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Abstract: The golden tide, a large biomass bloom of the brown macroalgae Sargassum horneri, occurs
yearly in the Yellow Sea, where it causes enormous economic and ecologic losses. To investigate
the response of S. horneri to global warming and eutrophication, S. horneri was cultured under six
conditions of varying temperature combinations (20 and 24 ◦C) and nitrogen levels (5, 30, and 300 µM).
The growth, photosynthetic performance, pigment content, and contents of soluble protein were
assessed. The growth of S. horneri followed an increasing trend with increasing N concentration at
ambient temperature. Elevated temperatures had an inhibitory effect on growth and photosynthesis
in S. horneri, which was further enhanced by eutrophication. This suggests that in the globally
warming environment of the future, eutrophication may reduce the frequency and scale of gold tide
outbreaks during the hot season.

Keywords: blooming mechanisms; golden tide; elevated temperature; nitrogen enrichment;
Sargassum horneri

1. Introduction

Since the industrial revolution, the concentration of carbon dioxide (CO2) in the at-
mosphere has continually increased as a result of the massive combustion of fossil fuels
and other human activities. This increase in atmospheric CO2 concentrations will not only
increase the acidity of the oceans [1], but will also lead to global warming and higher sea
temperatures [2–4]. It has been predicted that the atmospheric CO2 concentration will
reach about 1000 µatm in the atmosphere by the end of the 21st century [5]. In response,
sea surface temperatures will rise by 1–3 ◦C [6]. Variations in the sea surface temperatures
have been shown to significantly impact marine life and ultimately also the composition
of marine communities [7,8]. Macroalgae are a vital element of the primary productivity
of marine ecosystems, because of their high photosynthetic productivity [9]. Recently,
a growing number of researchers suggested that macroalgae play an important role in
marine carbon sequestration, thus highlighting their importance as a potential measure
to mitigate the effects of man-made CO2 emissions [10–13]. Macroalgae are commonly
subject to temperature fluctuations caused by tide, daytime, and seasonal variations in
their natural seawater habitat [14,15]. The response of algae to temperature changes is
specific. It has been shown that an increase in temperature promotes the growth of the
brown macroalga Sargassum horneri [16]. However, increasing temperatures may have
negative effects on phytoplankton productivity, biomass, and species diversity [17,18].
Earth system models predict that oceanic warming will cause a reduction in ocean phy-
toplankton primary production by 20% throughout the 21st century [19,20]. To truly and
comprehensively identify the response of algae to continuous global warming, a number
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of scholars proposed that the physiological properties of algae should be considered at
various temperatures [21,22]. Although the interaction between temperature and nutrients
on algal growth has been studied [23]. The survival, growth, reproduction, metabolic rate,
biochemical composition, and geographical distribution of macroalgae are all significantly
affected by temperature [24]. In aquatic ecosystems, temperature and nutrient availability
are the main drivers of phytoplankton productivity [25]. Under the context of global warm-
ing, coastal eutrophication caused by human activities cannot be ignored. With the rapid
development of mariculture in recent years, the contents of nitrogen (N) and phosphorus
(P) in the coastal ecosystem have increased [26]. Eutrophication has been shown to be
caused by the excessive availability of organic nutrients, which is one of the major threats
to biodiversity and ecosystem functions in the global oceanic environment [27]. Macroalgae
can absorb large quantities of N, P, and other nutrients from the seawater, and therefore,
play an important role in the alleviation of eutrophication [28,29]. The concentration of
nutrients in seawater is a key factor affecting the growth of macroalgae [30,31]. N has been
demonstrated to be the most important nutrient for the growth of Ulva prolifera because
of its higher uptake rate per unit biomass of N compared with P [32–34]. One of the
more apparent consequences of eutrophication is that it can lead to algal blooms, such
as green tides and golden tides [35]. S. horneri is one of the most common macroalgae in
China [36]. Because of its huge biomass [37] and strong nutrient absorption capacity, this
macroalgae has become the main choice for the reconstruction of algal beds [38]. Since 2010,
the gold boom caused by S. horneri has received increasing attention [39]. The effect of
various nutrients on the physiological properties of Sargassum species has been intensively
studied [40–42]. It has been shown that nutrient enrichment promotes the growth and
photosynthesis of Sargassum [40]. However, it has been shown that golden tides caused by
Sargassum natans were more likely caused by particular oceanographic processes than by
eutrophication [35].

