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Abstract: As a critical physical parameter in the sea–air interface, sea surface temperature (SST)
plays a crucial role in the sea–air interaction process. The SST diurnal cycle is one of the most
critical changes that occur in the various time scales of SST. Currently, accurate simulation and
prediction of SST diurnal cycle amplitude remain challenging. The application of machine learning
in marine environment research, simulation, and prediction has received increasing attention. In
this study, a regression prediction model for SST diurnal cycle amplitude was constructed based on
TOGA/COARE buoy-observed data and an extreme gradient boosting algorithm (XGBoost). The
XGBoost algorithm was also optimized using label distribution smoothing (LDS) to respond to the
problem of uneven cycle amplitude size distribution. The results showed that the LDS-XGB model
outperformed various empirical models and other machine learning models in terms of prediction
error and prediction accuracy while effectively improving the data imbalance problem without
losing model accuracy and achieving accurate and efficient predictions of the SST diurnal cycle
amplitude. This work is a good demonstration of the integration of marine science and machine
learning, which indicates that machine learning plays an important role in the model parametrizations
and understanding the mechanisms.

Keywords: SST diurnal cycle; SST diurnal cycle amplitude; XGBoost algorithm; machine learning

1. Introduction

Sea surface temperature (SST), as the underlying surface of the atmosphere, has an
important impact on weather and climate change and is a crucial factor in the sea–air
interaction process. The diurnal cycle of the SST results from the interplay between solar
heating, turbulent mixing, and the dynamics of the heat exchange between the ocean and
the atmosphere [1]. The SST diurnal cycle not only affects short-term and small-scale
processes in the ocean, but also has an impact on intra-seasonal (e.g., Madden–Julian
oscillation), seasonal (e.g., monsoon and annual cycle), inter-annual (e.g., ENSO), and even
inter-decadal long-term processes through the sea–air interactions [2–5]. Therefore, an
in-depth study of the SST diurnal cycle can help to deepen the understanding of sea–air
interactions and improve the model’s ability to simulate and predict sea–air processes.

The main methods used by previous research to study the SST diurnal cycle are usu-
ally observation research, empirical modeling, and numerical simulations. In terms of
observation research, ship observations, near-shore stations, and buoy observations have
been the mainstream ocean observation tools in the past 150 years. Over time, there have
been many changes in ocean observation technologies, such as satellite remote sensing,
the TOGA/COARE ocean buoy array, Argo, Glider, etc., which have greatly improved
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the capability of ocean observation. Based on these observations, marine scientists have
conducted many studies on the SST diurnal process, constructing several empirical models
of the process [6–8]. However, the SST diurnal process is complex, and these empirical
models have low accuracy and inaccurate calculation problems. With the rapid develop-
ment of computer technology in the middle of the last century, numerical models have
begun to be rapidly and widely used in various fields. Scientists have applied various
numerical models to research work on the SST diurnal cycle, including the oceanic mixed
layer model, the oceanic general circulation model, and the AOGCM [9–11]. Although
numerical models are effective tools for simulating and predicting the SST diurnal cycle,
the accurate simulation of the SST diurnal cycle requires high temporal (sea–air coupling
frequencies higher than 3 h) and spatial (upper ocean vertical resolution up to meter level)
resolution [12]. Therefore, limited by the current status of numerical model development
and uncertainties such as the parameterization process of the models themselves, the
reasonable simulation and prediction of the SST diurnal process is still a challenge.

With the rapid development of deep learning technology, data-driven methods based
on deep learning models have received increasing attention in marine environmental
element prediction [13–26]. For example, in 2020 Xu et al. [25] proposed the M-LCNN
(multi-long short-term memory convolution neural network) prediction model, which
uses wavelet transform to predict sequence changes in SST at multiple time scales by
decomposing and reconstructing the time series. In the same year, He et al. [26] constructed
a SSTP (sea surface temperature prediction) model using a local search strategy, which
applies to the prediction of SST data for long time series. However, there is still a gap in
the field of prediction of SST diurnal cycle amplitude using machine learning. Extreme
gradient boosting (XGBoost) is an improved ensemble learning algorithm that integrates
many weak learners to form a strong learner: the weak learners compensate for each other
to improve the performance of the strong learner. This algorithm has the advantages of
being fast and efficient, having a high fault tolerance, and having a high generalization
ability while avoiding overfitting. Although there are many SST diurnal observations,
these data are mainly the long time series with a spatial distribution that is concentrated
in the tropics and sparsely distributed. The XGBoost algorithm is expected to obtain the
variation pattern of the SST diurnal process from these long time series observations and
then make a large-scale systematic prediction of the SST diurnal process.

