6 show that the functional nonparametric methods for
time series forecasting were more accurate than the classical ARIMA model in the same
setting. Essentially, the ARIMA model can only capture the linear relationship, but not the
nonlinear relationship. In addition, the FCQ model performed better than the FNR and
FCM models.
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Figure 8. The curves of the true value, FNR model, FCQ model, FCM model, and ARIMA model.
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Table 6. The results of forecasting errors for different models.

Models MSE MAE MAPE

FNR 0.0097 0.0848 0.9076
FCQ 0.0065 0.00661 0.8795
FCM 0.0108 0.0884 1.0751

ARIMA 0.0109 0.0941 1.3151

(4) Comparison among different functional nonparametric models:
In Figures 9–11, each of the three plots is concerned with the different forecasting

methods (FNR, FCQ, or FCM). What can be said from these results is that each of the
three functional approaches for time series forecasting gave appealing results on this
dataset. Specially, the FCQ model’s performance had a slight advantage over the FNR and
FCM models.

Figure 9. The curves of the true value (solid line) and FNR model (dotted line) with MSE = 0.0097.

Figure 10. The curves of the true value (solid line) and FCQ model (dotted line) with MSE = 0.0065.



J. Mar. Sci. Eng. 2022, 10, 1712 14 of 16

Figure 11. The curves of the true value (solid line) and FCM model (dotted line) with MSE = 0.0108.

6. Concluding Remarks

Container throughput time series data show strong functional characteristics with
the passage of time. However, in the existing literature, only single past values ignore the
continuity of the past values. In this research, we developed one new statistical method,
nonparametric functional data analysis, to predict container throughput time series by
taking into account one continuous set of past values as the predictors, which not only
effectively avoided the limitation of the linearity assumption, but also could mine more
data information and produce more accurate predictions.

A comparison among the FNR, FCQ, FCM, NR, FLR, and ARIMA models was consid-
ered and applied to forecast the container throughput time series of Shanghai Port. The
models were proposed to forecast the container throughput of the 15th year, for which the
historical dataset in a 14 year period is available. The forecasting accuracy results of the
proposed models were presented in the form of the measurement criteria MSE, MAE, and
MAPE. At the same time, the forecasting curves of all the prediction models were plotted.
The conclusions suggested that: (1) functional data find more information than discrete
points; (2) nonparametric methods are more widely applied and flexible than parametric
methods; (3) functional time series analysis outperforms classical time series models. On
the other hand, among these three nonparametric functional forecasting models, the best
forecasting performance could be obtained by means of the FCQ model.

Due to the lack of scientific works focusing on forecasting container throughput by
functional data analysis, the main contribution of this paper shows that the nonparamet-
ric functional models are reliable for forecasting container throughput. More accurate
forecasting results help with management decisions.

It is interesting and challenging to study the main factors affecting the comprehensive
level of ports by functional principal component analysis method, and classify ports
based on the functional cluster analysis method, which will be used to compare with the
traditional principal component analysis and cluster analysis. The goal is to classify ports
more effectively and optimize port indicators more accurately.
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