Global warming and eutrophication are not isolated events; rather, they are intercon-
nected and occur simultaneously, especially in coastal waters. Temperature and nutrition
are the two most powerful drivers of biological processes, thus limiting primary production
worldwide [43–45]. The interaction effect of both factors may be completely different or
exceed the effect of any single factor. For example, significant differences in temperature
and nutrition efficiency were found between phytoplankton species [46,47]. Most previous
studies focused on temperature changes below the optimum temperature of the investi-
gated species, and little is known about the interaction between temperature increases
beyond the optimum temperature and eutrophication in S. horneri. This study selected
S. horneri and investigated their response to interactions between oceanic warming and
eutrophication. The results help to predict the future trends of the occurrence of golden
tides caused by eutrophication under the background of global warming.

2. Materials and Methods
2.1. Sample Collection

In September 2019, S. horneri was collected from Weihai (122.12◦ E, 37.52◦ N), Shandong
Province, China. The dissolved total nitrogen concentration was about 30 ± 1.42 µmol·L−1,
while the concentration of PO4-P was 3.34 ± 0.21 µmol·L−1. Water samples were analyzed
based on the specifications for an oceanographic survey (GB/T 12763.4-2007). The collected
macroalga was saved in a cold box and immediately transported to the laboratory. The
macroalga was cleaned with sterile seawater by gently rinsing thalli to remove debris and
epiphytes. Prior to experiments, healthy S. horneri thalli were cultured in bottles containing
sterile artificial seawater, enriched with 30 µM NaNO3 and 10 µM KH2PO4. This artificial
seawater was continuously aerated and the medium was changed every two days. The
temperature was set to 20 ◦C, the light intensity was set to 80 µmol photons m−2s−1, and
the photocycle was 12:12 h (light: dark). These cultural conditions were controlled by an
incubator (Jiangnan, Ningbo, China). After one week of laboratory acclimatization, healthy
thalli were randomly selected and used as experimental materials.
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2.2. Experimental Design

Since the water temperature at the sampling site was about 20 ◦C, and the expected
future temperature under global warming will rise to 4 ◦C in 2100 (IPCC, 2014) [48], two
temperature levels (20 ◦C, ambient temperature (CT), and 24 ◦C, elevated temperature (ET))
and other cultural conditions (light intensity: 80 µmol photons m−2s−1; photocycle: 12:12 h
(light: dark)) were maintained by two GXZ-300C intelligent light incubators (Jiangnan,
Ningbo, China). Three different N concentrations were obtained by controlling the amount
of added NaNO3: High N (HN, 300 µM); intermediate N (IN, 30 µM) (simulating ambient
nutrient level), and low N (LN, 5 µM). The following six treatments were investigated: CT
+ LN, CT + IN, CT + HN, ET + LN, ET + IN, and ET + HN. Each treatment was conducted
in three triplicates, with a total of 18 bottles in this experiment. Healthy thalli were cultured
in round 500-mL bottles containing artificial seawater enriched with 10 µM PO4

3− (to
avoid P restriction) and with three N concentrations, at a stocking density of 0.4 g/L. The
medium was aerated and replaced every two days. The fresh weight of the macroalga was
measured to assess the algal growth rate. After one week, the chlorophyll fluorescence,
photosynthetic rate, pigments, and soluble proteins were measured.

2.3. Measurement of Growth

The relative growth rate (RGR) is an important indication of algal growth, measured
as the fresh weight of algae. The following equation was used to calculate the RGR: RGR (%
day−1) = 100 × (LnNt−LnNo)/t, where N0 represents the initial fresh weight, Nt represents
the final fresh weight, and t represents the number of culture days during the experiment.