In this paper, we used TOGA/COARE buoy data to determine the relationship be-
tween SST diurnal cycle amplitude and atmospheric-related physical parameters based on
the improved XGBoost algorithm. Then, we constructed a regression prediction model to
characterize SST diurnal cycle amplitude (Figure 1) finely.

The remainder of this paper is organized as follows. The data source and preprocessing
method in this study are introduced in Section 2. Section 3 presents our constructed SST
diurnal cycle amplitude regression prediction model and evaluates the model’s predictive
ability. Section 4 features the comparative analysis undertaken with other models. The
conclusion is in Section 5.
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2. Data and Pre-Processing Methods
2.1. Data Source

The observation data used are from the Tropical Ocean-Global Atmosphere Coupled
Ocean-Atmosphere Response Experiment (TOGA/COARE) buoy array, including SST,
wind velocity, shortwave radiation, longwave radiation, sensible heat flux, latent heat flux,
etc. The data were collected from 133 stations in the range of 25◦ S–21◦ N. The temporal
resolution of the data was 1 h or 10 min, and the SST diurnal cycle amplitude was obtained
by calculating the difference between the maximum and minimum SST temperature every
day. The data ranged from October 1992 to August 2021. The buoy distribution is shown
in Figure 2.
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2.2. Data Pre-Processing

The main atmospheric physical parameters that affect SST diurnal cycle amplitude
include shortwave radiation, longwave radiation, wind velocity, sensible heat flux, and
latent heat flux [27]. Shortwave radiation and wind velocity play a more significant
role than the others [27,28]. Therefore, this paper selected wind velocity and shortwave
radiation as the model’s input variables. The large number of feature variables contained
in the initially processed data, which may have included some less correlated features,
meant that the training model would not have been able to achieve the expected prediction
effect. Therefore, the feature variables with a good correlation with SST diurnal cycle
amplitude were firstly selected by calculating the correlation coefficients. By calculating
the correlations of daily mean wind velocity, daily mean shortwave radiation, three-hour
mean wind velocity, and three-hour mean shortwave radiation with SST diurnal cycle
amplitude separately, it was found that three-hour mean wind velocity and three-hour
mean shortwave radiation correlated well with diurnal cycle amplitude. We also tried
to use one-hour wind speed and one-hour shortwave radiation as input parameters and
found that some of the input parameters were weakly correlated with SST diurnal cycle
amplitude and the training time was too long. If six-hour mean wind speed and six-hour
mean shortwave radiation are used as input parameters, the prediction results are not
as good as the three-hour resolution. Therefore, the three-hour mean wind speed and
three-hour mean shortwave radiation are selected as input parameters. The heat map of
correlation coefficients between each input parameter and SST diurnal cycle amplitude is
shown in Figure 3. The scale on the right side of the heat map shows the corresponding
colors of the correlation coefficients. The XGBoost algorithm does not need to standardize
the data because it is a tree model of border crossing and is not derivable.
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3. Prediction Model and Analysis of Results
3.1. XGBoost Algorithm

XGBoost (extreme gradient boosting) is a machine learning algorithm based on en-
semble ideas proposed by Chen et al. [29] and is essentially a gradient boosting decision
tree (GBDT) that belongs to the boosting framework. Basically, the XGBoost algorithm
keeps adding trees to a tree while performing feature splitting to make the tree grow to fit
the residuals of the last prediction better. It rewrites and optimizes the original objective
function of GBDT and executes second-order Taylor expansion to make the algorithm
converge faster and obtain the optimal solution. The objective function of the XGBoost
algorithm consists of two parts: one is the loss function l, which is generally the mean
square error, and the other part is the regularization term Ω, which is the sum of the
complexity of each tree, which is used to control the complexity of the model and prevent
overfitting. Its objective function is:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (1)

where n is the number of training samples, yi denotes the observation values of the model,
ŷi denotes the simulation value of the model, K denotes the number of decision trees, and
fk denotes the kth tree model.