2.4. Chlorophyll Fluorescence Measurements

The relative electron transfer rate (rETR), the effective quantum yield (Fv’/Fm’), and
the maximum quantum yield (Fv/Fm) of S. horneri were measured using the Aqua Pen
fluorometer (AP-C 100, PSI, Berlin, Germany). The Fv/Fm of S. horneri was obtained after a
saturation pulse (5000 µmol photons m−2s−1, for 0.6 s), after 15 min of dark acclimatization.
The rETR was calculated as follows [49]:

rETR (µmol e− m−2 s−1) = yield × 0.5 × PAR, (1)

where yield represents the effective photosynthetic quantum yield of PSII, 0.5 is the ratio of
absorbed light to total incident light, and PAR represents the actual light intensity (µmol
photons m−2s−1). The rapid light curves were determined under different photosyntheti-
cally active photon fluxes. The fitting formula is shown in the following [50]:

rETR = Pm × tanh(α × PAR/Pm) (2)

2.5. Measuring the Photosynthetic Rate

The photosynthetic oxygen evolution of S. horneri was measured using a Clark-type
oxygen electrode (YSI model 5300A, Yellow Springs, OH, USA). The temperature was
constantly controlled at either 20 ◦C or 24 ◦C by an LKB constant temperature water
circulator (DHX-2005, Xianou, Nanjing, China), separately. The macroalga S. horneri thalli
were cut into segments of 1 cm length, and then restored under growth conditions for 1 h.
Approximately 0.02 g of S. horneri (fresh weight) was transferred to an oxygen electrode
chamber containing 8 mL of artificial medium to determine photosynthesis. Decreased
values of oxygen content in seawater were defined as the respiration rate after 5 min of
acclimatization to darkness, while increased values were defined as the net photosynthetic
rates in response to the cultivation light density (80 µmol photons m−2s−1), respectively.

2.6. Pigments Measurement

About 0.02 g of S. horneri (fresh weight) was dissolved in 10 mL of absolute methanol
at 4 ◦C for 24 h in darkness [51]. The contents of photosynthetic pigments (chlorophyll-α
(Chl a) and carotenoids (Car)) were estimated according to Wellburn (1994) [52].



J. Mar. Sci. Eng. 2022, 10, 1692 4 of 14

2.7. Soluble Protein Determination

Soluble protein (SP) contents in S. horneri were determined via Coomassie Brilliant
Blue G-250 dye combination according to Kochert (1978) [53]. Approximately 0.02 g of
S. horneri (fresh weight) was homogenized in a mortar with phosphoric acid buffer. The
solution was diluted to 10 mL with buffer, centrifuged at 5000 rpm for 15 min, and then
used to determine the SP content using an ultraviolet spectrophotometer. The absorbance
of the supernatant was recorded at 595 nm. Bovine serum albumin (BSA) was used as
the standard.

2.8. Data Analysis

The results were expressed as means of replicates ± standard deviations. Data were
processed by Origin 2018 software, using one-way analysis of variance (ANOVA) (Tukey’s
post hoc test) or multiple comparisons to analyze the difference between treatments. Two-
way ANOVA was conducted to assess the interactive effects of temperature and N concen-
tration. p < 0.05 was considered to represent a significant difference, which was indicated
by different letters in figures.

3. Results

The influence of temperature and N concentration on the growth of S. horneri is
shown in Figure 1. Two-way ANOVA analysis indicated that both temperature and N
concentration had an interactive effect, and temperature exerted a major effect on the RGR
of S. horneri (see Table 1). A posthoc Tukey HSD comparison showed that there was no
significant difference in the RGR of S. horneri under elevated temperature regardless of
N concentration (p > 0.05). The RGR of S. horneri followed a slowly declining trend with
increasing N concentration. Then, at normal temperature, the RGR of S. horneri followed an
increasing trend with increasing N concentration, and the RGR of the high N condition was
significantly higher than those of both low N and intermediate N (p < 0.05). In addition,
at the same N concentration, the elevated temperature decreased the RGR of S. horneri.
At elevated temperatures, the RGR was significantly lower than at normal temperatures
(p < 0.05).

Figure 1. Relative growth rate (RGR) of Sargassum horneri under low nitrogen (LN), intermediate N
(IN), and high N (HN) treated by ambient temperature (CT) and elevated temperature (ET) during
the experiment. Data are means ± SD (n = 3). Horizontal lines represent significant differences
(p < 0.05) among the temperature levels at the same N concentration, the different capital letters
represent significant differences (p < 0.05) among N concentrations at the elevated temperature, while
the different lower-case letters represent significant differences (p < 0.05) among N concentrations at
the ambient temperature.
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Table 1. Two-way analysis of variance (ANOVA) for the effects of different temperatures and nitrogen
(N) concentrations on the relative growth rate (RGR) of Sargassum horneri. Abbreviations: degree of
freedom (DF), value of the F statistic (F-value).

Source RGR (% d−1)

DF F-Value p-Value

Temperature 1 24.68844 <0.001
N concentration 2 0.69394 0.51858

Temperature*N concentration 2 8.72092 0.00458

The Fv’/Fm’ and Fv/Fm of S. horneri at different N concentrations and temperatures
are shown in Figure 2. Two-way ANOVA analysis indicated that both temperature and N
concentration had an interaction effect, where temperature played a major role (Table 2).
A posthoc Tukey HSD comparison showed that, under the same temperature conditions,
regardless of N concentration, the Fv’/Fm’ of S. horneri was not significantly different
(p > 0.05). At the low N and intermediate N conditions, the elevated temperature only
increased Fv’/Fm’ under the condition of high N (p < 0.05). Fv/Fm showed a similar response
trend to Fv’/Fm’, where elevated temperature played a significant role. Under the conditions
of intermediate N and high N, elevated temperature significantly promoted Fv/Fm (p < 0.05).
At ambient temperature, Fv/Fm was significantly higher for low N than for intermediate N
and high N (p < 0.05), while other differences were not significant (p > 0.05).
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Figure 2. The effective quantum yield (Fv’/Fm’) (A) and maximum quantum yield (Fv/Fm) (B) of
S. horneri under LN, IN, and HN treated by CT and ET. Data are means ± SD (n = 3). Horizontal lines
represent the significant difference (p < 0.05) among the temperature levels at the same N concentra-
tion, the different capital letters represent significant differences (p < 0.05) among N concentrations
at the elevated temperature, while the different lower-case letters represent significant differences
(p < 0.05) among N concentrations at the ambient temperature.

Table 2. Results of two-way ANOVA for S. horneri under low nitrogen (LN), intermediate N (IN),
and high N (HN) treated by ambient temperature (CT) and elevated temperature (ET).

Source DF F-Value p-Value

Fv’/Fm’
Temperature 1 17.68605 0.00122

N concentration 2 0.36047 0.70465
Temperature*N concentration 2 4.5 0.03482

Fv/Fm
Temperature 1 46 <0.001

N concentration 2 2.63043 0.1129
Temperature*N concentration 2 6.28261 0.01359
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The effects of temperature and N concentration on the chlorophyll fluorescence param-
eters of S. horneri are shown in Figure 3 and Table 3. Two-way ANOVA analysis identified
an interaction between temperature and N concentration, which affected the maximum
relative electron transfer rate (rETRmax), light energy utilization rate (α), and saturated
light intensity (Ik). Temperature strongly affected the chlorophyll fluorescence parameters
of S. horneri (Table 4). At normal temperatures, high N significantly inhibited rETRmax,
α, and Ik (p < 0.05), while elevated temperature alleviated this inhibition. At the same N
concentration, an increase in temperature promoted rETRmax, α, and Ik, while increased N
concentration aggravated this promotion (p < 0.05). In addition, at elevated temperatures,
Ik was only significantly lower in the low N condition compared with the intermediate N
condition and the high N condition (p < 0.05). The influences of other N concentrations on
rETRmax, α, and Ik were not significant (p > 0.05).

Figure 3. Rapid light curve (RLC) of photosynthetic system II (PSII) of S. horneri under LN, IN, and
HN, treated by CT and ET. Data are means ± SD (n = 3).