After the derivation by Taylor expansion, the determination of the complexity of the
definition tree, and the grouping of leaf nodes, the final objective function can be written as:

Obj =
T

∑
j=1

[
Gjωj + 1/2

(
Hj + λ

)
ω2

j

]
+ γT (2)

Since the objective function of XGBoost algorithm can introduce a regularization term,
it can control the model’s complexity, reduce its variance, and prevent it from overfitting.
The XGBoost algorithm assigns learning rates to leaf nodes after each iteration to reduce
the weight of each tree, reducing the impact of each tree and providing a better learning
space later. The XGBoost algorithm borrows from random forests and supports column
sampling, which not only reduces overfitting, but also reduces computational effort. In
addition, the XGBoost algorithm also considers using multi-threading, data compression,
and slicing when the amount of data is significant and memory is insufficient to improve
the algorithm’s efficiency as much as possible. Therefore, the XGBoost algorithm was
chosen to predict the SST diurnal cycle amplitude.

3.2. Improved XGBoost Algorithm

By calculating the probability density, the amount of observed data with an SST
diurnal cycle amplitude of less than 2 ◦C accounted for more than 90% of the data that can
be seen, while only less than 1% of the data were above 3 ◦C. The probability density plot
is shown in Figure 4.

The severe imbalance between the data led to a concentration of simulation values
below 2 ◦C. Therefore, finding a suitable way to mitigate or solve this data imbalance
problem is a critical technical challenge. Previous studies on the data imbalance problem
have been based on classification problems. However, the SST diurnal cycle amplitude is
continuous. In continuous data, there is no longer a rigid boundary between classes, and
the direct application of traditional imbalance classification methods is not satisfactory. To
address this problem, this paper used label distribution smoothing (LDS) [30] to improve
the XGBoost algorithm, which predicts the SST diurnal cycle amplitude in the continuous
case. The improved algorithm is called LDS-XGB and is implemented as follows.

Let (Xi, yi)
n
(i=1) denote the training set with a sample size of n, where Xi ∈ Rd denotes

the input variables, y ∈ R denotes the label, and y is continuous. We divide the continuous
type label values into groups of B at equal intervals, i.e., [y0, y1), [y1, y2), · · · ,

[
y(B−1), yB

)
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and use b ∈ B to denote the group index of the target values. For predicting the SST diurnal
cycle amplitude, we define ∆y , yb−1 − yb.
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The density distribution of the SST diurnal cycle amplitude of the labeled values in the
training set, i.e., the number of occurrences of yb in the training set, is calculated from ∆y
and is called the empirical label distribution. The Pearson correlation coefficient evaluates
the linear relationship between the label density distribution and the error distribution.
The larger the coefficient’s absolute value, the stronger the correlation between the two.
Previous studies have shown that the empirical label density distribution does not reflect
the observed label density distribution when the label values are continuous because of
the dependence between data samples on adjacent labels [31]. LDS uses kernel density
estimation to improve the imbalance in continuous datasets.

LDS uses a symmetric kernel function. Here, we chose to use the Gaussian kernel

function k(y, y′) = e(−||y−y′ ||2/(2σ2)). The Gaussian kernel function is a symmetric kernel
function satisfying k(y, y′) = k(y′, y) and ∇yk(y, y′) +∇(y′)k(y′, y) = 0,∀y, y′ ∈ Y, which
portrays the similarity between the target values y′ and y. The empirical label density
distribution is then convolved to obtain a new distribution, called the effective label density
distribution. The calculation formula is as follows:

p̃
(
y′
)
,
∫

Y
k
(
y, y′

)
p(y)dy (3)

where p(y) represents the empirical label density distribution and p̃(y′) represents the
effective label density distribution for the label value y′.

In the XGboost algorithm, the regression tree loss function is generally chosen as the
squared loss. After the effective density distribution is obtained by calculation, the loss
function is weighted by multiplying it by the inverse of the effective density distribution of
each training sample. The obtained loss function is:

ω = 1/ p̃
(
y′
)

(4)

l′ = 1/m
m

∑
i=1

ωil(yi, ŷi) (5)



J. Mar. Sci. Eng. 2022, 10, 1686 7 of 14

where l′ represents the reweighted loss function.

3.3. Evaluation Criteria

In the sample training process, the predictive performance of the model is evaluated
using the root mean square error (RMSE), mean absolute error (MAE), and goodness of fit,
R2. RMSE measures the deviation between the simulation values and observation values,
MAE reflects the actual situation of the error in the simulation values, and R2 demonstrates
the extent to which the independent variables explain the variation in the dependent
variable. These are essential yardsticks for evaluating models in machine learning. The
RMSE, MAE, and R2 are calculated as follows:

RMSE =

√√√√(( n

∑
i=1

(yi − ŷi)
2

)
/n

)
(6)

MAE = 1/n
n

∑
i=1
|yi − ŷi| (7)

R2 =

(
n

∑
i=1

(ŷi − y)2

)
/

(
n

∑
i=1

(yi − y)2

)
(8)

where yi is the observation value of SST diurnal cycle amplitude data, ŷi is the simulation
value of the SST diurnal cycle amplitude, and n is the number of samples.

3.4. Model Tuning

The prediction performance of a machine learning model mainly depends on the data
quality and the model parameters’ tuning. Therefore, in this study, to further improve the
model prediction effect, the SST diurnal cycle amplitude prediction model based on the
XGBoost algorithm needed to be tuned.

Five key parameters have a significant impact on the prediction performance of the
XGBoost model. Among them, n_estimators are the number of weak learners in the
ensemble algorithm—the larger the value of this parameter, the stronger the learning ability
of the model, but the more likely the model is to overfit; max_depth controls the maximum
depth of the tree in the model—the larger the value of this parameter, the more complex
the model is, and the easier it is to overfit the model; the subsample parameter controls the
proportion of randomly selected data for training, and the learning_rate parameter controls
the iteration rate, both of which can prevent model overfitting; and gamma controls the
minimum loss function required to split the nodes, which can reduce the complexity of the
model and speed up the algorithm’s convergence. We adjusted the critical parameters of
the XGBoost algorithm through several rounds of testing and used the cross-validation
results as the criteria for parameter selection. The final optimal values of the five key
parameters are shown in Table 1.

Table 1. Optimal values of key model parameters.

Parameters n_Estimators Max_Depth Subsample Learning_Rate Gamma

Optimal value 500 6 1 0.1 0.2

3.5. Analysis of Results

First, the observed data set, containing SST diurnal cycle amplitude, high-resolution
wind velocity, and short-wave radiation values, was randomly divided into a training set
and a testing set according to the ratio of 80%:20%. Second, based on the LDS-XGB algo-
rithm, the model was trained using the training set to build a regression prediction model of
the SST diurnal cycle amplitude. Finally, the model’s prediction ability was verified using
the testing set. This study used the Python language environment to build the XGBoost
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model, mainly based on the scikit-learn library. According to the prediction algorithm
flow, the pre-processed dataset was imported into the LDS-XGB model. After finding the
optimal parameters, the model was trained, and the prediction results were obtained.