Table 3. Photosynthetic parameters of the rapid light curve of S. horneri under LN, IN, and HN treated
by CT and ET. rETRmax represents the maximum relative electron rate, α represents the light harvest-
ing efficiency, and Ik represents the photosynthesis saturated light intensity. Significant differences
are indicated by different letters (one-way ANOVA), and values represent the mean ± SD (n = 3).
* represents a significant difference (p < 0.05) among temperature levels at the same N concentration,
the different capital letters represent significant differences (p < 0.05) among N concentrations at the
elevated temperature, while the different lower-case letters represent significant differences (p < 0.05)
among N concentrations at the ambient temperature.

Treatments rETRmax
µmol e− m−2 s−1 α

Ik
µmol Photos m−2 s−1

CT + LN 82.19 ± 6.17 a 0.27 ± 0.02 a 299.58 ± 17.14 a

CT + IN 110.17 ± 8.64 b 0.33 ± 0.01 b 331.61 ± 13.53 a*
CT + HN 59.14 ± 2.49 c* 0.29 ± 0.01 b* 202.46 ± 9.30 b*
ET + LN 100.28 ± 11.11 A 0.31 ± 0.03 A 318.82 ± 24.23 A

ET + IN 106.03 ± 8.76 A 0.29 ± 0.02 A 362.15 ± 12.89 B*
ET + HN 118.59 ± 2.96 A* 0.32 ± 0.01 A* 368.80 ± 3.42 B*
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Table 4. Results of two-way ANOVA for photosynthetic parameters derived from the rapid light
curves (RLCs) of PSII of S. horneri under LN, IN, and HN, treated by CT and ET.

Source DF F-Value p-Value

rETRmax
Temperature 1 49.34006 <0.001

N concentration 2 12.08173 0.00133
Temperature*N concentration 2 28.61007 <0.001

α

Temperature 1 1.11486 0.31182
N concentration 2 1.18812 0.33823

Temperature*N concentration 2 6.75108 0.01085
Ik

Temperature 1 105.50349 <0.001
N concentration 2 25.87745 <0.001

Temperature*N concentration 2 45.41122 <0.001

The effects of temperature and N concentration on the net photosynthetic rate and the
dark respiration rate of S. horneri are shown in Figure 4. Two-way ANOVA analysis indi-
cated that both temperature and N concentration had an interaction effect, which affected
both the net photosynthetic rate and the dark respiration rate of S. horneri (Table 5). The
effect of N concentration was not significant at ambient temperature (p > 0.05). Increasing
the temperature significantly promoted the net photosynthetic rates (p < 0.05), while this
effect could be offset by increasing the N concentration. The difference in the net photosyn-
thetic rate of the two temperatures was not significant (p > 0.05) under the high N condition
only. With regard to the dark respiration rate, the impact of increasing temperature at low
N was not significant (p > 0.05). At intermediate N concentration, elevated temperature
significantly inhibited the dark respiration rate (p < 0.05), while elevated temperature
significantly increased the dark respiration rate at high N (p < 0.05). The dark respiration
rate under intermediate N was significantly higher than that of low N and high N under
normal temperature (p < 0.05). The dark respiration rate at high N was significantly higher
than at both low N and intermediate N under elevated temperature (p < 0.05).

Figure 4. Net photosynthetic rate(A) and dark respiration rate (B) of S. horneri under LN, IN, and HN,
treated by CT and ET. Data are means ± SD (n = 3) Horizontal lines represent significant differences
(p < 0.05) among the temperature levels at the same N concentration, the different capital letters
represent significant differences (p < 0.05) among N concentrations at the elevated temperature, while
the different lower-case letters represent significant differences (p < 0.05) among N concentrations at
the ambient temperature.
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Table 5. Results of two-way ANOVA for net photosynthetic rate (NPR) and dark respiration rate
(DRR) of S. horneri under LN, IN, and HN, treated by CT and ET.

Source DF F-Value p-Value

NPR
Temperature 1 64.89353 <0.001

N concentration 2 13.19405 <0.001
Temperature*N concentration 2 13.71753 <0.001

DRR
Temperature 1 0.79293 <0.001

N concentration 2 17.09959 <0.001
Temperature*N concentration 2 31.733 <0.001

The effects of temperature and N concentration on the photosynthetic pigments of S.
horneri are shown in Figure 5. Two-way ANOVA analysis indicated that both temperature
and N concentration had an interaction effect, which affected the photosynthetic pigments
of S. horneri (Table 6). Chl a and Car followed the same trend. Under low N and intermediate
N, Chl a and Car did not change significantly by increasing the temperature (p > 0.05),
while elevated temperature significantly increased the contents of Chl a under high N
(p < 0.05). In the conditions with elevated temperatures, the amount of Chl a under the
high N concentration was significantly higher than under both low N and intermediate
N concentrations (p < 0.05). Under ambient temperature conditions, the amount of Car in
high N was significantly lower than that of low N and intermediate N (p < 0.05).
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Figure 5. Contents of Chlorophyll-a (Chl a) (A) and carotenoids (Car) (B) of S. horneri under LN,
IN, and HN treated by CT and ET. Data are means ± SD (n = 3). Horizontal lines represent the
significant difference (p < 0.05) among the temperature levels at the same N concentration, the
different capital letters represent significant differences (p < 0.05) among N concentrations at the
elevated temperature, while the different lower-case letters represent significant differences (p < 0.05)
among N concentrations at the ambient temperature.
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Table 6. Results of two-way ANOVA for chlorophyll α (Chl α) and carotenoids (Car) of S. horneri
under LN, IN, and HN, treated by CT and ET.

Source DF F-Value p-Value

Chl α
Temperature 1 17.01619 0.00141

N concentration 2 8.08644 0.00597
Temperature*N concentration 2 10.29292 0.00249

Car
Temperature 1 1.33014 0.27124

N concentration 2 0.71039 0.511
Temperature*N concentration 2 11.3529 0.00171

The effects of temperature and N concentration on the contents of soluble protein
in S. horneri are shown in Figure 6. Two-way ANOVA analysis (p = 0.05) indicated that
both temperature and N concentration had an interaction effect, which affected the soluble
protein content of S. horneri (Table 7). The soluble protein followed the opposite trend than
RGR. With increasing N concentration and under ambient temperature, the contents of
the S. horneri soluble proteins decreased and were significantly lower under high N than
under low N (p < 0.05). The soluble protein contents decreased in response to elevated
temperatures. For all N concentrations, elevated temperature significantly inhibited the
content of soluble protein (p < 0.05), while an increase in N concentration alleviated this
inhibitory effect.

Figure 6. Contents of soluble protein (SP) of S. horneri under LN, IN, and HN treated by CT and ET.
Data are means ± SD (n = 3). Horizontal lines represent significant differences (p < 0.05) among the
temperature levels at the same N concentration, the different capital letters represent significant dif-
ferences (p < 0.05) among N concentrations at the elevated temperature, while the different lower-case
letters represent significant differences (p < 0.05) among N concentrations at the ambient temperature.

Table 7. Results of two-way ANOVA for soluble protein (SP) of S. horneri under LN, IN, and HN,
treated by CT and ET.

Source DF F-Value p-Value

SP
Temperature 1 59.90949 <0.001

N concentration 2 2.49521 0.12413
Temperature*N concentration 2 7.11245 0.00918
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4. Discussion

Global warming caused by increasing CO2 levels (as a result of the greenhouse effect)
challenges the environmental resilience of coastal marine organisms. Macroalgae play a
vital role in the processes of the marine ecosystem, particularly in the intertidal zone [9].
Therefore, intertidal macroalgae are often selected as model systems to study the impact of
the environment on intertidal organisms [54,55]. Bloom-forming species have been found
to be most sensitive to environmental changes. Therefore, blooming species of macroalgae
such as Ulva prolifera and Ulva linza have increasingly attracted attention [16,56,57]. Out-
breaks of macroalgal blooms are often associated with eutrophication, which increases their
intensity and duration [58].