The Pearson correlation coefficient between the empirical label density distribution
and the error distribution was first calculated (Figure 5a,c), which was −0.38, and the
correlation between the empirical label density and the error distribution was weak. The
effective label density distribution was obtained by Gaussian convolution of the empirical
label density distribution. The Pearson correlation coefficient between the effective label
density and the error distribution was −0.54. The results indicate that the effective label
density distribution calculated by the LDS-XGB model had a good correlation with the
error distribution (Figure 5b,d).
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The training set was trained using the XGBoost and LDS-XGB models, respectively,
and the testing set was predicted using the trained models. The prediction results are
shown in Figure 6a,b, respectively, where the bottom histogram indicates the distribution of
the observed data, and the right histogram indicates the distribution of the predicted data.
The horizontal coordinates in the scatterplot indicate the observation values, the vertical
coordinates indicate the simulation values, and the simulation values and the observation
values fall on the diagonal line. Both models predicted the SST diurnal cycle amplitude
better than the earlier prediction model. Tables 2 and 3 show that both models achieved a
high fit and small error values in both the training and testing sets, which proves that the
models had good performance in predicting SST diurnal cycle amplitude. In terms of fit,
the XGBoost model and the LDS-XGB model both achieved more than 70%. In terms of
error, the RMSE values of the two models were 0.1757 ◦C and 0.1771 ◦C, respectively, with
both committing minor mistakes. After statistical analysis, it was found that the proportion
of SST diurnal cycle amplitude values above 2 ◦C predicted by the XGBoost model was
less than 0.020%. In comparison, the ratio of values above 2 ◦C predicted by the LDS-XGB
model improved to 0.28%, which was closer to the observation, indicating that the models
improved the data imbalance problem to some extent and thus improved their prediction
of high values.
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indicates the distribution of observed data, the right histogram indicates the distribution of predicted
data, the horizontal coordinates in the scatter plot indicate the observation values, and the vertical
coordinates indicate the simulation values.

Table 2. Evaluation results of SST diurnal cycle amplitude prediction model.

Model
R2 MAE RMSE

Train Test Train Test Train Test

XGBoost 0.8045 0.7479 0.0997 0.1106 0.1521 0.1757

LDS-XGB 0.7503 0.7351 0.1109 0.1150 0.1519 0.1771

Table 3. Statistics of prediction results of SST diurnal cycle amplitude model.

Model Below 1 1–1.5 1.5–2 2–2.5 2.5 or More

Observation data
27,513 1586 433 83 20

92.840% 5.3512% 1.461% 0.280% 0.067%

XGBoost
27,740 1584 305 6 0

93.605% 5.345% 1.029% 0.020% 0.000%

LDS-XGB
27,757 1291 504 81 2

93.662% 0.436% 1.700% 0.273% 0.007%

We also constructed three different models for the tropical Pacific Ocean, Atlantic
Ocean, and the Indian Ocean, and four different models for four seasons the same as the
previous. Tables 4 and 5 evaluated the training and testing results for each model, and the
results show that models do not differ significantly in prediction accuracy. Although the
SST diurnal cycle amplitude behaves differently over each ocean and season, the key factors
that control the SST diurnal cycle amplitude, such as wind and shortwave radiation, are
consistent. Our algorithm can capture the main factors causing the SST diurnal variation
amplitude and can predict the SST diurnal variation amplitude better.
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Table 4. Different oceans’ evaluation results of the SST diurnal cycle amplitude.

Model
R2 MAE RMSE

Train Test Train Test Train Test

Pacific Ocean 0.6374 0.6192 0.1518 0.1556 0.2230 0.2304

Atlantic Ocean 0.6894 0.6543 0.0953 0.0978 0.1495 0.1562

Indian Ocean 0.7975 0.7734 0.1188 0.1228 0.1811 0.1892

Table 5. Different seasons’ evaluation results of the SST diurnal cycle amplitude.

Model
R2 MAE RMSE

Train Test Train Test Train Test

Spring 0.7308 0.6993 0.1306 0.1375 0.1979 0.2143

Summer 0.6372 0.5998 0.1357 0.1386 0.1983 0.2050

Autumn 0.6974 0.6807 0.1282 0.1312 0.1943 0.2010

Winter 0.6904 0.6576 0.1262 0.1299 0.1933 0.2017

4. Discussion

To further demonstrate the accuracy of the LDS-XGB model in predicting the SST
diurnal cycle amplitude, we also compared it with empirical models and various other
machine learning models. Webster et al. [7] proposed a widely used regression equation for
determining the SST diurnal cycle amplitude based on the analysis of many observations.
Kawai and Kawamura [6] improved the equation proposed by Webster et al. by using buoy
data from tropical and mid-latitude regions (Equation (9)).

∆SST = a(PS)2 + b[ln(U)] + c(PS)2[ln(U)] + d (9)

where a, b, c, and d are the regression coefficients, PS is the shortwave radiation maximum,
and U is the average daily wind velocity.

We built an empirical model based on the parameters given in the paper and predicted
the testing data, and the results showed prediction error and poor goodness of fit. Therefore,
we used least squares to rederive the parameters based on the training data to build a new
empirical model and predict the testing data. The original parameters given in the paper
and the parameters obtained by least squares are shown in Tables 6 and 7.

Table 6. Regression coefficients (Kawai and Kawamura, 2002 [6]).

U > 2.5 ms−1 U ≤ 2.5 ms−1

a 3.0409× 10−6 5.0109× 10−6

b −2.8258× 10−2 2.2063× 10−1

c −1.1987× 10−6 −3.3394× 10−6

d −2.5893× 10−2 −2.0216× 10−1

Table 7. Least squares regression coefficients.

U > 2.5 ms−1 U ≤ 2.5 ms−1

a 9.6356× 10−7 6.2404× 10−7

b −1.6039× 10−1 −5.0917× 10−1

c −4.6407× 10−7 −4.1042× 10−7

d 4.8815× 10−1 9.1496× 10−1
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In addition, common regression algorithms used in machine learning, besides the
XGBoost model, include the RBF (radial basis function), random forest, and stacking models.
Therefore, to select the optimal model, we also tested these models to predict SST diurnal
cycle amplitude data and evaluated and compared the results.

The RBF neural network is a three-layer neural network, including an input layer, a
hidden layer, and an output layer. The transformation from the input space to the space
of the hidden layer is nonlinear, while the transformation from the space of the hidden
layer to the space of the output layer is linear. RBF [32] neural networks are simple in
structure, concise in training, fast in learning convergence, and capable of approximating
arbitrary nonlinear functions. Random forest is an integrated algorithm of the bagging type,
which makes the overall model result in high accuracy and generalization performance
by combining multiple weak classifiers. The random forest regression model consists of
multiple regression trees, and there is no correlation between each decision tree in the
forest; the final output of the model is determined by each decision tree in the forest
together, i.e., the average of all the decision tree outputs. This makes random forests a
powerful modeling technique that is much more powerful than individual decision trees.
Stacking [33] is an integrated learning method that obtains a better result by combining the
output generated by multiple weak learners as the input to the final learner. In the Stacking
method, there are two stages of models. The first stage of the model is the model with the
original training set as input, called the base model. The second stage of the model is a
model with the predictions of the base model on the original training set as the training
set and the predictions of the base model on the original test set as the test set, called the
meta-model. XGBoost, bagging, and random forest are chosen for the base model, and
simple linear regression is chosen for the meta-model to prevent overfitting.