Growth is a comprehensive expression of various physiological characteristics of
algae. When the sea surface temperature was about 20 ◦C in Weihai, the largest scale
of S. horneri was observed. The phenomenon is consistent with the previous research
which suggested that the optimal growth temperature of adult S. horneri was 20 ◦C [59,60].
Compared with adult blades of S. horneri, the optimal growth temperature of seedlings
was higher, which was between 20 and 25 ◦C [60]. The growth would be inhibited under
supra- or sub-optimum conditions. In our study, warming induced an inhibitory effect on
the growth of S. horneri, which was intensified by eutrophication. This differs from the
results that both the growth and metabolic rate of macroalgae are promoted by elevated
temperatures [61]. This difference likely emerges because the temperatures applied by
these other studies remained below the optimal temperature, while the present study
uses a temperature above the optimal temperature. Previous studies have shown that the
metabolic rate of organisms increases exponentially with increasing temperature; how-
ever, after reaching the optimal temperature, the metabolic rate decreases exponentially
with increasing temperature [30,62,63]. Even with sufficient availability of nutrients, in-
creasing temperatures can cause growth rates to slow or worsen. Studies predicting the
ecological impact of expected temperature changes have shown that many species will be
adversely affected during this century, particularly in tropical (i.e., higher temperature)
regions [18,64–66]. The present study showed that the growth of S. horneri followed an
increasing trend with increasing N concentration at ambient temperature. However, under
the condition of elevated temperature, the growth of S. horneri decreased with increasing N
concentration, although this trend was not significant. The N concentration in seawater has
been suggested to be a limiting factor of algal growth [67]. In this study, S. horneri showed
no sensitivity to changing N concentrations. To explain this result, it is first necessary to
consider that S. horneri itself lives in coastal waters, which are greatly affected by human
activities, and that S. horneri has wide adaptability to N concentration. Secondly, differences
exist between different species of algae, and their response to N concentration is also
different. For example, it has been shown that an increased N concentration can promote
the growth of Ulva lactuca [68]. N enrichment did not affect the growth rates of Sargassum
fluitans or Sargassum natans [69]. In the present study, eutrophication was found to intensify
the growth-inhibiting effect under increasing temperature, which may be a result of the
interaction between temperature and N concentration.

Previous studies have shown that when exposed to environmental stress, algae can
regulate their pigment content to maintain physiological balance [70]. The results of the
present study indicated that the contents of Chl a and Car in S. horneri were significantly
increased by warming under eutrophication. Similar results have been reported for other
algae [71]. Therefore, the effective photosynthetic efficiency and maximum photosynthetic
efficiency of PSII were clearly increased, and photosynthesis increased with increasing
temperature. This is consistent with the research results of Zou and Gao [72] on Gracilaria
lemaneiformis. Increased N concentration increases the pigment contents, key rate-limiting
enzymes (i.e., Rubisco) and other N-containing compounds in the photosynthetic reaction;
the substrate concentration in the photosynthetic process also increases, thus improving
photosynthesis in algae [73,74]. However, under high N, warming counteracts this boost.
A study of Gracilaria lemaneiformis showed that the photosynthetic rate of algae increased
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with increasing temperature, but only if the temperature remains within an appropriate
range [75]. The photosynthetic rate decreases at temperatures above or below the optimal
temperature. When the optimal temperature of algae is exceeded, the higher the tempera-
ture, the lower the photosynthetic rate of algae. This suggests that high temperatures inhibit
the activity of the Rubisco enzyme in photosynthesis and in response, the carboxylation
ability of Rubisco decreases. It has been reported that in an environment with sufficient
N availability when the absorption of N by algae exceeds the requirement for photosyn-
thesis, the photosynthetic capacity of algae tends to be saturated by further increasing
the N concentration [76]. It has also been shown that increasing N concentration may
inhibit the photosynthesis of algae and decrease their photosynthetic capacity. This may be
because the structure of photosynthetic proteins changed and photosystem II is inhibited
at super-optimal temperatures [77,78]. It may also be that adapting to high temperatures
may require higher investment in repair mechanisms, such as heat shock proteins, which
may increase the need for N and other nutrients [79].

5. Conclusions

In summary, the reported results provide evidence that temperature rise and nitrogen
enrichment could significantly affect the growth, photosynthetic performance, and bio-
chemical composition of S. horneri. In particular, compared with the ambient temperature
condition, increased temperature exerted an inhibitory effect on growth and photosynthesis,
and this inhibitory effect was more significant under the nitrogen enrichment treatment. Ac-
cordingly, under the ongoing global warming coupled with eutrophication, the frequency
and scale of gold tides caused by S. horneri would be reduced in the future.
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