Table 8 shows the evaluation of all models’ training and testing results. As can be
seen from the table, the empirical model prediction results had the most significant error,
with the MAE and RMSE reaching 53.36% and 70.96%, respectively. The MAE and RMSE
were effectively reduced after the parameters were substituted into the empirical model
using the least squares method. Further, the predicted SST diurnal cycle amplitude results
using the three deep learning models were more accurate. The performance of the RBF
neural network model was more stable on the training and testing sets, with the MAE and
RMSE reduced to 10.48% and 17.73%, respectively, while the random forest results showed
large fluctuations. Still, the error was significantly reduced compared to the empirical
model. Stacking was more stable on the testing set, with the MAE and RMSE reduced to
11.12% and 17.44%, respectively. In terms of the goodness of fit, the R2 of the random forest
on the training set was too large, reaching 96.18%. The random forest prediction results
fluctuated widely, indicating that the model was overfitted. In the testing set, the R2 values
of the random forest, stacking, and RBF neural network models increased compared to the
LDS-XGB model, but only by 1~2%. Regarding the error, the RMSE of all three models
was 0.17 ◦C, which was not much different from that of the LDS-XGB model. According
to the results, the predicted SST diurnal cycle amplitude values by the empirical model
and the three deep learning models were all below 2 ◦C, and it was almost impossible
for these models to predict the values above 2 ◦C, which was very unsatisfactory for the
high values (Table 9). In terms of algorithm, we built the XGBoost algorithm to perform a
second-order Taylor expansion on the loss function. And the introduction of second-order
derivatives in the XGBoost algorithm increased the accuracy to a certain extent. The regular
term reduces the model’s variance and simplifies the learned model, which helps prevent
overfitting. The XGBoost algorithm borrows from the random forest and supports column
sampling, which not only reduces overfitting, but also reduces computational effort. Also,
we used the LDS method to improve the weights of the loss function and to increase the
predictive power for high values. In summary, our established LDS-XGB model effectively
improves the data imbalance problem without losing prediction accuracy, improves the
model’s prediction ability for high values, and achieves accurate and efficient SST diurnal
cycle amplitude prediction.
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Table 8. Training and testing evaluation results for each model.

Model
R2 MAE RMSE

Train Test Train Test Train Test

Empirical model −3.2562 −3.1084 0.5360 0.5336 0.7100 0.7096

Least Squares
Parameters 0.6317 0.6445 0.1357 0.1360 0.2088 0.2087

Random
Forest 0.9618 0.7435 0.0429 0.1142 0.0672 0.1772

Stacking – 0.7516 – 0.1112 – 0.1744

RBF 0.7131 0.7561 0.1206 0.1048 0.1876 0.1773

Table 9. Statistics of prediction results for the SST diurnal cycle amplitude model.

Model Below 1 1–1.5 1.5–2 2–2.5 2.5 or More

Empirical model 19,601 5802 2363 875 994
66.141% 19.578% 7.974% 2.953% 3.354%

Least Squares
Parameters

28,114 1424 92 4 1
94.868% 4.805% 1.029% 0.310% 0.003%

Random
Forest

27,873 1482 279 1 0
94.054% 5.001% 0.942% 0.003% 0.000%

Stacking 27,901 1465 267 2 0
94.149% 4.943% 0.901% 0.007% 0.000%

RBF
28,129 1300 204 2 0

94.918% 4.387% 0.688% 0.007% 0.000%

5. Conclusions

In this study, the prediction of the SST diurnal cycle amplitude was carried out
based on TOGA/COARE buoy data by building a regression prediction model using
machine deep learning methods. Firstly, a regression model for predicting SST diurnal cycle
amplitude was constructed using the XGBoost algorithm, and the algorithm’s effectiveness
was verified by using TOGA/COARE buoy data as an example. Secondly, to solve the data
imbalance problem, the LDS method was used to reweight the XGBoost model, and the
LDS-XGB model was constructed, which showed a significantly improved ability to predict
high values of SST diurnal cycle amplitude (greater than 2 ◦C). We also compared the SST
diurnal cycle amplitudes in different oceans and seasons, and the results showed that the
models did not differ significantly in prediction accuracy. After comparing the LDS-XGB
algorithm’s SST diurnal cycle amplitude prediction results with those of various empirical
models and some machine learning algorithms, it was found that the LDS-XGB algorithm
performed better in terms of error and goodness of fit.

In summary, the LDS-XGB algorithm constructed in this study can accurately predict
the SST diurnal cycle amplitude. Its prediction ability for high values was greatly improved
compared to earlier models, achieving an accurate and efficient SST diurnal cycle amplitude
prediction. For the prediction of SST diurnal cycle amplitude values above 3 ◦C, we plan to
conduct more in-depth research on the loss function of the LDS-XGB algorithm and are
continuing to explore other methods to predict SST diurnal cycle amplitude. Moreover,
the phase of the diurnal cycle is the other important feature besides amplitude. We are
considering conducting studies on the SST diurnal cycle phase in the future.
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